1
|
Abundant expression of maternal siRNAs is a conserved feature of seed development. Proc Natl Acad Sci U S A 2020; 117:15305-15315. [PMID: 32541052 DOI: 10.1073/pnas.2001332117] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Small RNAs are abundant in plant reproductive tissues, especially 24-nucleotide (nt) small interfering RNAs (siRNAs). Most 24-nt siRNAs are dependent on RNA Pol IV and RNA-DEPENDENT RNA POLYMERASE 2 (RDR2) and establish DNA methylation at thousands of genomic loci in a process called RNA-directed DNA methylation (RdDM). In Brassica rapa, RdDM is required in the maternal sporophyte for successful seed development. Here, we demonstrate that a small number of siRNA loci account for over 90% of siRNA expression during B. rapa seed development. These loci exhibit unique characteristics with regard to their copy number and association with genomic features, but they resemble canonical 24-nt siRNA loci in their dependence on RNA Pol IV/RDR2 and role in RdDM. These loci are expressed in ovules before fertilization and in the seed coat, embryo, and endosperm following fertilization. We observed a similar pattern of 24-nt siRNA expression in diverse angiosperms despite rapid sequence evolution at siren loci. In the endosperm, siren siRNAs show a marked maternal bias, and siren expression in maternal sporophytic tissues is required for siren siRNA accumulation. Together, these results demonstrate that seed development occurs under the influence of abundant maternal siRNAs that might be transported to, and function in, filial tissues.
Collapse
|
2
|
Lunardon A, Johnson NR, Hagerott E, Phifer T, Polydore S, Coruh C, Axtell MJ. Integrated annotations and analyses of small RNA-producing loci from 47 diverse plants. Genome Res 2020; 30:497-513. [PMID: 32179590 PMCID: PMC7111516 DOI: 10.1101/gr.256750.119] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/27/2020] [Indexed: 01/25/2023]
Abstract
Plant endogenous small RNAs (sRNAs) are important regulators of gene expression. There are two broad categories of plant sRNAs: microRNAs (miRNAs) and endogenous short interfering RNAs (siRNAs). MicroRNA loci are relatively well-annotated but compose only a small minority of the total sRNA pool; siRNA locus annotations have lagged far behind. Here, we used a large data set of published and newly generated sRNA sequencing data (1333 sRNA-seq libraries containing more than 20 billion reads) and a uniform bioinformatic pipeline to produce comprehensive sRNA locus annotations of 47 diverse plants, yielding more than 2.7 million sRNA loci. The two most numerous classes of siRNA loci produced mainly 24- and 21-nucleotide (nt) siRNAs, respectively. Most often, 24-nt-dominated siRNA loci occurred in intergenic regions, especially at the 5′-flanking regions of protein-coding genes. In contrast, 21-nt-dominated siRNA loci were most often derived from double-stranded RNA precursors copied from spliced mRNAs. Genic 21-nt-dominated loci were especially common from disease resistance genes, including from a large number of monocots. Individual siRNA sequences of all types showed very little conservation across species, whereas mature miRNAs were more likely to be conserved. We developed a web server where our data and several search and analysis tools are freely accessible.
Collapse
Affiliation(s)
- Alice Lunardon
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Nathan R Johnson
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Emily Hagerott
- Department of Biology, Knox College, Galesburg, Illinois 61401, USA
| | - Tamia Phifer
- Department of Biology, Knox College, Galesburg, Illinois 61401, USA
| | - Seth Polydore
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Ceyda Coruh
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Michael J Axtell
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
3
|
Avsar B, Zhao Y, Li W, Lukiw WJ. Atropa belladonna Expresses a microRNA (aba-miRNA-9497) Highly Homologous to Homo sapiens miRNA-378 (hsa-miRNA-378); both miRNAs target the 3'-Untranslated Region (3'-UTR) of the mRNA Encoding the Neurologically Relevant, Zinc-Finger Transcription Factor ZNF-691. Cell Mol Neurobiol 2020; 40:179-188. [PMID: 31456135 DOI: 10.1007/s10571-019-00729-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023]
Abstract
Recent advances in ethnobotanical and neurological research indicate that ingested plants from our diet may not only be a source of nutrition but also a source of biologically relevant nucleic-acid-encoded genetic information. A major source of RNA-encoded information from plants has been shown to be derived from small non-coding RNAs (sncRNAs) such as microRNAs (miRNAs) that can transfer information horizontally between plants and humans. In human hosts, the 3'-untranslated region (3'-UTR) of messenger RNAs (mRNAs) is targeted by these miRNAs to effectively down-regulate expression of that mRNA target in the host CNS. In this paper, we provide evidence that the Atropa belladonna aba-miRNA-9497 (miRBase conserved ID: bdi-miRNA-9497) is highly homologous to the CNS-abundant Homo sapiens miRNA-378 (hsa-miRNA-378) and both target the zinc-finger transcription factor ZNF-691 mRNA 3'-UTR to down-regulate ZNF-691 mRNA abundance. We speculate that the potent neurotoxic actions of the multiple tropane alkaloids of Atropa belladonna may be supplemented by the neuroregulatory actions of aba-miRNA-9497 on ZNF-691, and this may be followed by the modulation in the expression of ZNF-691-sensitive genes. This is the first example of a human brain-enriched transcription factor, ZNF-691, targeted and down-regulated by a naturally occurring plant microRNA, with potential to modulate gene expression in the human CNS and thus contribute to the neurotoxicological-and-psychoactive properties of the Atropa belladonna species of the deadly nightshade Solanaceae family.
