1
|
Vega LA, Sansón-Iglesias M, Mukherjee P, Buchan K, Morrison G, Hohlt AE, Flores AR. LiaR-dependent gene expression contributes to antimicrobial responses in group A Streptococcus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.588141. [PMID: 38617309 PMCID: PMC11014544 DOI: 10.1101/2024.04.04.588141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The ability to sense and respond to host defenses is essential for pathogen survival. Some mechanisms involve two-component systems (TCS) that respond to host molecules, such as antimicrobial peptides (AMPs) and activate specific gene regulatory pathways to aid in survival. Alongside TCSs, bacteria coordinate cell division proteins, chaperones, cell wall sortases and secretory translocons at discrete locations within the cytoplasmic membrane, referred to as functional membrane microdomains (FMMs). In Group A Streptococcus (GAS), the FMM or "ExPortal" coordinates protein secretion, cell wall synthesis and sensing of AMP-mediated cell envelope stress via the LiaFSR three-component system. Previously we showed GAS exposure to a subset of AMPs (α-defensins) activates the LiaFSR system by disrupting LiaF and LiaS co-localization in the ExPortal, leading to increased LiaR phosphorylation, expression of the transcriptional regulator SpxA2, and altered GAS virulence gene expression. The mechanisms by which LiaFSR integrates cell envelope stress with responses to AMP activity and virulence are not fully elucidated. Here, we show the LiaFSR regulon is comprised of genes encoding SpxA2 and three membrane-associated proteins: a PspC domain-containing protein (PCP), the lipoteichoic acid-modifying protein LafB and the membrane protein insertase YidC2. Our data show phosphorylated LiaR induces transcription of these genes via a conserved operator, whose disruption attenuates GAS virulence and increases susceptibility to AMPs in a manner primarily dependent on differential expression of SpxA2. Our work expands understanding of the LiaFSR regulatory network in GAS and identifies targets for further investigation of mechanisms of cell envelope stress tolerance contributing to GAS pathogenesis.
Collapse
|
2
|
Pannullo AG, Zbylicki BR, Ellermeier CD. Identification of DraRS in Clostridioides difficile, a Two-Component Regulatory System That Responds to Lipid II-Interacting Antibiotics. J Bacteriol 2023; 205:e0016423. [PMID: 37439672 PMCID: PMC10601625 DOI: 10.1128/jb.00164-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/27/2023] [Indexed: 07/14/2023] Open
Abstract
Clostridioides difficile is a Gram-positive opportunistic pathogen that results in 220,000 infections, 12,000 deaths, and upwards of $1 billion in medical costs in the United States each year. C. difficile is highly resistant to a variety of antibiotics, but we have a poor understanding of how C. difficile senses and responds to antibiotic stress and how such sensory systems affect clinical outcomes. We have identified a spontaneous C. difficile mutant that displays increased daptomycin resistance. We performed whole-genome sequencing and found a nonsense mutation, S605*, in draS, which encodes a putative sensor histidine kinase of a two-component system (TCS). The draSS605* mutant has an ~4- to 8-fold increase in the daptomycin MIC compared to the wild type (WT). We found that the expression of constitutively active DraRD54E in the WT increases daptomycin resistance 8- to 16-fold and increases bacitracin resistance ~4-fold. We found that a selection of lipid II-inhibiting compounds leads to the increased activity of the luciferase-based reporter PdraR-slucopt, including vancomycin, bacitracin, ramoplanin, and daptomycin. Using RNA sequencing (RNA-seq), we identified the DraRS regulon. Interestingly, we found that DraRS can induce the expression of the previously identified hex locus required for the synthesis of a novel glycolipid produced in C. difficile. Our data suggest that the induction of the hex locus by DraR explains some, but not all, of the DraR-induced daptomycin and bacitracin resistance. IMPORTANCE Clostridioides difficile is a major cause of hospital-acquired diarrhea and represents an urgent concern due to the prevalence of antibiotic resistance and the rate of recurrent infections. C. difficile encodes ~50 annotated two-component systems (TCSs); however, only a few have been studied. The function of these unstudied TCSs is not known. Here, we show that the TCS DraRS plays a role in responding to a subset of lipid II-inhibiting antibiotics and mediates resistance to daptomycin and bacitracin in part by inducing the expression of the recently identified hex locus, which encodes enzymes required for the production of a novel glycolipid in C. difficile.
