1
|
Zacher AC, Felmy F. Anatomy of superior olivary complex and lateral lemniscus in Etruscan shrew. Sci Rep 2024; 14:14734. [PMID: 38926520 PMCID: PMC11208622 DOI: 10.1038/s41598-024-65451-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024] Open
Abstract
Based on the auditory periphery and the small head size, Etruscan shrews (Suncus etruscus) approximate ancestral mammalian conditions. The auditory brainstem in this insectivore has not been investigated. Using labelling techniques, we assessed the structures of their superior olivary complex (SOC) and the nuclei of the lateral lemniscus (NLL). There, we identified the position of the major nuclei, their input pattern, transmitter content, expression of calcium binding proteins (CaBPs) and two voltage-gated ion channels. The most prominent SOC structures were the medial nucleus of the trapezoid body (MNTB), the lateral nucleus of the trapezoid body (LNTB), the lateral superior olive (LSO) and the superior paraolivary nucleus (SPN). In the NLL, the ventral (VNLL), a specific ventrolateral VNLL (VNLLvl) cell population, the intermediate (INLL) and dorsal (DNLL) nucleus, as well as the inferior colliculus's central aspect were discerned. INLL and VNLL were clearly separated by the differential distribution of various marker proteins. Most labelled proteins showed expression patterns comparable to rodents. However, SPN neurons were glycinergic and not GABAergic and the overall CaBPs expression was low. Next to the characterisation of the Etruscan shrew's auditory brainstem, our work identifies conserved nuclei and indicates variable structures in a species that approximates ancestral conditions.
Collapse
Affiliation(s)
- Alina C Zacher
- Institute of Zoology, University of Veterinary Medicine Foundation, Buenteweg 17, 30559, Hannover, Germany
- Hannover Graduate School for Neurosciences, Infection Medicine and Veterinary Sciences (HGNI), Buenteweg 2, 30559, Hannover, Germany
| | - Felix Felmy
- Institute of Zoology, University of Veterinary Medicine Foundation, Buenteweg 17, 30559, Hannover, Germany.
| |
Collapse
|
2
|
Li YH, Joris PX. Case reopened: A temporal basis for harmonic pitch templates in the early auditory system?a). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 154:3986-4003. [PMID: 38149819 DOI: 10.1121/10.0023969] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 12/04/2023] [Indexed: 12/28/2023]
Abstract
A fundamental assumption of rate-place models of pitch is the existence of harmonic templates in the central nervous system (CNS). Shamma and Klein [(2000). J. Acoust. Soc. Am. 107, 2631-2644] hypothesized that these templates have a temporal basis. Coincidences in the temporal fine-structure of neural spike trains, even in response to nonharmonic, stochastic stimuli, would be sufficient for the development of harmonic templates. The physiological plausibility of this hypothesis is tested. Responses to pure tones, low-pass noise, and broadband noise from auditory nerve fibers and brainstem "high-sync" neurons are studied. Responses to tones simulate the output of fibers with infinitely sharp filters: for these responses, harmonic structure in a coincidence matrix comparing pairs of spike trains is indeed found. However, harmonic template structure is not observed in coincidences across responses to broadband noise, which are obtained from nerve fibers or neurons with enhanced synchronization. Using a computer model based on that of Shamma and Klein, it is shown that harmonic templates only emerge when consecutive processing steps (cochlear filtering, lateral inhibition, and temporal enhancement) are implemented in extreme, physiologically implausible form. It is concluded that current physiological knowledge does not support the hypothesis of Shamma and Klein (2000).
