1
|
Yucel Polat A, Ayva ES, Gurdal H, Ozdemir BH, Gur Dedeoglu B. MiR-25 and KLF4 relationship has early prognostic significance in the development of cervical cancer. Pathol Res Pract 2021; 222:153435. [PMID: 33862560 DOI: 10.1016/j.prp.2021.153435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/25/2021] [Accepted: 04/04/2021] [Indexed: 12/24/2022]
Abstract
Cervical squamous cell carcinoma (SCC) is one of the common cancer types among women. MicroRNAs (miRNAs) are small non-coding RNAs that play an important role in the formation and development of many cancer types by regulating expression of their targets. While many studies have investigated the relationship between miRNAs and cervical cancer, no robust miRNA biomarkers have been defined yet for diagnosis of cervical lesions. In this study, we performed a statistical meta-analysis to identify miRNAs and a class compassion analysis to evaluate mRNAs with the power to discriminate between normal, intraepithelial lesions and invasive cancer samples. Differentially expressed (DE) mRNAs were compared with the targets of meta-miRNAs. After bioinfomatics analysis and qRT-PCR validations with cytology samples and FFPE tissues, we defined miR-25 and its target KLF4 (Kruppel-like factor 4) as candidate biomarkers for in vitro studies. Our results showed that miR-25 expression was significantly higher in precancerous lesions and invasive carcinoma while presenting consistent expression patterns in both cytological and FFPE tissue samples. In line with this, its direct target KLF4 expression decreased in precancerous lesions in cytological samples and also in the invasive cancer group in FFPE tissues. Furthermore, in vitro studies showed that mir-25 inhibition decreased proliferation and motility of HeLa cells and promoted an increase in the protein level of KLF4. We conclude that inhibition of miR-25 may upregulate KLF4 expression and regulate cell proliferation and motility in cervical cancer.
Collapse
Affiliation(s)
| | - Ebru Sebnem Ayva
- Baskent University, Medical School, Department of Pathology, Ankara, Turkey.
| | - Hakan Gurdal
- Ankara University, Faculty of Medicine, Department of Medical Pharmacology, Ankara, Turkey.
| | | | | |
Collapse
|
2
|
Abstract
Despite the decline in death rate from breast cancer and recent advances in targeted therapies and combinations for the treatment of metastatic disease, metastatic breast cancer remains the second leading cause of cancer-associated death in U.S. women. The invasion-metastasis cascade involves a number of steps and multitudes of proteins and signaling molecules. The pathways include invasion, intravasation, circulation, extravasation, infiltration into a distant site to form a metastatic niche, and micrometastasis formation in a new environment. Each of these processes is regulated by changes in gene expression. Noncoding RNAs including microRNAs (miRNAs) are involved in breast cancer tumorigenesis, progression, and metastasis by post-transcriptional regulation of target gene expression. miRNAs can stimulate oncogenesis (oncomiRs), inhibit tumor growth (tumor suppressors or miRsupps), and regulate gene targets in metastasis (metastamiRs). The goal of this review is to summarize some of the key miRNAs that regulate genes and pathways involved in metastatic breast cancer with an emphasis on estrogen receptor α (ERα+) breast cancer. We reviewed the identity, regulation, human breast tumor expression, and reported prognostic significance of miRNAs that have been documented to directly target key genes in pathways, including epithelial-to-mesenchymal transition (EMT) contributing to the metastatic cascade. We critically evaluated the evidence for metastamiRs and their targets and miRNA regulation of metastasis suppressor genes in breast cancer progression and metastasis. It is clear that our understanding of miRNA regulation of targets in metastasis is incomplete.
