1
|
Guo C, Xu C, Feng Q, Xie X, Li Y, Zhao X, Hu J, Fang S, Shang L. A study on loading multiple epitopes with a single peptide. J Med Virol 2024; 96:e70004. [PMID: 39400886 DOI: 10.1002/jmv.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/08/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
Epitopes, the basic functional units of antigens, hold great significance in the field of immunology. However, the structure and composition of epitopes and their interactions with antibodies remain unclear, which limits in-depth studies on epitopes and the development of subunit vaccines. In a previous study on the localization of anti-influenza HA monoclonal antibodies (mAbs), three strains with different characteristics reacted with the same peptide. In this study, by conventional immunological assays, computer homology modeling, and molecular docking simulations, we found that (1) the peptide could bind to three strains of mAbs with different reaction characteristics utilizing different combinations of immunodominant groups. (2) By computer molecular docking and simulation methods, the immunodominant groups on the two peptides could be combined into a multi-epitope peptide bound to six strains of mAbs. We established a method for multi-epitope peptide recombination from these immunodominant groups. (3) The immune effect of the recombinant multi-epitope peptide was better than that of a single peptide. Our findings facilitate the understanding of the composition of antigen epitopes and provide a theoretical and experimental basis for developing polyvalent vaccines and understanding immune responses at the molecular level.
Collapse
Affiliation(s)
- Chunyan Guo
- Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
- Shaanxi Engineering Research Center of Cell Immunology, Xi'an, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Xi'an, Shaanxi, China
| | - Cuixiang Xu
- Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
- Shaanxi Engineering Research Center of Cell Immunology, Xi'an, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Xi'an, Shaanxi, China
| | - Qing Feng
- Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
- Shaanxi Engineering Research Center of Cell Immunology, Xi'an, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Xi'an, Shaanxi, China
| | - Xin Xie
- Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Yan Li
- Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
- Shaanxi Engineering Research Center of Cell Immunology, Xi'an, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Xi'an, Shaanxi, China
| | - Xiangrong Zhao
- Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
- Shaanxi Engineering Research Center of Cell Immunology, Xi'an, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Xi'an, Shaanxi, China
| | - Jun Hu
- Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
- Shaanxi Engineering Research Center of Cell Immunology, Xi'an, Shaanxi, China
| | - Senbiao Fang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Lijun Shang
- School of Human Sciences, London Metropolitan University, London, UK
| |
Collapse
|
2
|
Identification of B-Cell Epitopes on Capsid Protein Reveals Two Potential Neutralization Mechanisms in Red-Spotted Grouper Nervous Necrosis Virus. J Virol 2023; 97:e0174822. [PMID: 36633407 PMCID: PMC9888288 DOI: 10.1128/jvi.01748-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Nervous necrosis virus (NNV), a formidable pathogen in marine and freshwater fish, has inflicted enormous financial tolls on the aquaculture industry worldwide. Although capsid protein (CP) is the sole structural protein with pathogenicity and antigenicity, public information on immunodominant regions remains extremely scarce. Here, we employed neutralizing monoclonal antibodies (MAbs) specific for red-spotted grouper NNV (RGNNV) CNPgg2018 in combination with partially overlapping truncated proteins and peptides to identify two minimal B-cell epitope clusters on CP, 122GYVAGFL128 and 227SLYNDSL233. Site-directed mutational analysis confirmed residues Y123, G126, and L128 and residues L228, Y229, N230, D231, and L233 as the critical residues responsible for the direct interaction with ligand, respectively. According to homologous modeling and bioinformatic evaluation, 122GYVAGFL128 is harbored at the groove of the CP junction with strict conservation among all NNV isolates, while 227SLYNDSL233 is localized in proximity to the tip of a viral protrusion having relatively high evolutionary dynamics in different genotypes. Additionally, 227SLYNDSL233 was shown to be a receptor-binding site, since the corresponding polypeptide could moderately suppress RGNNV multiplication by impeding virion entry. In contrast, 122GYVAGFL128 seemed dedicated only to stabilizing viral native conformation and not to assisting initial virus attachment. Altogether, these findings contribute to a novel understanding of the antigenic distribution pattern of NNV and the molecular basis for neutralization, thus advancing the development of biomedical products, especially epitope-based vaccines, against NNV. IMPORTANCE NNV is a common etiological agent associated with neurological virosis in multiple aquatic organisms, causing significant hazards to the host. However, licensed drugs or vaccines to combat NNV infection are very limited to date. Toward the advancement of broad-spectrum prophylaxis and therapeutics against NNV, elucidating the diversity of immunodominant regions within it is undoubtedly essential. Here, we identified two independent B-cell epitopes on NNV CP, followed by the confirmation of critical amino acid residues participating in direct interaction. These two sites were distributed on the shell and protrusion domains of the virion, respectively, and mediated the neutralization exerted by MAbs via drastically distinct mechanisms. Our work promotes new insights into NNV antigenicity as well as neutralization and, more importantly, offers promising targets for the development of antiviral countermeasures.