Collapse
Affiliation(s)
- Yi-Hsuan Li
- Laboratory of Auditory Neurophysiology, Medical School, Campus Gasthuisberg, University of Leuven, B-3000 Leuven, Belgium
| | - Philip X Joris
- Laboratory of Auditory Neurophysiology, Medical School, Campus Gasthuisberg, University of Leuven, B-3000 Leuven, Belgium
| |
Collapse
|
3
|
Kladisios N, Fischer L, Jenzen F, Rebhan M, Leibold C, Felmy F. Synaptic Mechanisms Underlying Temporally Precise Information Processing in the VNLL, an Auditory Brainstem Nucleus. J Neurosci 2022; 42:6536-6550. [PMID: 35868862 PMCID: PMC9410753 DOI: 10.1523/jneurosci.0948-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 11/21/2022] Open
Abstract
Large glutamatergic, somatic synapses mediate temporally precise information transfer. In the ventral nucleus of the lateral lemniscus, an auditory brainstem nucleus, the signal of an excitatory large somatic synapse is sign inverted to generate rapid feedforward inhibition with high temporal acuity at sound onsets, a mechanism involved in the suppression of spurious frequency information. The mechanisms of the synaptically driven input-output functions in the ventral nucleus of the lateral lemniscus are not fully resolved. Here, we show in Mongolian gerbils of both sexes that, for stimulation frequencies up to 200 Hz, the EPSC kinetics together with short-term plasticity allow for faithful transmission with only a small increase in latency. Glutamatergic currents are exclusively mediated by AMPARs and NMDARs. Short-term plasticity is frequency-dependent and composed of an initial facilitation followed by depression. Physiologically relevant output generation is limited by the decrease in synaptic conductance through short-term plasticity (STP). At this endbulb synapse, STP acts as a low pass filter and increases the dynamic range of the conductance dependent input-output relation, while NMDAR signaling slightly increases the sensitivity of the input-output function. Our computational model shows that STP-mediated filtering limits the intensity dependence of the spike output, thus maintaining selectivity to sound transients. Our results highlight the interaction of cellular features that together give rise to the computations in the circuit.SIGNIFICANCE STATEMENT Auditory information processing in the brainstem is a prerequisite for generating our auditory representation of the environment. Thereby, many processing steps rely on temporally precise filtering. Precise feedforward inhibition is a key motif in auditory brainstem processing and produced through sign inversion at several large somatic excitatory synapses. A particular feature of the ventral nucleus of the lateral lemniscus is to produce temporally precise onset inhibition with little temporal variance independent of sound intensity. Our cell-physiology and modeling data explain how the synaptic characteristics of different current components and their short-term plasticity are tuned to establish sound intensity-invariant onset inhibition that is crucial for filtering out spurious frequency information.
Collapse
Affiliation(s)
- Nikolaos Kladisios
- Institute of Zoology, University of Veterinary Medicine Hannover Foundation, 30559, Hannover, Germany
| | - Linda Fischer
- Institute of Zoology, University of Veterinary Medicine Hannover Foundation, 30559, Hannover, Germany
| | - Florian Jenzen
- Institute of Zoology, University of Veterinary Medicine Hannover Foundation, 30559, Hannover, Germany
| | - Michael Rebhan
- Department Biology II, Ludwig-Maximilians-University Munich, 82152, Planegg-Martinsried, Germany
| | - Christian Leibold
- Department Biology II, Ludwig-Maximilians-University Munich, 82152, Planegg-Martinsried, Germany
- Fakultät für Biologie & Bernstein Center Freiburg, Albert-Ludwigs-Universität Freiburg, 79104, Freiburg im Breisgau, Germany
| | - Felix Felmy
- Institute of Zoology, University of Veterinary Medicine Hannover Foundation, 30559, Hannover, Germany
| |
Collapse
|
4
|
Cost of auditory sharpness: Model-Based estimate of energy use by auditory brainstem "octopus" neurons. J Theor Biol 2019; 469:137-147. [PMID: 30831173 DOI: 10.1016/j.jtbi.2019.01.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/07/2019] [Accepted: 01/21/2019] [Indexed: 11/21/2022]
Abstract
Octopus cells (OCs) of the mammalian auditory brainstem precisely encode timing of fast transient sounds and tone onsets. Sharp temporal fidelity of OCs relies on low resting membrane resistance, which suggests high energy expenditure on maintaining ion gradients across plasma membrane. We provide a model-based estimate of energy consumption in resting and spiking OCs. Our results predict that a resting OC consumes up to 2.6 × 109 ATP molecules (ATPs) per second which remarkably exceeds energy consumption of other CNS neurons. Glucose usage by all OCs in the rat is nevertheless low due to their low number. Major part of the OCs energy use results from the ion mechanisms providing for the low membrane resistance: hyperpolarization-activated mixed cation conductance and low-voltage activated K+-conductance. Spatially ordered synapses-a feature of the OCs allowing them to compensate for asynchrony of the synaptic input-brings only a 12% energy saving to OCs excitability cost. Only 13% of total OC energy used for an AP generation (1.5 × 107 ATPs) is associated with the AP generation in the axon initial segment, 64%-with synaptic currents processing and 23%-with keeping resting potential.