Collapse
Affiliation(s)
- Belinda J Petri
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Carolyn M Klinge
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA.
| |
Collapse
|
3
|
Bostanabad SY, Noyan S, Dedeoglu BG, Gurdal H. Overexpression of β-Arrestins inhibits proliferation and motility in triple negative breast cancer cells. Sci Rep 2021; 11:1539. [PMID: 33452359 PMCID: PMC7810837 DOI: 10.1038/s41598-021-80974-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 12/31/2020] [Indexed: 01/29/2023] Open
Abstract
β-Arrestins (βArrs) are intracellular signal regulating proteins. Their expression level varies in some cancers and they have a significant impact on cancer cell function. In general, the significance of βArrs in cancer research comes from studies examining GPCR signalling. Given the diversity of different GPCR signals in cancer cell regulation, contradictory results are inevitable regarding the role of βArrs. Our approach examines the direct influence of βArrs on cellular function and gene expression profiles by changing their expression levels in breast cancer cells, MDA-MB-231 and MDA-MB-468. Reducing expression of βArr1 or βArr2 tended to increase cell proliferation and invasion whereas increasing their expression levels inhibited them. The overexpression of βArrs caused cell cycle S-phase arrest and differential expression of cell cycle genes, CDC45, BUB1, CCNB1, CCNB2, CDKN2C and reduced HER3, IGF-1R, and Snail. Regarding to the clinical relevance of our results, low expression levels of βArr1 were inversely correlated with CDC45, BUB1, CCNB1, and CCNB2 genes compared to normal tissue samples while positively correlated with poorer prognosis in breast tumours. These results indicate that βArr1 and βArr2 are significantly involved in cell cycle and anticancer signalling pathways through their influence on cell cycle genes and HER3, IGF-1R, and Snail in TNBC cells.
Collapse
Affiliation(s)
| | - Senem Noyan
- Biotechnology Institute of Ankara University, 06135, Ankara, Turkey
| | | | - Hakan Gurdal
- Department of Medical Pharmacology, Faculty of Medicine, University of Ankara, 06230, Ankara, Turkey.
| |
Collapse
|
4
|
Terkelsen T, Russo F, Gromov P, Haakensen VD, Brunak S, Gromova I, Krogh A, Papaleo E. Secreted breast tumor interstitial fluid microRNAs and their target genes are associated with triple-negative breast cancer, tumor grade, and immune infiltration. Breast Cancer Res 2020; 22:73. [PMID: 32605588 PMCID: PMC7329449 DOI: 10.1186/s13058-020-01295-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 05/14/2020] [Indexed: 12/21/2022] Open
Abstract
Background Studies on tumor-secreted microRNAs point to a functional role of these in cellular communication and reprogramming of the tumor microenvironment. Uptake of tumor-secreted microRNAs by neighboring cells may result in the silencing of mRNA targets and, in turn, modulation of the transcriptome. Studying miRNAs externalized from tumors could improve cancer patient diagnosis and disease monitoring and help to pinpoint which miRNA-gene interactions are central for tumor properties such as invasiveness and metastasis. Methods Using a bioinformatics approach, we analyzed the profiles of secreted tumor and normal interstitial fluid (IF) microRNAs, from women with breast cancer (BC). We carried out differential abundance analysis (DAA), to obtain miRNAs, which were enriched or depleted in IFs, from patients with different clinical traits. Subsequently, miRNA family enrichment analysis was performed to assess whether any families were over-represented in the specific sets. We identified dysregulated genes in tumor tissues from the same cohort of patients and constructed weighted gene co-expression networks, to extract sets of co-expressed genes and co-abundant miRNAs. Lastly, we integrated miRNAs and mRNAs to obtain interaction networks and supported our findings using prediction tools and cancer gene databases. Results Network analysis showed co-expressed genes and miRNA regulators, associated with tumor lymphocyte infiltration. All of the genes were involved in immune system processes, and many had previously been associated with cancer immunity. A subset of these, BTLA, CXCL13, IL7R, LAMP3, and LTB, was linked to the presence of tertiary lymphoid structures and high endothelial venules within tumors. Co-abundant tumor interstitial fluid miRNAs within this network, including miR-146a and miR-494, were annotated as negative regulators of immune-stimulatory responses. One co-expression network encompassed differences between BC subtypes. Genes differentially co-expressed between luminal B and triple-negative breast cancer (TNBC) were connected with sphingolipid metabolism and predicted to be co-regulated by miR-23a. Co-expressed genes and TIF miRNAs associated with tumor grade were BTRC, CHST1, miR-10a/b, miR-107, miR-301a, and miR-454. Conclusion Integration of IF miRNAs and mRNAs unveiled networks associated with patient clinicopathological traits, and underlined molecular mechanisms, specific to BC sub-groups. Our results highlight the benefits of an integrative approach to biomarker discovery, placing secreted miRNAs within a biological context.