Collapse
|
3
|
Comprehensive Linear Epitope Prediction System for Host Specificity in Nodaviridae. Viruses 2022; 14:v14071357. [PMID: 35891339 PMCID: PMC9319239 DOI: 10.3390/v14071357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 02/01/2023] Open
Abstract
Background: Nodaviridae infection is one of the leading causes of death in commercial fish. Although many vaccines against this virus family have been developed, their efficacies are relatively low. Nodaviridae are categorized into three subfamilies: alphanodavirus (infects insects), betanodavirus (infects fish), and gammanodavirus (infects prawns). These three subfamilies possess host-specific characteristics that could be used to identify effective linear epitopes (LEs). Methodology: A multi-expert system using five existing LE prediction servers was established to obtain initial LE candidates. Based on the different clustered pathogen groups, both conserved and exclusive LEs among the Nodaviridae family could be identified. The advantages of undocumented cross infection among the different host species for the Nodaviridae family were applied to re-evaluate the impact of LE prediction. The surface structural characteristics of the identified conserved and unique LEs were confirmed through 3D structural analysis, and concepts of surface patches to analyze the spatial characteristics and physicochemical propensities of the predicted segments were proposed. In addition, an intelligent classifier based on the Immune Epitope Database (IEDB) dataset was utilized to review the predicted segments, and enzyme-linked immunosorbent assays (ELISAs) were performed to identify host-specific LEs. Principal findings: We predicted 29 LEs for Nodaviridae. The analysis of the surface patches showed common tendencies regarding shape, curvedness, and PH features for the predicted LEs. Among them, five predicted exclusive LEs for fish species were selected and synthesized, and the corresponding ELISAs for antigenic feature analysis were examined. Conclusion: Five identified LEs possessed antigenicity and host specificity for grouper fish. We demonstrate that the proposed method provides an effective approach for in silico LE prediction prior to vaccine development and is especially powerful for analyzing antigen sequences with exclusive features among clustered antigen groups.
Collapse
|
4
|
Nervous Necrosis Virus Coat Protein Mediates Host Translation Shutoff through Nuclear Translocalization and Degradation of Polyadenylate Binding Protein. J Virol 2021; 95:e0236420. [PMID: 34133901 DOI: 10.1128/jvi.02364-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Nervous necrosis virus (NNV) belongs to the Betanodavirus genus of the Nodaviridae family and is the main cause of viral nervous necrosis disease in marine fish larvae and juveniles worldwide. The NNV virion contains two positive-sense, single-stranded RNA genomes, which encode RNA-dependent RNA polymerase, coat protein, and B2 protein. Interestingly, NNV infection can shut off host translation in orange-spotted grouper (Epinephelus coioides) brain cells; however, the detailed mechanisms of this action remain unknown. In this study, we discovered that the host translation factor, polyadenylate binding protein (PABP), is a key target during NNV takeover of host translation machinery. Additionally, ectopic expression of NNV coat protein is sufficient to trigger nuclear translocalization and degradation of PABP, followed by translation shutoff. A direct interaction between NNV coat protein and PABP was demonstrated, and this binding requires the NNV coat protein N-terminal shell domain and PABP proline-rich linker region. Notably, we also showed that degradation of PABP during later stages of infection is mediated by the ubiquitin-proteasome pathway. Thus, our study reveals that the NNV coat protein hijacks host PABP, causing its relocalization to the nucleus and promoting its degradation to stimulate host translation shutoff. IMPORTANCE Globally, more than 200 species of aquacultured and wild marine fish are susceptible to NNV infection. Devastating outbreaks of this virus have been responsible for massive economic damage in the aquaculture industry, but the molecular mechanisms by which NNV affects its host remain largely unclear. In this study, we show that NNV hijacks translation in host brain cells, with the viral coat protein binding to host PABP to promote its nuclear translocalization and degradation. This previously unknown mechanism of NNV-induced host translation shutoff greatly enhances the understanding of NNV pathogenesis and provides useful insights and novel tools for development of NNV treatments, such as the use of orange-spotted grouper brain cells as an in vitro model system.