Collapse
Affiliation(s)
- Anthony G. Pannullo
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Brianne R. Zbylicki
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Craig D. Ellermeier
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
3
|
Sharma A, Singh RN, Song XP, Singh RK, Guo DJ, Singh P, Verma KK, Li YR. Genome analysis of a halophilic Virgibacillus halodenitrificans ASH15 revealed salt adaptation, plant growth promotion, and isoprenoid biosynthetic machinery. Front Microbiol 2023; 14:1229955. [PMID: 37808307 PMCID: PMC10556750 DOI: 10.3389/fmicb.2023.1229955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/31/2023] [Indexed: 10/10/2023] Open
Abstract
Globally, due to widespread dispersion, intraspecific diversity, and crucial ecological components of halophilic ecosystems, halophilic bacteria is considered one of the key models for ecological, adaptative, and biotechnological applications research in saline environments. With this aim, the present study was to enlighten the plant growth-promoting features and investigate the systematic genome of a halophilic bacteria, Virgibacillus halodenitrificans ASH15, through single-molecule real-time (SMRT) sequencing technology. Results showed that strain ASH15 could survive in high salinity up to 25% (w/v) NaCl concentration and express plant growth-promoting traits such as nitrogen fixation, plant growth hormones, and hydrolytic enzymes, which sustain salt stress. The results of pot experiment revealed that strain ASH15 significantly enhanced sugarcane plant growth (root shoot length and weight) under salt stress conditions. Moreover, the sequencing analysis of the strain ASH15 genome exhibited that this strain contained a circular chromosome of 3,832,903 bp with an average G+C content of 37.54%: 3721 predicted protein-coding sequences (CDSs), 24 rRNA genes, and 62 tRNA genes. Genome analysis revealed that the genes related to the synthesis and transport of compatible solutes (glycine, betaine, ectoine, hydroxyectoine, and glutamate) confirm salt stress as well as heavy metal resistance. Furthermore, functional annotation showed that the strain ASH15 encodes genes for root colonization, biofilm formation, phytohormone IAA production, nitrogen fixation, phosphate metabolism, and siderophore production, which are beneficial for plant growth promotion. Strain ASH15 also has a gene resistance to antibiotics and pathogens. In addition, analysis also revealed that the genome strain ASH15 has insertion sequences and CRISPRs, which suggest its ability to acquire new genes through horizontal gene transfer and acquire immunity to the attack of viruses. This work provides knowledge of the mechanism through which V. halodenitrificans ASH15 tolerates salt stress. Deep genome analysis, identified MVA pathway involved in biosynthesis of isoprenoids, more precisely "Squalene." Squalene has various applications, such as an antioxidant, anti-cancer agent, anti-aging agent, hemopreventive agent, anti-bacterial agent, adjuvant for vaccines and drug carriers, and detoxifier. Our findings indicated that strain ASH15 has enormous potential in industries such as in agriculture, pharmaceuticals, cosmetics, and food.