Collapse
Affiliation(s)
- Thilde Terkelsen
- Computational Biology Laboratory, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Francesco Russo
- Computational Biology Laboratory, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pavel Gromov
- Breast Cancer Biology Group, Genome Integrity Unit, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Vilde Drageset Haakensen
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Irina Gromova
- Breast Cancer Biology Group, Genome Integrity Unit, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Anders Krogh
- Unit of Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Elena Papaleo
- Computational Biology Laboratory, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark. .,Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
5
|
Örs Kumoğlu G, Döşkaya M, Gulce Iz S. The biomarker features of miR-145-3p determined via meta-analysis validated by qRT-PCR in metastatic cancer cell lines. Gene 2019; 710:341-353. [PMID: 31195093 DOI: 10.1016/j.gene.2019.05.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/02/2019] [Accepted: 05/20/2019] [Indexed: 12/25/2022]
Abstract
MicroRNAs (miRNAs) play important roles in the cancer biology such as proliferation, differentiation, and apoptosis. The pivotal roles that miRNA expression plays, make them ideal candidates for detection of cancer progression as well as cancer metastasis. Especially for breast, lung and prostate cancer which are originated from soft tissues and prone to metastasis. Thus, the aim of this study is to evaluate the expression level of miR-145-3p which is a shared potential biomarker identified by meta-analysis of breast, prostate and lung cancer data sets. Six different data sets representative of three different cancer types were analyzed. These data sets are pooled together to have a master metamiRNA list while getting rid of the platform differentiations between them. As a result, 24 common differentially expressed miRNAs are determined in which miR-145-3p has the topmost rank. To mimic in vivo cancer microenvironment, hypoxia and serum deprivation were used to induce metastasis in breast (MCF-7, MDA-MB-231, MDA-MB-453), prostate (PC3, LNCaP, DU145), lung (A549, NCIH82,) cancer cell lines and noncancerous cell lines of the coresponding tissues (MCF10A, RWPE-1, MRC-5). miR-145-3p expression levels were determined by qRT-PCR. It has been shown that it is down regulated by the induction of metastasis in cancer cell lines while it is up regulated in normal cell lines to suppress the tumor formation. As a conclusion, as representing the same results in three different cancer cell types, miR-145-3p will be a promising biomarker to follow up its expression to detect cancer metastasis.
Collapse
Affiliation(s)
- Gizem Örs Kumoğlu
- Ege University, Institute of Natural & Applied Sciences, Bioengineering Graduate Programme, Izmir, Turkey
| | - Mert Döşkaya
- Ege University, Faculty of Medicine, Department of Parasitology, Molecular Diagnostics Lab, Izmir, Turkey
| | - Sultan Gulce Iz
- Ege University, Institute of Natural & Applied Sciences, Bioengineering Graduate Programme, Izmir, Turkey; Ege University, Faculty of Engineering, Department of Bioengineering, Izmir, Turkey; Ege University, Institute of Natural & Applied Sciences, Biomedical Technologies Graduate Programme, Izmir, Turkey.