Collapse
|
5
|
Jung JW, Lee AR, Kim J, Kim YR, Lazarte JMS, Lee JS, Thompson KD, Kim H, Jung TS. Elucidating the Functional Roles of Helper and Cytotoxic T Cells in the Cell-Mediated Immune Responses of Olive Flounder ( Paralichthys olivaceus). Int J Mol Sci 2021; 22:ijms22020847. [PMID: 33467734 PMCID: PMC7829854 DOI: 10.3390/ijms22020847] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 11/29/2022] Open
Abstract
In higher vertebrates, helper and cytotoxic T cells, referred to as CD4 and CD8 T lymphocytes, respectively, are mainly associated with adaptive immunity. The adaptive immune system in teleosts involves T cells equivalent to those found in mammals. We previously generated monoclonal antibodies (mAbs) against olive flounder (Paralichthys olivaceus) CD4 T cells, CD4-1 and CD4-2, and used these to describe the olive flounder’s CD4 Tcell response during a viral infection. In the present study, we successfully produced mAbs against CD8 T lymphocytes and their specificities were confirmed using immuno-blotting, immunofluorescence staining, flow cytometry analysis andreverse transcription polymerase chain reaction (RT-PCR). The results showed that these mAbs are specific for CD8 T lymphocytes. We also investigated variations in CD4 and CD8 T cells populations, and analyzed the expression of immune-related genes expressed by these cells in fish infected with nervous necrosis virus or immunized with thymus dependent and independent antigens. We found that both CD4 and CD8 T lymphocyte populations significantly increased in these fish and Th1-related genes were up-regulated compared to the control group. Collectively, these findings suggest that the CD4 and CD8 T lymphocytes in olive flounder are similar to the helper and cytotoxic T cells found in mammals, and Th1 and cytotoxic immune responses are primarily involved in the early adaptive immune response against extracellular antigens.
Collapse
Affiliation(s)
- Jae Wook Jung
- Laboratory of Aquatic Animal Diseases, Research Institute of Natural Science, College of Veterinary Medicine, Gyeongsang National University, 501-201, 501, Jinju-daero, Jinju-si 52828, Korea; (J.W.J.); (A.R.L.); (J.K.); (Y.R.K.); (J.M.S.L.); (J.S.L.)
| | - Ae Rin Lee
- Laboratory of Aquatic Animal Diseases, Research Institute of Natural Science, College of Veterinary Medicine, Gyeongsang National University, 501-201, 501, Jinju-daero, Jinju-si 52828, Korea; (J.W.J.); (A.R.L.); (J.K.); (Y.R.K.); (J.M.S.L.); (J.S.L.)
| | - Jaesung Kim
- Laboratory of Aquatic Animal Diseases, Research Institute of Natural Science, College of Veterinary Medicine, Gyeongsang National University, 501-201, 501, Jinju-daero, Jinju-si 52828, Korea; (J.W.J.); (A.R.L.); (J.K.); (Y.R.K.); (J.M.S.L.); (J.S.L.)
| | - Young Rim Kim
- Laboratory of Aquatic Animal Diseases, Research Institute of Natural Science, College of Veterinary Medicine, Gyeongsang National University, 501-201, 501, Jinju-daero, Jinju-si 52828, Korea; (J.W.J.); (A.R.L.); (J.K.); (Y.R.K.); (J.M.S.L.); (J.S.L.)
