1
|
Zhao L, Hu H, Zhang L, Liu Z, Huang Y, Liu Q, Jin L, Zhu M, Zhang L. Inflammation in diabetes complications: molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2024; 5:e516. [PMID: 38617433 PMCID: PMC11014467 DOI: 10.1002/mco2.516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 04/16/2024] Open
Abstract
At present, diabetes mellitus (DM) has been one of the most endangering healthy diseases. Current therapies contain controlling high blood sugar, reducing risk factors like obesity, hypertension, and so on; however, DM patients inevitably and eventually progress into different types of diabetes complications, resulting in poor quality of life. Unfortunately, the clear etiology and pathogenesis of diabetes complications have not been elucidated owing to intricate whole-body systems. The immune system was responsible to regulate homeostasis by triggering or resolving inflammatory response, indicating it may be necessary to diabetes complications. In fact, previous studies have been shown inflammation plays multifunctional roles in the pathogenesis of diabetes complications and is attracting attention to be the meaningful therapeutic strategy. To this end, this review systematically concluded the current studies over the relationships of susceptible diabetes complications (e.g., diabetic cardiomyopathy, diabetic retinopathy, diabetic peripheral neuropathy, and diabetic nephropathy) and inflammation, ranging from immune cell response, cytokines interaction to pathomechanism of organ injury. Besides, we also summarized various therapeutic strategies to improve diabetes complications by target inflammation from special remedies to conventional lifestyle changes. This review will offer a panoramic insight into the mechanisms of diabetes complications from an inflammatory perspective and also discuss contemporary clinical interventions.
Collapse
Affiliation(s)
- Lu Zhao
- Department of Biology and MedicineCollege of Life Science, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Haoran Hu
- Department of Biology and MedicineCollege of Life Science, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Lin Zhang
- Department of Biology and MedicineCollege of Life Science, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Zheting Liu
- Department of Biology and MedicineCollege of Life Science, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Yunchao Huang
- Department of Biology and MedicineCollege of Life Science, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Qian Liu
- National Demonstration Center for Experimental Traditional Chinese Medicines Education (Zhejiang Chinese Medical University)College of Pharmaceutical Science, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Liang Jin
- Department of Biology and MedicineCollege of Life Science, Zhejiang Chinese Medical UniversityHangzhouChina
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia MedicaShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Meifei Zhu
- Department of Critical Care MedicineThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)HangzhouChina
| | - Ling Zhang
- Department of Biology and MedicineCollege of Life Science, Zhejiang Chinese Medical UniversityHangzhouChina
| |
Collapse
|
2
|
Fang S, Tang H, Li HL, Han TC, Li ZJ, Yin ZS, Chu JJ. CCL2 Knockdown Attenuates Inflammatory Response After Spinal Cord Injury Through the PI3K/Akt Signaling Pathway: Bioinformatics Analysis and Experimental Validation. Mol Neurobiol 2024; 61:1433-1447. [PMID: 37721689 DOI: 10.1007/s12035-023-03641-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/06/2023] [Indexed: 09/19/2023]
Abstract
Spinal cord injury (SCI) is a common clinical problem in orthopedics with a lack of effective treatments and drug targets. In the present study, we performed bioinformatic analysis of SCI datasets GSE464 and GSE45006 in the Gene Expression Omnibus (GEO) public database and experimentally validated CCL2 expression in an animal model of SCI. This was followed by stimulation of PC-12 cells using hydrogen peroxide to construct a cellular model of SCI. CCL2 expression was knocked down using small interfering RNA (si-CCL2), and PI3K signaling pathway inhibitors and activators were used to validate and observe the changes in downstream inflammation. Through data mining, we found that the inflammatory chemokine CCL2 and PI3K/Akt signaling pathways after SCI expression were significantly increased, and after peroxide stimulation of PC-12 cells with CCL2 knockdown, their downstream cellular inflammatory factor levels were decreased. The PI3K/Akt signaling pathway was blocked by PI3K inhibitors, and the downstream inflammatory response was suppressed. In contrast, when PI3K activators were used, the inflammatory response was enhanced, indicating that the CCL2-PI3K/Akt signaling pathway plays a key role in the regulation of the inflammatory response. This study revealed that the inflammatory chemokine CCL2 can regulate the inflammatory response of PC-12 cells through the PI3K/Akt signaling pathway, and blocking the expression of the inflammatory chemokine CCL2 may be a promising strategy for the treatment of secondary injury after SCI.