| |
Collapse
|
6
|
A genetic variant rs13293512 in the promoter of let-7 is associated with an increased risk of breast cancer in Chinese women. Biosci Rep 2019; 39:BSR20182079. [PMID: 31028134 PMCID: PMC6533205 DOI: 10.1042/bsr20182079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/03/2019] [Accepted: 04/10/2019] [Indexed: 12/13/2022] Open
Abstract
Growing evidence has demonstrated that single-nucleotide polymorphisms (SNPs) in the promoter of miRNA may influence individuals’ susceptibility to human diseases. We examined two SNPs rs10877887 and rs13293512 in the promoters of let-7 family to determine if the two SNPs were related to the occurrence of breast cancer (BC). Genotyping of the two SNPs was performed by PCR and restriction fragment length polymorphism analysis or TaqMan assay in 301 BC patients and 310 age matched controls. We found a higher frequency of rs13293512 CC genotype and rs13293512 C allele amongst BC patients (CC vs TT: adjusted odds ratio (OR) = 1.78; 95% CI: 1.14–2.80; P=0.012; C vs T: adjusted OR = 1.33; 95% CI: 1.06–1.67; P=0.013). Stratification analysis showed that rs13293512 CC genotype was associated with an increased risk of BC in patients with negative estrogen receptor (adjusted OR = 2.39; 95% CI: 1.32–4.30; P=0.004), patients with negative progesterone receptor (adjusted OR = 1.92; 95% CI: 1.11–3.33; P=0.02), patients with T1-2 stage cancer (adjusted OR = 1.77; 95% CI: 1.07–2.93; P=0.03), and patients with N1-3 stage cancer (adjusted OR = 1.89; 95% CI: 1.13–3.17; P=0.015). These findings suggest that rs13293512 in the promoter of let-7a-1/let-7f-1/let-7d cluster may be a possible biomarker for the development of BC in Chinese women.
Collapse
|
7
|
Oztemur Islakoglu Y, Noyan S, Aydos A, Gur Dedeoglu B. Meta-microRNA Biomarker Signatures to Classify Breast Cancer Subtypes. ACTA ACUST UNITED AC 2018; 22:709-716. [DOI: 10.1089/omi.2018.0157] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
| | - Senem Noyan
- Ankara University, Biotechnology Institute, Ankara, Turkey
| | - Alp Aydos
- Ankara University, Biotechnology Institute, Ankara, Turkey
| | | |
Collapse
|
8
|
Infantile hemangioma: factors causing recurrence after propranolol treatment. Pediatr Res 2018; 83:175-182. [PMID: 29019471 DOI: 10.1038/pr.2017.220] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 08/31/2017] [Indexed: 12/21/2022]
Abstract
BackgroundPropranolol is the first-choice treatment for severe infantile hemangioma (IH). However, 10- 30% of lesions relapse after propranolol treatment. The mechanisms underlying IH recurrence after propranolol treatment have not been completely elucidated.MethodsThis study combined an examination of hemodynamic changes with research regarding hemangioma stem cells (hscs) with differentially expressed microRNAs (miRNAs) to identify the factors affecting IH recurrence after propranolol treatment. Hemodynamic changes were monitored in 21 recurrent cases using high-frequency color Doppler ultrasound, and hscs were treated with different concentrations of propranolol. The levels of differentially expressed miRNAs and the activity of related pathways were then compared between 18 recurrent and 20 non-recurrent IH cases.ResultsDuring treatment, lesion depth and vessel density decreased, and the lesion resistance index increased. Obvious lesions and vessel signals were observed in recurrent cases compared with non-recurrent cases. Propranolol effectively inhibited hscs proliferation. Twenty-two differentially expressed miRNAs were found in the recurrent group compared with the non-recurrent group.ConclusionRecurrence may be attributed to a combination of events. Serum biomarkers and drug treatments for IH recurrence must be studied further.