| | - Jassy Mary S. Lazarte
- Laboratory of Aquatic Animal Diseases, Research Institute of Natural Science, College of Veterinary Medicine, Gyeongsang National University, 501-201, 501, Jinju-daero, Jinju-si 52828, Korea; (J.W.J.); (A.R.L.); (J.K.); (Y.R.K.); (J.M.S.L.); (J.S.L.)
| | - Jung Suk Lee
- Laboratory of Aquatic Animal Diseases, Research Institute of Natural Science, College of Veterinary Medicine, Gyeongsang National University, 501-201, 501, Jinju-daero, Jinju-si 52828, Korea; (J.W.J.); (A.R.L.); (J.K.); (Y.R.K.); (J.M.S.L.); (J.S.L.)
| | - Kim D. Thompson
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik EH26 0PZ, UK;
| | - Hyeongsu Kim
- Inland Aquaculture Research, National Institute of Fisheries Science, #55, 25gil, Yeomyeong-ro, Jinhae-gu, Changwon-si 51688, Korea;
| | - Tae Sung Jung
- Laboratory of Aquatic Animal Diseases, Research Institute of Natural Science, College of Veterinary Medicine, Gyeongsang National University, 501-201, 501, Jinju-daero, Jinju-si 52828, Korea; (J.W.J.); (A.R.L.); (J.K.); (Y.R.K.); (J.M.S.L.); (J.S.L.)
- Centre for Marine Bioproducts Development, Flinders University, Bedford Park 5042, Australia
- Correspondence: ; Tel.: +82-10-8545-9310; Fax: +82-55-762-6733
| |
Collapse
|
6
|
Betanodavirus and VER Disease: A 30-year Research Review. Pathogens 2020; 9:pathogens9020106. [PMID: 32050492 PMCID: PMC7168202 DOI: 10.3390/pathogens9020106] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/22/2020] [Accepted: 02/04/2020] [Indexed: 12/18/2022] Open
Abstract
The outbreaks of viral encephalopathy and retinopathy (VER), caused by nervous necrosis virus (NNV), represent one of the main infectious threats for marine aquaculture worldwide. Since the first description of the disease at the end of the 1980s, a considerable amount of research has gone into understanding the mechanisms involved in fish infection, developing reliable diagnostic methods, and control measures, and several comprehensive reviews have been published to date. This review focuses on host–virus interaction and epidemiological aspects, comprising viral distribution and transmission as well as the continuously increasing host range (177 susceptible marine species and epizootic outbreaks reported in 62 of them), with special emphasis on genotypes and the effect of global warming on NNV infection, but also including the latest findings in the NNV life cycle and virulence as well as diagnostic methods and VER disease control.
Collapse
|
7
|
Identification of a Novel Linear B-Cell Epitope on the Nucleocapsid Protein of Porcine Deltacoronavirus. Int J Mol Sci 2020; 21:ijms21020648. [PMID: 31963776 PMCID: PMC7013544 DOI: 10.3390/ijms21020648] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 01/11/2023] Open
Abstract
Porcine deltacoronavirus (PDCoV), first identified in 2012, is a swine enteropathogen now found in many countries. The nucleocapsid (N) protein, a core component of PDCoV, is essential for virus replication and is a significant candidate in the development of diagnostics for PDCoV. In this study, monoclonal antibodies (mAbs) were generated and tested for reactivity with three truncations of the full protein (N1, N2, N3) that contained partial overlaps; of the five monoclonals chosen tested, each reacted with only the N3 truncation. The antibody designated 4E88 had highest binding affinity with the N protein and was chosen for in-depth examination. The 4E88 epitope was located to amino acids 308-AKPKQQKKPKK-318 by testing the 4E88 monoclonal for reactivity with a series of N3 truncations, then the minimal epitope, 309-KPKQQKKPK-317 (designated EP-4E88), was pinpointed by testing the 4E88 monoclonal for reactivity with a series of synthetic peptides of this region. Homology analysis showed that the EP-4E88 sequence is highly conserved among PDCoV strains, and also shares high similarity with sparrow coronavirus (HKU17), Asian leopard cat coronavirus (ALCCoV), quail coronavirus (UAE-HKU30), and sparrow deltacoronavirus (SpDCoV). Of note, the PDCoV EP-4E88 sequence shared very low similarity (<22.2%) with other porcine coronaviruses (PEDV, TGEV, PRCV, SADS-CoV, PHEV), demonstrating that it is an epitope that can be used for distinguishing PDCoV and other porcine coronavirus. 3D structural analysis revealed that amino acids of EP-4E88 were in close proximity and may be exposed on the surface of the N protein.