Collapse
Affiliation(s)
- Bihter Avsar
- Sabanci University SUNUM Nanotechnology Research Centre, Orhanlı, Tuzla, 34956, Istanbul, Turkey
- Faculty of Arts & Science, Department of Molecular Biology and Genetics, Uludag University, 16059, Bursa, Turkey
| | - Yuhai Zhao
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans, LA, 70112, USA
- Departments of Anatomy and Cell Biology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Wenhong Li
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans, LA, 70112, USA
- Department of Pharmacology, School of Pharmacy, Jiangxi University of TCM, Nanchang, 330004, Jiangxi, China
| | - Walter J Lukiw
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans, LA, 70112, USA.
- Department of Neurology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.
- Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.
| |
Collapse
|
4
|
Zhao Y, Cong L, Lukiw WJ. Plant and Animal microRNAs (miRNAs) and Their Potential for Inter-kingdom Communication. Cell Mol Neurobiol 2018; 38:133-140. [PMID: 28879580 DOI: 10.1007/s10571-017-0547-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/31/2017] [Indexed: 12/22/2022]
Abstract
microRNAs (miRNAs) comprise a class of ~18-25 nucleotide (nt) single-stranded non-coding RNAs (sncRNAs) that are the smallest known carriers of gene-encoded, post-transcriptional regulatory information in both plants and animals. There are many fundamental similarities between plant and animal miRNAs-the miRNAs of both kingdoms play essential roles in development, aging and disease, and the shaping of the transcriptome of many cell types. Both plant and animal miRNAs appear to predominantly exert their genetic and transcriptomic influences by regulating gene expression at the level of messenger RNA (mRNA) stability and/or translational inhibition. Certain miRNA species, such as miRNA-155, miRNA-168, and members of the miRNA-854 family may be expressed in both plants and animals, suggesting a common origin and functional selection of specific miRNAs over vast periods of evolution (for example, Arabidopsis thaliana-Homo sapiens divergence ~1.5 billion years). Although there is emerging evidence for cross-kingdom miRNA communication-that plant-enriched miRNAs may enter the diet and play physiological and/or pathophysiological roles in human health and disease-some research reports repudiate this possibility. This research paper highlights some recent, controversial, and remarkable findings in plant- and animal-based miRNA signaling research with emphasis on the intriguing possibility that dietary miRNAs and/or sncRNAs may have potential to contribute to both intra- and inter-kingdom signaling, and in doing so modulate molecular-genetic mechanisms associated with human health and disease.
Collapse
Affiliation(s)
- Yuhai Zhao
- LSU Neuroscience Center, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans, LA, 70112-2272, USA
- Department of Anatomy and Cell Biology, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112-2272, USA
| | - Lin Cong
- LSU Neuroscience Center, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans, LA, 70112-2272, USA
- Department of Neurology, Shengjing Hospital, China Medical University, 36 No. 3 Street, Heping District, Shenyang, Liaoning, China
| | - Walter J Lukiw
- LSU Neuroscience Center, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans, LA, 70112-2272, USA.
- Department of Neurology, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112-2272, USA.