Collapse
|
9
|
Schultz DJ, Muluhngwi P, Alizadeh-Rad N, Green MA, Rouchka EC, Waigel SJ, Klinge CM. Genome-wide miRNA response to anacardic acid in breast cancer cells. PLoS One 2017; 12:e0184471. [PMID: 28886127 PMCID: PMC5590942 DOI: 10.1371/journal.pone.0184471] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/24/2017] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs are biomarkers and potential therapeutic targets for breast cancer. Anacardic acid (AnAc) is a dietary phenolic lipid that inhibits both MCF-7 estrogen receptor α (ERα) positive and MDA-MB-231 triple negative breast cancer (TNBC) cell proliferation with IC50s of 13.5 and 35 μM, respectively. To identify potential mediators of AnAc action in breast cancer, we profiled the genome-wide microRNA transcriptome (microRNAome) in these two cell lines altered by the AnAc 24:1n5 congener. Whole genome expression profiling (RNA-seq) and subsequent network analysis in MetaCore Gene Ontology (GO) algorithm was used to characterize the biological pathways altered by AnAc. In MCF-7 cells, 69 AnAc-responsive miRNAs were identified, e.g., increased let-7a and reduced miR-584. Fewer, i.e., 37 AnAc-responsive miRNAs were identified in MDA-MB-231 cells, e.g., decreased miR-23b and increased miR-1257. Only two miRNAs were increased by AnAc in both cell lines: miR-612 and miR-20b; however, opposite miRNA arm preference was noted: miR-20b-3p and miR-20b-5p were upregulated in MCF-7 and MDA-MB-231, respectively. miR-20b-5p target EFNB2 transcript levels were reduced by AnAc in MDA-MB-231 cells. AnAc reduced miR-378g that targets VIM (vimentin) and VIM mRNA transcript expression was increased in AnAc-treated MCF-7 cells, suggesting a reciprocal relationship. The top three enriched GO terms for AnAc-treated MCF-7 cells were B cell receptor signaling pathway and ribosomal large subunit biogenesis and S-adenosylmethionine metabolic process for AnAc-treated MDA-MB-231 cells. The pathways modulated by these AnAc-regulated miRNAs suggest that key nodal molecules, e.g., Cyclin D1, MYC, c-FOS, PPARγ, and SIN3, are targets of AnAc activity.
Collapse
Affiliation(s)
- David J. Schultz
- Department of Biology, University of Louisville, Louisville, Kentucky, United States of America
| | - Penn Muluhngwi
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Negin Alizadeh-Rad
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Madelyn A. Green
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Eric C. Rouchka
- Bioinformatics and Biomedical Computing Laboratory, Department of Computer Engineering and Computer Science, Louisville, Kentucky, United States of America
| | - Sabine J. Waigel
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Carolyn M. Klinge
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| |
Collapse
|
10
|
Huang HC, Yu HR, Hsu TY, Chen IL, Huang HC, Chang JC, Yang KD. MicroRNA-142-3p and let-7g Negatively Regulates Augmented IL-6 Production in Neonatal Polymorphonuclear Leukocytes. Int J Biol Sci 2017; 13:690-700. [PMID: 28655995 PMCID: PMC5485625 DOI: 10.7150/ijbs.17030] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 03/13/2017] [Indexed: 11/05/2022] Open
Abstract
Neonatal PMN are qualitatively impaired in functions, yet they frequently reveal augmented inflammatory reactions during sepsis. Here, we hypothesized that PMN from newborns produce more IL-6 than those from adults under LPS stimulation, in which transcriptional or posttranscriptional regulation is involved in the altered expression. We found that neonatal PMN produced significantly higher IL-6 mRNA and protein than adult PMN. The higher IL-6 expression was not related to transcriptional but posttranscriptional regulation as the IL-6 expression was affected by the addition of cycloheximide but not actinomycin. To examine whether miRNA was involved in the IL-6 regulation of neonatal PMN, we surveyed differential displays of miRNAs that could potentially regulate IL-6 expression before and after LPS stimulation. Four miRNAs: hsa-miR-26a, hsa-miR-26b, hsa-miR-142-3p and hsa-let 7g decreased or increased after LPS treatment for 4 h. Further validation by qRT-PCR identified miR-26b, miR-142-3p and let-7g significantly changed in neonatal PMN after LPS stimulation. The functional verification by transfection of miR-142-3p and let-7g precursors into neonatal PMN significantly repressed the IL-6 mRNA and protein expression, suggesting that miR-142-3p and let-7g negatively regulate IL-6 expression in neonatal PMN. Modulation of miRNA expression may be used to regulate IL-6 production in newborns with altered inflammatory reactions.