Collapse
|
8
|
Jung JW, Lee JS, Kim J, Im SP, Kim SW, Lazarte JMS, Kim YR, Chun JH, Ha MW, Kim HS, Thompson KD, Jung TS. Characterization of Hagfish ( Eptatretus burgeri) Variable Lymphocyte Receptor-Based Antibody and Its Potential Role in the Neutralization of Nervous Necrosis Virus. THE JOURNAL OF IMMUNOLOGY 2019; 204:718-725. [PMID: 31836656 DOI: 10.4049/jimmunol.1900675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/18/2019] [Indexed: 12/13/2022]
Abstract
The variable lymphocyte receptor (VLR) mediates the humoral immune response in jawless vertebrates, including lamprey (Petromyzon marinus) and hagfish (Eptatretus burgeri). Hagfish VLRBs are composed of leucine-rich repeat (LRR) modules, conjugated with a superhydrophobic C-terminal tail, which contributes to low levels of expression in recombinant protein technology. In this study, we screened Ag-specific VLRBs from hagfish immunized with nervous necrosis virus (NNV). The artificially multimerized form of VLRB was constructed using a mammalian expression system. To enhance the level of expression of the Ag-specific VLRB, mutagenesis of the VLRB was achieved in vitro through domain swapping of the LRR C-terminal cap and variable LRR module. The mutant VLRB obtained, with high expression and secretion levels, was able to specifically recognize purified and progeny NNV, and the Ag binding ability of this mutant was increased by at least 250-fold to that of the nonmutant VLRB. Furthermore, preincubation of the Ag-specific VLRB with NNV reduced the infectivity of NNV in E11 cells in vitro, and in vivo experiment. Our results suggest that the newly developed Ag-specific VLRB has the potential to be used as diagnostic and therapeutic reagents for NNV infections in fish.
Collapse
Affiliation(s)
- Jae Wook Jung
- Laboratory of Aquatic Animal Diseases, Research Institute of Natural Science, College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongnam 52828, South Korea
| | - Jung Seok Lee
- Laboratory of Aquatic Animal Diseases, Research Institute of Natural Science, College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongnam 52828, South Korea
| | - Jaesung Kim
- Laboratory of Aquatic Animal Diseases, Research Institute of Natural Science, College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongnam 52828, South Korea
| | - Se Pyeong Im
- Laboratory of Aquatic Animal Diseases, Research Institute of Natural Science, College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongnam 52828, South Korea
| | - Si Won Kim
- Laboratory of Aquatic Animal Diseases, Research Institute of Natural Science, College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongnam 52828, South Korea
| | - Jassy Mary S Lazarte
- Laboratory of Aquatic Animal Diseases, Research Institute of Natural Science, College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongnam 52828, South Korea
| | - Young Rim Kim
- Laboratory of Aquatic Animal Diseases, Research Institute of Natural Science, College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongnam 52828, South Korea
| | - Jin Hong Chun
- Laboratory of Aquatic Animal Diseases, Research Institute of Natural Science, College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongnam 52828, South Korea
| | - Min Woo Ha
- College of Pharmacy, Gyeongsang National University, Jinju-daero, Jinju, Gyeongnam 52828, South Korea
| | - Hyeong Su Kim
- Inland Aquaculture Research Center, National Institute of Fisheries Science, Changwon 645-806, South Korea
| | - Kim D Thompson
- Moredun Research Institute, Pentlands Science Park, Penicuik, Midlothian EH26 0PZ, United Kingdom; and
| | - Tae Sung Jung
- Laboratory of Aquatic Animal Diseases, Research Institute of Natural Science, College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongnam 52828, South Korea; .,Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia
| |
Collapse
|
9
|
Lama R, Pereiro P, Novoa B, Coll J. Sea Bass Immunization to Downsize the Betanodavirus Protein Displayed in the Surface of Inactivated Repair-Less Bacteria. Vaccines (Basel) 2019; 7:E94. [PMID: 31434322 PMCID: PMC6789578 DOI: 10.3390/vaccines7030094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 01/20/2023] Open
Abstract