Collapse
Affiliation(s)
- Anjney Sharma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Academy of Agricultural Sciences (GXXAS), Nanning, Guangxi, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Ram Nageena Singh
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, United States
| | - Xiu-Peng Song
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Rajesh Kumar Singh
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Academy of Agricultural Sciences (GXXAS), Nanning, Guangxi, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Dao-Jun Guo
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Academy of Agricultural Sciences (GXXAS), Nanning, Guangxi, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
- State Key Laboratory of Conservation and Utilization of Subtropical, College of Agriculture, Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
| | - Pratiksha Singh
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Academy of Agricultural Sciences (GXXAS), Nanning, Guangxi, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Krishan K. Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Academy of Agricultural Sciences (GXXAS), Nanning, Guangxi, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Yang-Rui Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Guangxi Academy of Agricultural Sciences (GXXAS), Nanning, Guangxi, China
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
- State Key Laboratory of Conservation and Utilization of Subtropical, College of Agriculture, Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
4
|
Novel Lactotransferrin-Derived Antimicrobial Peptide LF-1 Inhibits the Cariogenic Virulence Factors of Streptococcus mutans. Antibiotics (Basel) 2023; 12:antibiotics12030563. [PMID: 36978430 PMCID: PMC10044700 DOI: 10.3390/antibiotics12030563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
We previously developed a novel lactotransferrin-derived antimicrobial peptide, LF-1, with selective antibacterial activity against the characteristic cariogenic bacterium Streptococcus mutans. This study further investigated the effects of LF-1 on the cariogenic virulence factors of S. mutans and evaluated the changes in virulence-associated enzymes and genes; the viability, acidogenicity, and aciduricity of planktonic S. mutans; and initial colonisation and biofilm formation after treatment with LF-1. The method of qRT-PCR was used to evaluate S. mutans virulence-associated gene expression. LF-1 interfered with the cell viability of S. mutans within 6 h. LF-1 inhibited the acidogenicity and aciduricity of S. mutans, with reduced lactic acid production and survival in a lethal acidic environment, and inactivated lactate dehydrogenase and F1F0-ATPase activity. LF-1 decreased surface-adherent S. mutans within 60 min and inhibited S. mutans biofilm formation, where scanning electron microscopy and confocal laser scanning microscopy showed reduced extracellular matrix and bacteria. LF-1 downregulates S. mutans virulence-associated gene expression. LF-1 inhibited the growth and cariogenic virulence factors of S. mutans in vitro with a reduction in key enzymatic activity and downregulation of virulence-associated gene expression. LF-1 has promising application prospects in the fight against S. mutans and dental caries.
Collapse
|
5
|
Jiang W, Xie Z, Huang S, Huang Q, Chen L, Gao X, Lin Z. Targeting cariogenic pathogens and promoting competitiveness of commensal bacteria with a novel pH-responsive antimicrobial peptide. J Oral Microbiol 2022; 15:2159375. [PMID: 36570976 PMCID: PMC9788686 DOI: 10.1080/20002297.2022.2159375] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Novel ecological antimicrobial approaches to dental caries focus on inhibiting cariogenic pathogens while enhancing the growth of health-associated commensal communities or suppressing cariogenic virulence without affecting the diversity of oral microbiota, which emphasize the crucial role of establishing a healthy microbiome in caries prevention. Considering that the acidified cariogenic microenvironment leads to the dysbiosis of microecology and demineralization of enamel, exploiting the acidic pH as a bioresponsive trigger to help materials and medications target cariogenic pathogens is a promising strategy to develop novel anticaries approaches. In this study, a pH-responsive antimicrobial peptide, LH12, was designed utilizing the pH-sensitivity of histidine, which showed higher cationicity and stronger interactions with bacterial cytomembranes at acidic pH. Streptococcus mutans was used as the in vitro caries model to evaluate the inhibitory effects of LH12 on the cariogenic properties, such as biofilm formation, biofilm morphology, acidurance, acidogenicity, and exopolysaccharides synthesis. The dual-species model of Streptococcus mutans and Streptococcus gordonii was established in vitro to evaluate the regulation effects of LH12 on the mixed species microbial community containing both cariogenic bacteria and commensal bacteria. LH12 suppressed the cariogenic properties and regulated the bacterial composition to a healthier condition through a dual-functional mechanism. Firstly, LH12-targeted cariogenic pathogens in response to the acidified microenvironment and suppressed the cariogenic virulence by inhibiting the expression of multiple virulence genes and two-component signal transduction systems. Additionally, LH12 elevated H2O2 production of the commensal bacteria and subsequently improved the ecological competitiveness of the commensals. The dual-functional mechanism made LH12 a potential bioresponsive approach to caries management.