Collapse
Affiliation(s)
- Sheng Fang
- School of Medicine, Lishui University, Lishui, 323000, China
| | - Hao Tang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, China
| | - Hai-Long Li
- Department of Orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, Anhui, China
| | - Ti-Chao Han
- Department of Orthopedics, The Linquan County People's Hospital, 109 Tong Yang Road, Fuyang, Anhui Province, 236400, People's Republic of China
| | - Zi-Jie Li
- Department of Anesthesiology, The Linquan County People's Hospital, 109 Tong Yang Road, Fuyang, Anhui Province, 236400, People's Republic of China
| | - Zong-Sheng Yin
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, China.
| | - Jian-Jun Chu
- Department of Orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, Anhui, China.
| |
Collapse
|
3
|
Gale JR, Gedeon JY, Donnelly CJ, Gold MS. Local translation in primary afferents and its contribution to pain. Pain 2022; 163:2302-2314. [PMID: 35438669 PMCID: PMC9579217 DOI: 10.1097/j.pain.0000000000002658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 04/08/2022] [Indexed: 02/06/2023]
Abstract
ABSTRACT Chronic pain remains a significant problem due to its prevalence, impact, and limited therapeutic options. Progress in addressing chronic pain is dependent on a better understanding of underlying mechanisms. Although the available evidence suggests that changes within the central nervous system contribute to the initiation and maintenance of chronic pain, it also suggests that the primary afferent plays a critical role in all phases of the manifestation of chronic pain in most of those who suffer. Most notable among the changes in primary afferents is an increase in excitability or sensitization. A number of mechanisms have been identified that contribute to primary afferent sensitization with evidence for both increases in pronociceptive signaling molecules, such as voltage-gated sodium channels, and decreases in antinociceptive signaling molecules, such as voltage-dependent or calcium-dependent potassium channels. Furthermore, these changes in signaling molecules seem to reflect changes in gene expression as well as posttranslational processing. A mechanism of sensitization that has received far less attention, however, is the local or axonal translation of these signaling molecules. A growing body of evidence indicates that this process not only is dynamically regulated but also contributes to the initiation and maintenance of chronic pain. Here, we review the biology of local translation in primary afferents and its relevance to pain pathobiology.
Collapse
Affiliation(s)
- Jenna R Gale
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Jeremy Y Gedeon
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | | | - Michael S Gold
- Corresponding author: Michael S Gold, PhD, Department of Neurobiology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15213, P: 412-383-5367,
| |
Collapse
|
4
|
Khan A, Parray A, Akhtar N, Agouni A, Kamran S, Pananchikkal SV, Priyanka R, Gad H, Ponirakis G, Petropoulos IN, Chen KH, Tayyab K, Saqqur M, Shuaib A, Malik RA. Corneal nerve loss in patients with TIA and acute ischemic stroke in relation to circulating markers of inflammation and vascular integrity. Sci Rep 2022; 12:3332. [PMID: 35228650 PMCID: PMC8885663 DOI: 10.1038/s41598-022-07353-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 02/14/2022] [Indexed: 12/01/2022] Open
Abstract
Vascular and inflammatory mechanisms are implicated in the development of cerebrovascular disease and corneal nerve loss occurs in patients with transient ischemic attack (TIA) and acute ischemic stroke (AIS). We have assessed whether serum markers of inflammation and vascular integrity are associated with the severity of corneal nerve loss in patients with TIA and AIS. Corneal confocal microscopy (CCM) was performed to quantify corneal nerve fiber density (CNFD), corneal nerve branch density (CNBD) and corneal nerve fiber length (CNFL) in 105 patients with TIA (n = 24) or AIS (n = 81) and age matched control subjects (n = 56). Circulating levels of IL-6, MMP-2, MMP-9, E-Selectin, P-Selectin and VEGF were quantified in patients within 48 h of presentation with a TIA or AIS. CNFL (P = 0.000, P = 0.000), CNFD (P = 0.122, P = 0.000) and CNBD (P = 0.002, P = 0.000) were reduced in patients with TIA and AIS compared to controls, respectively with no difference between patients with AIS and TIA. The NIHSS Score (P = 0.000), IL-6 (P = 0.011) and E-Selectin (P = 0.032) were higher in patients with AIS compared to TIA with no difference in MMP-2 (P = 0.636), MMP-9 (P = 0.098), P-Selectin (P = 0.395) and VEGF (P = 0.831). CNFL (r = 0.218, P = 0.026) and CNFD (r = 0.230, P = 0.019) correlated with IL-6 and multiple regression analysis showed a positive association of CNFL and CNFD with IL-6 (P = 0.041, P = 0.043). Patients with TIA and AIS have evidence of corneal nerve loss and elevated IL6 and E-selectin levels. Larger longitudinal studies are required to determine the association between inflammatory and vascular markers and corneal nerve fiber loss in patients with cerebrovascular disease.