: This work describes immunization of European sea bass (Dicentrarchus labrax) juveniles against viral nervous necrosis virus (VNNV), a betanodavirus causing worldwide mortalities in many fish species. Protection was obtained with the so-called spinycterin vehicles consisting of irreversibly DNA-damaged DNA-repair-less Escherichia coli displaying at their surface a downsized VNNV coat antigen. In this work we have i) maximized bacterial expression levels by downsizing the coat protein of VNNV to a fragment (frgC91-220) containing most of its previously determined antigenicity, ii) developed a scalable autoinduction culture media for E.coli based in soy-bean rather than in casein hydrolysates, iii) enriched surface expression by screening different anchors from several prokaryotic sources (anchor + frgC91-220 recombinant products), iv) preserved frgC91-220 antigenicity by inactivating bacteria by irreversible DNA-damage by means of Ciprofloxacin, and v) increased safety using a repair-less E.coli strain as chassis for the spinycterins. These spinycterins protected fish against VNNV challenge with partial (Nmistic + frgC91-220) or total (YBEL + frgC91-220) levels of protection, in contrast to fish immunized with frgC91-220 spinycterins. The proposed spinycterin platform has high levels of environmental safety and cost effectiveness and required no adjuvants, thus providing potential to further develop VNNV vaccines for sustainable aquaculture.
Collapse
Affiliation(s)
- Raquel Lama
- Institute of Marine Research (IIM). Spanish National Research Council (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain
| | | | - Beatriz Novoa
- Institute of Marine Research (IIM). Spanish National Research Council (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain
| | - Julio Coll
- National Institute for Agricultural and Food Research and Technology (INIA), Biotechnology Department, La Coruña road, 28040 Madrid, Spain.
| |
Collapse
|
10
|
Vanniasinkam T, Barton MD, Das TP, Heuzenroeder MW. B-Cell Epitope Mapping Using a Library of Overlapping Synthetic Peptides in an Enzyme-Linked Immunosorbent Assay. Methods Mol Biol 2019; 1785:121-128. [PMID: 29714015 DOI: 10.1007/978-1-4939-7841-0_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
This chapter describes a strategy for mapping linear B-cell epitopes of proteins using synthetic biotinylated peptides in an ELISA.A set of overlapping peptides were designed based upon a known amino acid sequence of the target protein, VapA (Virulence-associated Protein A) of the bacterium Rhodococcus equi, an important pulmonary pathogen in foals. The peptides synthesized as biotinylated peptides were coated directly onto micro titer plates which had been pre-coated with NeutrAvidin™ and used to screen sera from foals confirmed to have R. equi disease. A linear B-cell epitope was identified which corresponded to a 20 mer sequence of the VapA protein.
Collapse
Affiliation(s)
- Thiru Vanniasinkam
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia.
| | - Mary D Barton
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | | | | |
Collapse
|
11
|
Zhang Y, Lu S, Alahdal M, Gao H, Shen Y, Pan Y, Wu J, Xing Y, Jin L. Novel mutant P277 peptide VP to ameliorate atherogenic side-effects and to preserve anti-diabetic effects in NOD mice. Exp Cell Res 2018; 371:399-408. [PMID: 30179603 DOI: 10.1016/j.yexcr.2018.08.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/31/2018] [Indexed: 01/22/2023]
Abstract
P277 is a 24 amino-acids peptide, residues 437-460 of human heat shock protein 60 (HSP60). P277 or sequence repeated 6 × P277 was previously found showing potency preventive and therapeutic anti-diabetes functions in NOD mice, but aroused atherosclerosis due to the induction of anti-HSP65 autoantibodies as reported. To determine the intrinsic B epitope sequence, we screened P277 with pepscan method and then proved by detection of sera IgG from peptide fragments vaccinated mouse and rabbits. Results indicated HSP60 443-448 (ALLRCI) is potential intrinsic B epitope sequence of P277. We modified P277 by deleting the former three amino acids of ALLRCI (VP) or replacing these six with alanine (AP). The detection of serum lipid parameter in NOD mice and aorta endothelial damage levels in high-cholesterol diets fed rabbits demonstrated that VP induced higher anti-diabetes efficacy and caused less arteriosclerosis-liked diseases separately. With less TLR2/4 activation of dendritic cells and macrophages, VP treatment reduced Th1 related P277 specific pro-inflammatory cytokines production and increased regulatory immune responses both in vivo and in vitro. These results indicated that optimized VP peptide might serve as a promising candidate for mouse type 1 diabetes therapy.