Collapse
Affiliation(s)
- Hsin-Chun Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Kaohsiung, Taiwan.,School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Linkou, Taiwan
| | - Hong-Ren Yu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Kaohsiung, Taiwan
| | - Te-Yao Hsu
- Department of Obstetrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Kaohsiung, Taiwan
| | - I-Lun Chen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hui-Chen Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Kaohsiung, Taiwan
| | - Jen-Chieh Chang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Kaohsiung, Taiwan
| | - Kuender D Yang
- Department of Pediatrics, Mackay Memorial Hospital, Tamshui, Taiwan.,Institute of Clinical Medical Sciences, National Yang Ming University, Taipei, Taiwan
| |
Collapse
|
11
|
Luan J, Wang J, Su Q, Chen X, Jiang G, Xu X. Meta-analysis of the differentially expressed microRNA profiles in nasopharyngeal carcinoma. Oncotarget 2016; 7:10513-21. [PMID: 26824418 PMCID: PMC4891136 DOI: 10.18632/oncotarget.7013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 01/01/2016] [Indexed: 01/17/2023] Open
Abstract
MicroRNAs(miRNAs), as non-coding molecules, were proved to be correlated with gene expression in naspharyngeal carcinoma (NPC) development. In this research, a comprehensive meta-analysis of eight independent miRNA expression studies in NPC was preformed by using robust rank aggregation method (RRA), which contained a total of 775 tumor and 227 non-cancerous samples. There were 7 significant dysregulated miRNAs identified including three increased (miR-483–5p, miR-29c-3p and miR-205–5p) and four decreased (miR-29b-3p, let-7d-5p, miR-100– 5p and let-7g-5p) miRNAs. Subsequently, the miRNA target prediction and pathway enrichment analysis were carried out to find out the biological and functional relevant genes involved in the meta-signature miRNA regulation. Finally, several signaling and cancer pathogenesis pathways were suggested to be more frequently associated with the progression of NPC. In this research the meta-signature miRNA identified may be used to develop a series of diagnostic and prognostic biomarkers for NPC that serve specificity for use in clinics.
Collapse
Affiliation(s)
- Junwen Luan
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| | - Junfu Wang
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| | - Qinghong Su
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| | - Xuemei Chen
- Department of Otolaryngology, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
| | - Guosheng Jiang
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| | - Xiaoqun Xu
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| |
Collapse
|
12
|
Lee WJ, Kim SC, Yoon JH, Yoon SJ, Lim J, Kim YS, Kwon SW, Park JH. Meta-Analysis of Tumor Stem-Like Breast Cancer Cells Using Gene Set and Network Analysis. PLoS One 2016; 11:e0148818. [PMID: 26870956 PMCID: PMC4752453 DOI: 10.1371/journal.pone.0148818] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 01/22/2016] [Indexed: 12/24/2022] Open
Abstract
Generally, cancer stem cells have epithelial-to-mesenchymal-transition characteristics and other aggressive properties that cause metastasis. However, there have been no confident markers for the identification of cancer stem cells and comparative methods examining adherent and sphere cells are widely used to investigate mechanism underlying cancer stem cells, because sphere cells have been known to maintain cancer stem cell characteristics. In this study, we conducted a meta-analysis that combined gene expression profiles from several studies that utilized tumorsphere technology to investigate tumor stem-like breast cancer cells. We used our own gene expression profiles along with the three different gene expression profiles from the Gene Expression Omnibus, which we combined using the ComBat method, and obtained significant gene sets using the gene set analysis of our datasets and the combined dataset. This experiment focused on four gene sets such as cytokine-cytokine receptor interaction that demonstrated significance in both datasets. Our observations demonstrated that among the genes of four significant gene sets, six genes were consistently up-regulated and satisfied the p-value of < 0.05, and our network analysis showed high connectivity in five genes. From these results, we established CXCR4, CXCL1 and HMGCS1, the intersecting genes of the datasets with high connectivity and p-value of < 0.05, as significant genes in the identification of cancer stem cells. Additional experiment using quantitative reverse transcription-polymerase chain reaction showed significant up-regulation in MCF-7 derived sphere cells and confirmed the importance of these three genes. Taken together, using meta-analysis that combines gene set and network analysis, we suggested CXCR4, CXCL1 and HMGCS1 as candidates involved in tumor stem-like breast cancer cells. Distinct from other meta-analysis, by using gene set analysis, we selected possible markers which can explain the biological mechanisms and suggested network analysis as an additional criterion for selecting candidates.