Collapse
Affiliation(s)
- Adnan Khan
- Department of Medicine, Research Division, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Aijaz Parray
- Department of Neurology and Institute of Neurosciences, Hamad Medical Corporation, Doha, Qatar
| | - Naveed Akhtar
- Department of Neurology and Institute of Neurosciences, Hamad Medical Corporation, Doha, Qatar
| | - Abdelali Agouni
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Saadat Kamran
- Department of Neurology and Institute of Neurosciences, Hamad Medical Corporation, Doha, Qatar
| | - Sajitha V Pananchikkal
- Department of Neurology and Institute of Neurosciences, Hamad Medical Corporation, Doha, Qatar
| | - Ruth Priyanka
- Department of Neurology and Institute of Neurosciences, Hamad Medical Corporation, Doha, Qatar
| | - Hoda Gad
- Department of Medicine, Research Division, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Georgios Ponirakis
- Department of Medicine, Research Division, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Ioannis N Petropoulos
- Department of Medicine, Research Division, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Kuan-Han Chen
- Department of Medicine, Research Division, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Kausar Tayyab
- Department of Medicine, Research Division, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Maher Saqqur
- Department of Neurology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Ashfaq Shuaib
- Stroke Program, Department of Neurology, University of Alberta, Alberta, Canada
| | - Rayaz A Malik
- Department of Medicine, Research Division, Weill Cornell Medicine-Qatar, Doha, Qatar.
| |
Collapse
|
5
|
The effect of chondroitinase ABC and photobiomodulation therapy on neuropathic pain after spinal cord injury in adult male rats. Physiol Behav 2020; 227:113141. [DOI: 10.1016/j.physbeh.2020.113141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 01/18/2023]
|
6
|
Chung D, Shum A, Caraveo G. GAP-43 and BASP1 in Axon Regeneration: Implications for the Treatment of Neurodegenerative Diseases. Front Cell Dev Biol 2020; 8:567537. [PMID: 33015061 PMCID: PMC7494789 DOI: 10.3389/fcell.2020.567537] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/14/2020] [Indexed: 01/06/2023] Open
Abstract
Growth-associated protein-43 (GAP-43) and brain acid-soluble protein 1 (BASP1) regulate actin dynamics and presynaptic vesicle cycling at axon terminals, thereby facilitating axonal growth, regeneration, and plasticity. These functions highly depend on changes in GAP-43 and BASP1 expression levels and post-translational modifications such as phosphorylation. Interestingly, examinations of GAP-43 and BASP1 in neurodegenerative diseases reveal alterations in their expression and phosphorylation profiles. This review provides an overview of the structural properties, regulations, and functions of GAP-43 and BASP1, highlighting their involvement in neural injury response and regeneration. By discussing GAP-43 and BASP1 in the context of neurodegenerative diseases, we also explore the therapeutic potential of modulating their activities to compensate for neuron loss in neurodegenerative diseases.
Collapse
Affiliation(s)
- Daayun Chung
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Andrew Shum
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Gabriela Caraveo
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
7
|
Wang YF, Liu F, Lan J, Bai J, Li XQ. The Effect of Botulinum Neurotoxin Serotype a Heavy Chain on the Growth Related Proteins and Neurite Outgrowth after Spinal Cord Injury in Rats. Toxins (Basel) 2018; 10:toxins10020066. [PMID: 29393906 PMCID: PMC5848167 DOI: 10.3390/toxins10020066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/31/2018] [Accepted: 01/31/2018] [Indexed: 12/16/2022] Open
Abstract
(1) Background: The botulinum toxin A (BoNT-A) heavy chain (HC) can stimulate the growth of primary motor neurites. (2) Methods: A recombinant BoNT/A HC was injected locally plus interval intrathecal catheter of BoNT/A HC to rats with ipsilateral semi-dissociated lumbar spinal cord injuries (SCIs). First, 2D gel with a silver nitrate stain was applied to detect the general pattern of protein expression. Growth associated protein 43 (GAP-43) and superior cervical ganglion 10 (SCG10) were chosen to represent the altered proteins, based on their molecular weight and pI, and were used to further detect their expression. Meanwhile, the neuronal processes were measured. The measurements of thermal hyperalgesia and grasp power at the ipsilateral hindlimb were used to evaluate spinal sensory and motor function, respectively. (3) Results: The local injection of BoNT/A HC followed by its intrathecal catheter intervally altered the spinal protein expression pattern after an SCI; protein expression was similar to normal levels or displayed a remarkable increase. The changes in the expression and distribution of phosphorylated growth associated protein 43(p-GAP 43) and superior cervical ganglion 10 (SCG 10) indicated that the administration of BoNT/A HC to the SCI significantly amplified the expression of p-GAP43 and SCG10 (p < 0.05). Meanwhile, the positive immunofluorescent staining for both p-GAP43 and SCG10 was mainly present near the rostral aspect of the injury, both in the cytoplasm and the neuronal processes. Moreover, the outgrowth of neurites was stimulated by the BoNT/A HC treatment; this was evident from the increase in neurite length, number of branches and the percentage of cells with neuronal processes. The results from the spinal function tests suggested that the BoNT/A HC did not affect sensation, but had a large role in improving the ipsilateral hindlimb grasp power (p < 0.05). (4) Conclusions: The local injection with the intermittent intrathecal administration of BoNT/A heavy chain to rats with SCI increased the local expression of GAP-43 and SCG 10, which might be affiliated with the regeneration of neuronal processes surrounding the injury, and might also be favorable to the relief of spinal motor dysfunction.