Collapse
Affiliation(s)
- Yanfeng Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, China
| | - Shiping Lu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, China
| | - Murad Alahdal
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, China
| | - Huashan Gao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, China
| | - Yumeng Shen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, China
| | - Yi Pan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, China
| | - Jie Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, China; Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, China
| | - Yun Xing
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, China
| | - Liang Jin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, China.
| |
Collapse
|
12
|
Su BC, Lin WC, Huang HN, Chen JY. Recombinant expression of Epinephelus lanceolatus serum amyloid A (ElSAA) and analysis of its macrophage modulatory activities. FISH & SHELLFISH IMMUNOLOGY 2017; 64:276-286. [PMID: 28323212 DOI: 10.1016/j.fsi.2017.03.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 03/10/2017] [Accepted: 03/16/2017] [Indexed: 06/06/2023]
Abstract
Serum amyloid A (SAA) is an acute-phase protein that plays a crucial role in the inflammatory response. In this study, we identified an SAA homolog from Epinephelus lanceolatus (ElSAA). Molecular characterization revealed that ElSAA contains a fibronectin-like motif that is typical of SAAs. Recombinant ElSAA protein (rElSAA) was produced in E. coli BL21 (DE3) cells and purified as a soluble protein. To analyze its biological activity, mouse Raw264.7 macrophage cells were treated with various concentrations of rElSAA. Expression of several inflammation-related cytokines, including tumor necrosis factor alpha (TNF-α), interleukin (IL)-1β, IL-6, and IL-10, was induced by rElSAA. This protein also triggered macrophage differentiation, as evidenced by increases in cell size and complexity. To determine whether rElSAA regulates macrophage polarization, we assessed gene expression of M1 and M2 markers. The results demonstrated that rElSAA induced the expression of both M1 and M2 markers, suggesting that it promotes the differentiation of macrophages into a mixed M1/M2 phenotype. To evaluate whether rElSAA enhances phagocytosis via an opsonization-dependent mechanism, GFP-labeled E. coli cells were pretreated with rElSAA, followed by incubation with Raw264.7 cells. Flow cytometry was used to monitor the phagocytic uptake of GFP-labeled E. coli by macrophages. Surprisingly, incubating E. coli with rElSAA did not enhance bacterial uptake by macrophages. However, preincubating Raw264.7 cells with various concentrations of rElSAA, followed by infection with E. coli (multiplicity of infection = 20 or 40), resulted in a clear enhancement of macrophage phagocytic capacity. In conclusion, we have identified SAA from E. lanceolatus and have demonstrated that rElSAA promotes inflammatory cytokine production and macrophage differentiation. In addition, rElSAA enhances phagocytosis of bacteria by macrophages via an opsonization-independent mechanism.