Collapse
|
5
|
Spencer MJ, Meffin H, Burkitt AN, Grayden DB. Compensation for Traveling Wave Delay Through Selection of Dendritic Delays Using Spike-Timing-Dependent Plasticity in a Model of the Auditory Brainstem. Front Comput Neurosci 2018; 12:36. [PMID: 29922141 PMCID: PMC5996126 DOI: 10.3389/fncom.2018.00036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/14/2018] [Indexed: 12/03/2022] Open
Abstract
Asynchrony among synaptic inputs may prevent a neuron from responding to behaviorally relevant sensory stimuli. For example, “octopus cells” are monaural neurons in the auditory brainstem of mammals that receive input from auditory nerve fibers (ANFs) representing a broad band of sound frequencies. Octopus cells are known to respond with finely timed action potentials at the onset of sounds despite the fact that due to the traveling wave delay in the cochlea, synaptic input from the auditory nerve is temporally diffuse. This paper provides a proof of principle that the octopus cells' dendritic delay may provide compensation for this input asynchrony, and that synaptic weights may be adjusted by a spike-timing dependent plasticity (STDP) learning rule. This paper used a leaky integrate and fire model of an octopus cell modified to include a “rate threshold,” a property that is known to create the appropriate onset response in octopus cells. Repeated audio click stimuli were passed to a realistic auditory nerve model which provided the synaptic input to the octopus cell model. A genetic algorithm was used to find the parameters of the STDP learning rule that reproduced the microscopically observed synaptic connectivity. With these selected parameter values it was shown that the STDP learning rule was capable of adjusting the values of a large number of input synaptic weights, creating a configuration that compensated the traveling wave delay of the cochlea.
Collapse
Affiliation(s)
- Martin J Spencer
- NeuroEngineering Laboratory, Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC, Australia.,Centre for Neural Engineering, University of Melbourne, Melbourne, VIC, Australia
| | - Hamish Meffin
- NeuroEngineering Laboratory, Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC, Australia.,Centre for Neural Engineering, University of Melbourne, Melbourne, VIC, Australia.,Victorian Research Laboratory, National ICT Australia, Sydney, NSW, Australia.,National Vision Research Institute, Australian College of Optometry, Carlton, VIC, Australia.,Department of Optometry and Vision Sciences, ARC Centre of Excellence for Integrative Brain Function, University of Melbourne, Melbourne, VIC, Australia
| | - Anthony N Burkitt
- NeuroEngineering Laboratory, Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC, Australia.,Centre for Neural Engineering, University of Melbourne, Melbourne, VIC, Australia
| | - David B Grayden
- NeuroEngineering Laboratory, Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC, Australia.,Centre for Neural Engineering, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Baumann VJ, Koch U. Perinatal nicotine exposure impairs the maturation of glutamatergic inputs in the auditory brainstem. J Physiol 2017; 595:3573-3590. [PMID: 28190266 DOI: 10.1113/jp274059] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 01/25/2017] [Indexed: 01/11/2023] Open
Abstract
KEY POINTS Chronic perinatal nicotine exposure causes abnormal auditory brainstem responses and auditory processing deficits in children and animal models. The effect of perinatal nicotine exposure on synaptic maturation in the auditory brainstem was investigated in granule cells in the ventral nucleus of the lateral lemniscus, which receive a single calyx-like input from the cochlear nucleus. Perinatal nicotine exposure caused a massive reduction in the amplitude of the excitatory input current. This caused a profound decrease in the number and temporal precision of spikes in these neurons. Perinatal nicotine exposure delayed the developmental downregulation of functional nicotinic acetylcholine receptors on these neurons. ABSTRACT Maternal smoking causes chronic nicotine exposure during early development and results in auditory processing deficits including delayed speech development and learning difficulties. Using a mouse model of chronic, perinatal nicotine exposure we explored to what extent synaptic inputs to granule cells in the ventral nucleus of the lateral lemniscus are affected by developmental nicotine treatment. These neurons receive one large calyx-like input from octopus cells in the cochlear nucleus and play a role in sound pattern analysis, including speech sounds. In addition, they exhibit high levels of α7 nicotinic acetylcholine receptors, especially during early development. Our whole-cell patch-clamp experiments show that perinatal nicotine exposure causes a profound reduction in synaptic input amplitude. In contrast, the number of inputs innervating each neuron and synaptic release properties of this calyx-like synapse remained unaltered. Spike number and spiking precision in response to synaptic stimulation were greatly diminished, especially for later stimuli during a stimulus train. Moreover, chronic nicotine exposure delayed the developmental downregulation of functional nicotinic acetylcholine receptors on these neurons, indicating a direct action of nicotine in this brain area. This presumably direct effect of perinatal nicotine exposure on synaptic maturation in the auditory brainstem might be one of the underlying causes for auditory processing difficulties in children of heavy smoking mothers.