Collapse
Affiliation(s)
- Ya-Fang Wang
- Department of Pathophysiology, Shanxi Medical University, Taiyuan 030001, China.
| | - Fu Liu
- Department of Pathophysiology, Shanxi Medical University, Taiyuan 030001, China.
| | - Jing Lan
- Department of Pathophysiology, Shanxi Medical University, Taiyuan 030001, China.
| | - Juan Bai
- Department of Pathophysiology, Shanxi Medical University, Taiyuan 030001, China.
| | - Xia-Qing Li
- Department of Pathophysiology, Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
8
|
"mTOR Signaling Pathway": A Potential Target of Curcumin in the Treatment of Spinal Cord Injury. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1634801. [PMID: 28691015 PMCID: PMC5485291 DOI: 10.1155/2017/1634801] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 04/15/2017] [Accepted: 05/18/2017] [Indexed: 01/09/2023]
Abstract
The purpose of this review is to discuss the possibility of the treatment of spinal cord injury (SCI) with curcumin via regulating the mTOR signaling pathway, which may provide another strong support for curcumin to be a promising medicine applied to the treatment of SCI. Curcumin is termed as a multifunctional targeting therapy drug that regulates the mTOR signaling pathway in the treatment of numerous diseases. Previous research has already revealed that mTOR signaling pathway plays a vital role in prognosis, which involves the axon regeneration and autophagy. This review discusses a potential mechanism that curcumin suppresses the activation of this pathway and ameliorates the microenvironment of axons regeneration which would provide a new way that induces autophagy appropriately.
Collapse
|
9
|
Cox AA, Sagot Y, Hedou G, Grek C, Wilkes T, Vinik AI, Ghatnekar G. Low-Dose Pulsatile Interleukin-6 As a Treatment Option for Diabetic Peripheral Neuropathy. Front Endocrinol (Lausanne) 2017; 8:89. [PMID: 28512447 PMCID: PMC5411416 DOI: 10.3389/fendo.2017.00089] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/06/2017] [Indexed: 01/27/2023] Open
Abstract
Diabetic peripheral neuropathy (DPN) remains one of the most common and serious complications of diabetes. Currently, pharmacological agents are limited to treating the pain associated with DPN, and do not address the underlying pathological mechanisms driving nerve damage, thus leaving a significant unmet medical need. Interestingly, research conducted using exercise as a treatment for DPN has revealed interleukin-6 (IL-6) signaling to be associated with many positive benefits such as enhanced blood flow and lipid metabolism, decreased chronic inflammation, and peripheral nerve fiber regeneration. IL-6, once known solely as a pro-inflammatory cytokine, is now understood to signal as a multifunctional cytokine, capable of eliciting both pro- and anti-inflammatory responses in a context-dependent fashion. IL-6 released from muscle in response to exercise signals as a myokine and as such has a unique kinetic profile, whereby levels are transiently elevated up to 100-fold and return to baseline levels within 4 h. Importantly, this kinetic profile is in stark contrast to long-term IL-6 elevation that is associated with pro-inflammatory states. Given exercise induces IL-6 myokine signaling, and exercise has been shown to elicit numerous beneficial effects for the treatment of DPN, a causal link has been suggested. Here, we discuss both the clinical and preclinical literature related to the application of IL-6 as a treatment strategy for DPN. In addition, we discuss how IL-6 may directly modulate Schwann and nerve cells to explore a mechanistic understanding of how this treatment elicits a neuroprotective and/or regenerative response. Collectively, studies suggest that IL-6, when administered in a low-dose pulsatile strategy to mimic the body's natural response to exercise, may prove to be an effective treatment for the protection and/or restoration of peripheral nerve function in DPN. This review highlights the studies supporting this assertion and provides rationale for continued investigation of IL-6 for the treatment of DPN.
Collapse
Affiliation(s)
| | - Yves Sagot
- Relief Therapeutics SA, Zurich, Switzerland
| | - Gael Hedou
- Relief Therapeutics SA, Zurich, Switzerland
| | | | | | | | - Gautam Ghatnekar
- FirstString Research, Mt. Pleasant, SC, USA
- *Correspondence: Gautam Ghatnekar,
| |
Collapse
|