Collapse
Affiliation(s)
- Bor-Chyuan Su
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Road, Jiaushi, Ilan 262, Taiwan
| | - Wen-Chun Lin
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Road, Jiaushi, Ilan 262, Taiwan
| | - Han-Ning Huang
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Road, Jiaushi, Ilan 262, Taiwan
| | - Jyh-Yih Chen
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Road, Jiaushi, Ilan 262, Taiwan.
| |
Collapse
|
13
|
Chen CW, Chang CY. Peptide Scanning-assisted Identification of a Monoclonal Antibody-recognized Linear B-cell Epitope. J Vis Exp 2017. [PMID: 28362368 DOI: 10.3791/55417] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The identification of an antigenic epitope by the immune system allows for the understanding of the protective mechanism of neutralizing antibodies that may facilitate the development of vaccines and peptide drugs. Peptide scanning is a simple and efficient method that straightforwardly maps the linear epitope recognized by a monoclonal antibody (mAb). Here, the authors present an epitope determination methodology involving serially truncated recombinant proteins, synthetic peptide design, and dot-blot hybridization for the antigenic recognition of nervous necrosis virus coat protein using a neutralizing mAb. This technique relies on the dot-blot hybridization of synthetic peptides and mAbs on a polyvinylidene fluoride (PVDF) membrane. The minimum antigenic region of a viral coat protein recognized by the RG-M56 mAb can be narrowed down by step-by-step trimmed peptide mapping onto a 6-mer peptide epitope. In addition, alanine scanning mutagenesis and residue substitution can be performed to characterize the binding significance of each amino acid residue making up the epitope. The residues flanking the epitope site were found to play critical roles in peptide conformation regulation. The identified epitope peptide may be used to form crystals of epitope peptide-antibody complexes for an x-ray diffraction study and functional competition, or for therapeutics.
Collapse
Affiliation(s)
- Chien-Wen Chen
- Institute of Cellular and Organismic Biology, Academia Sinica
| | - Chi-Yao Chang
- Institute of Cellular and Organismic Biology, Academia Sinica;
| |
Collapse
|
14
|
Costa JZ, Thompson KD. Understanding the interaction between Betanodavirus and its host for the development of prophylactic measures for viral encephalopathy and retinopathy. FISH & SHELLFISH IMMUNOLOGY 2016; 53:35-49. [PMID: 26997200 DOI: 10.1016/j.fsi.2016.03.033] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/04/2016] [Accepted: 03/15/2016] [Indexed: 05/22/2023]
Abstract
Over the last three decades, the causative agent of viral encephalopathy and retinopathy (VER) disease has become a serious problem of marine finfish aquaculture, and more recently the disease has also been associated with farmed freshwater fish. The virus has been classified as a Betanodavirus within the family Nodaviridae, and the fact that Betanodaviruses are known to affect more than 120 different farmed and wild fish and invertebrate species, highlights the risk that Betanodaviruses pose to global aquaculture production. Betanodaviruses have been clustered into four genotypes, based on the RNA sequence of the T4 variable region of their capsid protein, and are named after the fish species from which they were first derived i.e. Striped Jack nervous necrosis virus (SJNNV), Tiger puffer nervous necrosis virus (TPNNV), Barfin flounder nervous necrosis virus (BFNNV) and Red-spotted grouper nervous necrosis virus (RGNNV), while an additional genotype turbot betanodavirus strain (TNV) has also been proposed. However, these genotypes tend to be associated with a particular water temperature range rather than being species-specific. Larvae and juvenile fish are especially susceptible to VER, with up to 100% mortality resulting in these age groups during disease episodes, with vertical transmission of the virus increasing the disease problem in smaller fish. A number of vaccine preparations have been tested in the laboratory and in the field e.g. inactivated virus, recombinant proteins, virus-like particles and DNA based vaccines, and their efficacy, based on relative percentage survival, has ranged from medium to high levels of protection to little or no protection. Ultimately a combination of effective prophylactic measures, including vaccination, is needed to control VER, and should also target larvae and broodstock stages of production to help the industry deal with the problem of vertical transmission. As yet there are no commercial vaccines for VER and the aquaculture industry eagerly awaits such a product. In this review we provide an overview on the current state of knowledge of the disease, the pathogen, and interactions between betanodavirus and its host, to provide a greater understanding of the multiple factors involved in the disease process. Such knowledge is needed to develop effective methods for controlling VER in the field, to protect the various aquaculture species farmed globally from the different Betanodavirus genotypes to which they are susceptible.
Collapse
Affiliation(s)
- Janina Z Costa
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Scotland, EH26 0PZ, United Kingdom.
| | - Kim D Thompson
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Scotland, EH26 0PZ, United Kingdom
| |
Collapse
|