Collapse
Affiliation(s)
- Veronika J Baumann
- Institute of Biology, Neurophysiology, Freie Universität Berlin, 14195, Berlin, Germany
| | - Ursula Koch
- Institute of Biology, Neurophysiology, Freie Universität Berlin, 14195, Berlin, Germany.,NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
7
|
Keine C, Rübsamen R, Englitz B. Inhibition in the auditory brainstem enhances signal representation and regulates gain in complex acoustic environments. eLife 2016; 5. [PMID: 27855778 PMCID: PMC5148601 DOI: 10.7554/elife.19295] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 11/17/2016] [Indexed: 12/30/2022] Open
Abstract
Inhibition plays a crucial role in neural signal processing, shaping and limiting responses. In the auditory system, inhibition already modulates second order neurons in the cochlear nucleus, e.g. spherical bushy cells (SBCs). While the physiological basis of inhibition and excitation is well described, their functional interaction in signal processing remains elusive. Using a combination of in vivo loose-patch recordings, iontophoretic drug application, and detailed signal analysis in the Mongolian Gerbil, we demonstrate that inhibition is widely co-tuned with excitation, and leads only to minor sharpening of the spectral response properties. Combinations of complex stimuli and neuronal input-output analysis based on spectrotemporal receptive fields revealed inhibition to render the neuronal output temporally sparser and more reproducible than the input. Overall, inhibition plays a central role in improving the temporal response fidelity of SBCs across a wide range of input intensities and thereby provides the basis for high-fidelity signal processing.
Collapse
Affiliation(s)
- Christian Keine
- Faculty of Bioscience, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany
| | - Rudolf Rübsamen
- Faculty of Bioscience, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany
| | - Bernhard Englitz
- Department of Neurophysiology, Donders Center for Neuroscience, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
8
|
Caspari F, Baumann VJ, Garcia-Pino E, Koch U. Heterogeneity of Intrinsic and Synaptic Properties of Neurons in the Ventral and Dorsal Parts of the Ventral Nucleus of the Lateral Lemniscus. Front Neural Circuits 2015; 9:74. [PMID: 26635535 PMCID: PMC4649059 DOI: 10.3389/fncir.2015.00074] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/30/2015] [Indexed: 11/13/2022] Open
Abstract
The ventral nucleus of the lateral lemniscus (VNLL) provides a major inhibitory projection to the inferior colliculus (IC). Neurons in the VNLL respond with various firing patterns and different temporal precision to acoustic stimulation. The present study investigates the underlying intrinsic and synaptic properties of various cell types in different regions of the VNLL, using in vitro electrophysiological recordings from acute brain slices of mice and immunohistochemistry. We show that the biophysical membrane properties and excitatory input characteristics differed between dorsal and ventral VNLL neurons. Neurons in the ventral VNLL displayed an onset-type firing pattern and little hyperpolarization-activated current (Ih). Stimulation of lemniscal inputs evoked a large all-or-none excitatory response similar to Calyx of Held synapses in neurons in the lateral part of the ventral VNLL. Neurons that were located within the fiber tract of the lateral lemniscus, received several and weak excitatory input fibers. In the dorsal VNLL onset-type and sustained firing neurons were intermingled. These neurons showed large Ih and were strongly immunopositive for the hyperpolarization-activated cyclic nucleotide-gated channel 1 (HCN1) subunit. Both neuron types received several excitatory inputs that were weaker and slower compared to ventrolateral VNLL neurons. Using a mouse model that expresses channelrhodopsin under the promotor of the vesicular GABA transporter (VGAT) suggests that dorsal and ventral neurons were inhibitory since they were all depolarized by light stimulation. The diverse membrane and input properties in dorsal and ventral VNLL neurons suggest differential roles of these neurons for sound processing.
Collapse
Affiliation(s)
- Franziska Caspari
- Neurophysiology, Institute of Biology, Freie Universität Berlin Berlin, Germany
| | - Veronika J Baumann
- Neurophysiology, Institute of Biology, Freie Universität Berlin Berlin, Germany
| | | | - Ursula Koch
- Neurophysiology, Institute of Biology, Freie Universität Berlin Berlin, Germany
| |
Collapse
|