Collapse
Affiliation(s)
- Wentao Jiang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, GuangdongChina
| | - Zhuo Xie
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, GuangdongChina
| | - Shuheng Huang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, GuangdongChina
| | - Qiting Huang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, GuangdongChina
| | - Lingling Chen
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, GuangdongChina
| | - Xianling Gao
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, GuangdongChina
| | - Zhengmei Lin
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, GuangdongChina,CONTACT Zhengmei Lin Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong510055, China
| |
Collapse
|
6
|
Lavigne JP, Hosny M, Dunyach-Remy C, Boutet-Dubois A, Schuldiner S, Cellier N, Yahiaoui-Martinez A, Molle V, La Scola B, Marchandin H, Sotto A. Long-Term Intrahost Evolution of Staphylococcus aureus Among Diabetic Patients With Foot Infections. Front Microbiol 2021; 12:741406. [PMID: 34552578 PMCID: PMC8452158 DOI: 10.3389/fmicb.2021.741406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/11/2021] [Indexed: 01/22/2023] Open
Abstract
Staphylococcus aureus is one of the main pathogens isolated from diabetic foot infections (DFI). The purpose of this study was to evaluate the importance of the persistence of S. aureus in this environment and the possible modifications of the bacterial genome content over time. Molecular typing of S. aureus isolates cultured from patients with the same DFI over a 7-year study revealed a 25% rate of persistence of this species in 48 patients, with a short median persistence time of 12weeks (range: 4-52weeks). Non-specific clonal complexes were linked to this persistence. During the follow-up, bla genes were acquired in three cases, whereas some virulence markers were lost in all cases after a long period of colonization (21.5weeks). Only one patient (2%) had a long-term persistence of 48weeks. The genome sequencing of a clonal pair of early/late strains isolated in this patient showed mutations in genes encoding bacterial defence and two-component signal transduction systems. Although, this study suggests that the long-term persistence of S. aureus in DFI is a rare event, genomic evolution is observed, highlighting the low adaptive ability of S. aureus to the specific environment and stressful conditions of diabetic foot ulcers. These results provide the basis for better understanding of S. aureus dynamics during persistent colonization in chronic wounds.
Collapse
Affiliation(s)
- Jean-Philippe Lavigne
- VBIC, INSERM U1047, Service de Microbiologie et Hygiène Hospitalière, Université de Montpellier, CHU Nîmes, Nîmes, France
| | - Michel Hosny
- Aix-Marseille Université UM63, Institut de Recherche pour le Développement IRD 198, Assistance Publique - Hôpitaux de Marseille (AP-HM), Microbes, Evolution, Phylogeny and Infection (MEΦI), Institut Hospitalo-Universitaire (IHU) - Méditerranée Infection, Marseille, France
| | - Catherine Dunyach-Remy
- VBIC, INSERM U1047, Service de Microbiologie et Hygiène Hospitalière, Université de Montpellier, CHU Nîmes, Nîmes, France
| | - Adeline Boutet-Dubois
- VBIC, INSERM U1047, Service de Microbiologie et Hygiène Hospitalière, Université de Montpellier, CHU Nîmes, Nîmes, France
| | - Sophie Schuldiner
- VBIC, INSERM U1047, Service des Maladies Métaboliques et Endocriniennes, Université de Montpellier, CHU Nîmes, Nîmes, France
| | | | - Alex Yahiaoui-Martinez
- VBIC, INSERM U1047, Service de Microbiologie et Hygiène Hospitalière, Université de Montpellier, CHU Nîmes, Nîmes, France
| | - Virginie Molle
- Laboratory of Pathogen Host Interactions, UMR 5235, CNRS, Université de Montpellier, Montpellier, France
| | - Bernard La Scola
- Aix-Marseille Université UM63, Institut de Recherche pour le Développement IRD 198, Assistance Publique - Hôpitaux de Marseille (AP-HM), Microbes, Evolution, Phylogeny and Infection (MEΦI), Institut Hospitalo-Universitaire (IHU) - Méditerranée Infection, Marseille, France
| | - Hélène Marchandin
- HydroSciences Montpellier, CNRS, IRD, Service de Microbiologie et Hygiène Hospitalière, Université de Montpellier, CHU Nîmes, Nîmes, France
| | - Albert Sotto
- VBIC, INSERM U1047, Service des Maladies Infectieuses et Tropicales, Université de Montpellier, CHU Nîmes, Nîmes, France
| |
Collapse
|
7
|