Collapse
Affiliation(s)
- Won Jun Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sang Cheol Kim
- Department of Biomedical Informatics, Center for Genome Science, National Institute of Health, KCDC, Choongchung-Buk-do, 28159, Republic of Korea
| | - Jung-Ho Yoon
- Department of Biochemistry and Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Sang Jun Yoon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Johan Lim
- Department of Statistics, Seoul National University, Seoul, 08826, Republic of Korea
| | - You-Sun Kim
- Department of Biochemistry and Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Sung Won Kwon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeong Hill Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- * E-mail:
| |
Collapse
|
13
|
Bertoni N, Pereira LMS, Severino FE, Moura R, Yoshida WB, Reis PP. Integrative meta-analysis identifies microRNA-regulated networks in infantile hemangioma. BMC MEDICAL GENETICS 2016; 17:4. [PMID: 26772808 PMCID: PMC4715339 DOI: 10.1186/s12881-015-0262-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 12/12/2015] [Indexed: 12/23/2022]
Abstract
BACKGROUND Hemangioma is a common benign tumor in the childhood; however our knowledge about the molecular mechanisms of hemangioma development and progression are still limited. Currently, microRNAs (miRNAs) have been shown as gene expression regulators with an important role in disease pathogenesis. Our goals were to identify miRNA-mRNA expression networks associated with infantile hemangioma. METHODS We performed a meta-analysis of previously published gene expression datasets including 98 hemangioma samples. Deregulated genes were further used to identify microRNAs as potential regulators of gene expression in infantile hemangioma. Data were integrated using bioinformatics methods, and genes were mapped in proteins, which were then used to construct protein-protein interaction networks. RESULTS Deregulated genes play roles in cell growth and differentiation, cell signaling, angiogenesis and vasculogenesis. Regulatory networks identified included microRNAs miR-9, miR-939 and let-7 family; these microRNAs showed the most number of interactions with deregulated genes in infantile hemangioma, suggesting that they may have an important role in the molecular mechanisms of disease. Additionally, results were used to identify drug-gene interactions and druggable gene categories using Drug-Gene Interaction Database. We show that microRNAs and microRNA-target genes may be useful biomarkers for the development of novel therapeutic strategies for patients with infantile hemangioma. CONCLUSIONS microRNA-regulated pathways may play a role in infantile hemangioma development and progression and may be potentially useful for future development of novel therapeutic strategies for patients with infantile hemangioma.
Collapse
Affiliation(s)
- Natália Bertoni
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University-UNESP, Av. Prof. Montenegro, 18618-970, Botucatu, São Paulo, Brazil.
| | - Lied M S Pereira
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University-UNESP, Av. Prof. Montenegro, 18618-970, Botucatu, São Paulo, Brazil.
| | - Fábio E Severino
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University-UNESP, Av. Prof. Montenegro, 18618-970, Botucatu, São Paulo, Brazil.
| | - Regina Moura
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University-UNESP, Av. Prof. Montenegro, 18618-970, Botucatu, São Paulo, Brazil.
| | - Winston B Yoshida
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University-UNESP, Av. Prof. Montenegro, 18618-970, Botucatu, São Paulo, Brazil.
| | - Patricia P Reis
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University-UNESP, Av. Prof. Montenegro, 18618-970, Botucatu, São Paulo, Brazil.
| |
Collapse
|
14
|
|