- Department of Ophthalmology, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112-2272, USA.
| |
Collapse
|
5
|
Zeng C, Xia J, Chen X, Zhou Y, Peng M, Zhang W. MicroRNA-like RNAs from the same miRNA precursors play a role in cassava chilling responses. Sci Rep 2017; 7:17135. [PMID: 29214993 PMCID: PMC5719433 DOI: 10.1038/s41598-017-16861-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 11/18/2017] [Indexed: 01/14/2023] Open
Abstract
MicroRNAs (miRNAs) are known to play important roles in various cellular processes and stress responses. MiRNAs can be identified by analyzing reads from high-throughput deep sequencing. The reads realigned to miRNA precursors besides canonical miRNAs were initially considered as sequencing noise and ignored from further analysis. Here we reported a small-RNA species of phased and half-phased miRNA-like RNAs different from canonical miRNAs from cassava miRNA precursors detected under four distinct chilling conditions. They can form abundant multiple small RNAs arranged along precursors in a tandem and phased or half-phased fashion. Some of these miRNA-like RNAs were experimentally confirmed by re-amplification and re-sequencing, and have a similar qRT-PCR detection ratio as their cognate canonical miRNAs. The target genes of those phased and half-phased miRNA-like RNAs function in process of cell growth metabolism and play roles in protein kinase. Half-phased miR171d.3 was confirmed to have cleavage activities on its target gene P-glycoprotein 11, a broad substrate efflux pump across cellular membranes, which is thought to provide protection for tropical cassava during sharp temperature decease. Our results showed that the RNAs from miRNA precursors are miRNA-like small RNAs that are viable negative gene regulators and may have potential functions in cassava chilling responses.
Collapse
Affiliation(s)
- Changying Zeng
- The Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Jing Xia
- Institute for Systems Biology, Jianghan University, Wuhan, Hubei, 430056, China
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Xin Chen
- The Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Yufei Zhou
- The Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Ming Peng
- The Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| | - Weixiong Zhang
- Institute for Systems Biology, Jianghan University, Wuhan, Hubei, 430056, China.
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63130, USA.
| |
Collapse
|
6
|
Dutta S, Kumar D, Jha S, Prabhu KV, Kumar M, Mukhopadhyay K. Identification and molecular characterization of a trans-acting small interfering RNA producing locus regulating leaf rust responsive gene expression in wheat (Triticum aestivum L.). PLANTA 2017; 246:939-957. [PMID: 28710588 DOI: 10.1007/s00425-017-2744-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/11/2017] [Indexed: 05/09/2023]
Abstract
A novel leaf rust responsive ta-siRNA-producing locus was identified in wheat showing similarity to 28S rRNA and generated four differentially expressing ta-siRNAs by phasing which targeted stress responsive genes. Trans-acting-small interfering RNAs (Ta-siRNAs) are plant specific molecules generally involved in development and are also stress responsive. Ta-siRNAs identified in wheat till date are all responsive to abiotic stress only. Wheat cultivation is severely affected by rusts and leaf rust particularly affects grain filling. This study reports a novel ta-siRNA producing locus (TAS) in wheat which is a segment of 28S ribosomal RNA but shows differential expression during leaf rust infestation. Four small RNA libraries prepared from wheat Near Isogenic Lines were treated with leaf rust pathogen and compared with untreated controls. A TAS with the ability to generate four ta-siRNAs by phasing events was identified along with the microRNA TamiR16 as the phase initiator. The targets of the ta-siRNAs included α-gliadin, leucine rich repeat, trans-membrane proteins, glutathione-S-transferase, and fatty acid desaturase among others, which are either stress responsive genes or are essential for normal growth and development of plants. Expression of the TAS, its generated ta-siRNAs, and their target genes were profiled at five different time points after pathogen inoculation of susceptible and resistant wheat isolines and compared with mock-inoculated controls. Comparative analysis of expression unveiled differential and reciprocal relationship as well as discrete patterns between susceptible and resistant isolines. The expression profiles of the target genes of the identified ta-siRNAs advocate more towards effector triggered susceptibility favouring pathogenesis. The study helps in discerning the functions of wheat genes regulated by ta-siRNAs in response to leaf rust.
Collapse
Affiliation(s)
- Summi Dutta
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Dhananjay Kumar
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
- Department of Botany, PDM University, Bahadurgarh, Haryana, 124507, India
| | - Shailendra Jha
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Kumble Vinod Prabhu
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Manish Kumar
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Kunal Mukhopadhyay
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| |
Collapse
|