The LiaFSR transcriptome reveals an interconnected regulatory network in group A Streptococcus. Infect Immun 2021; 89:e0021521. [PMID: 34370508 DOI: 10.1128/iai.00215-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanisms by which bacteria sense the host environment and alter gene expression are poorly understood. LiaFSR is a gene regulatory system unique to Gram-positive bacteria including group A Streptococcus (GAS) and responds to cell envelope stress. We previously showed that LiaF acts as an inhibitor to LiaFSR activation in GAS. To better understand gene regulation associated with LiaFSR activation, we performed RNA-sequencing on isogenic deletion mutants fixed in a LiaFSR "always on" (ΔliaF) or "always off" (ΔliaR) state. Transcriptome analyses of ΔliaF and ΔliaR in GAS showed near perfect inverse correlation including the gene encoding the global transcriptional regulator SpxA2. In addition, mutant transcriptomes included genes encoding multiple virulence factors and showed substantial overlap with the CovRS regulon. Chromatin immunoprecipitation quantitative PCR demonstrated direct spxA2 gene regulation following activation of the response regulator, LiaR. High SpxA2 levels as a result of LiaFSR activation were directly correlated with increased CovR-regulated virulence gene transcription. Further, consistent with known virulence gene repression by phosphorylated CovR, elevated SpxA2 levels were inversely correlated with CovR phosphorylation. Despite increased transcription of several virulence factors, ΔliaF (high SpxA2) exhibited a paradoxical virulence phenotype in both in vivo mouse and ex vivo human blood models of disease. Likewise, despite decreased virulence factor transcription in ΔliaR (low SpxA2), increased virulence was observed in an in vivo mouse model of disease - a phenotype attributable, in part, to known SpxA2-associated speB transcription. Our findings provide evidence of a critical role of LiaFSR in sensing the host environment and suggest a potential mechanism for gene regulatory system crosstalk shared by many Gram-positive pathogens.
Collapse
|
8
|
Alhadlaq MA, Green J, Kudhair BK. Analysis of Kytococcus sedentarius Strain Isolated from a Dehumidifier Operating in a University Lecture Theatre: Systems for Aerobic Respiration, Resisting Osmotic Stress, and Sensing Nitric Oxide. Microb Physiol 2021; 31:135-145. [PMID: 33730718 DOI: 10.1159/000512751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/28/2020] [Indexed: 11/19/2022]
Abstract
A strain of Kytococcus sedentarius was isolated from a dehumidifier operating in a university lecture theatre. Genome analysis and phenotypic characterisation showed that this strain, K. sedentarius MBB13, was a moderately halotolerant aerobe with a branched aerobic electron transport chain and genes that could contribute to erythromycin resistance. The major compatible solute was glycine betaine, with ectoine and proline being deployed at higher osmolarities. Actinobacteria possess multiple WhiB-like (Wbl) regulatory proteins, and K. sedentarius MBB13 has four (WhiB1, WhiB2, WhiB3, and WhiB7). Wbls are iron-sulfur proteins that regulate gene expression through interactions with RNA polymerase sigma factors and/or other regulatory proteins. Bacterial two-hybrid analyses suggested that WhiB1 and WhiB2, but not WhiB3 and WhiB7, interact with the C-terminal domain of the major sigma factor, σA; no interaction was detected between any of the Wbl proteins and the only alternative sigma factors, σB, σH, or σJ. The interaction between σA and WhiB1 or WhiB2 was disrupted in a heterologous system under growth conditions that produce nitric oxide and the iron-sulfur clusters of the isolated WhiB1 and WhiB2 proteins reacted with nitric oxide. Thus, K. sedentarius strain exhibits the major phenotypic characteristics of the type strain and a comprehensive examination of the interactions between its four Wbl proteins and four sigma factors suggested that the Wbl proteins all operate through interaction with σA.
Collapse
Affiliation(s)
- Meshari Ahmed Alhadlaq
- Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom, .,Research and Laboratories Sector, Saudi Food and Drug Authority, Riyadh, Saudi Arabia,
| | - Jeffrey Green
- Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Bassam K Kudhair
- Department of Laboratory Investigations, Faculty of Science, University of Kufa, Najaf, Iraq
| |
Collapse
|
9
|
Jung CJ, Hsu CC, Chen JW, Cheng HW, Yuan CT, Kuo YM, Hsu RB, Chia JS. PspC domain-containing protein (PCP) determines Streptococcus mutans biofilm formation through bacterial extracellular DNA release and platelet adhesion in experimental endocarditis. PLoS Pathog 2021; 17:e1009289. [PMID: 33577624 PMCID: PMC7906467 DOI: 10.1371/journal.ppat.1009289] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 02/25/2021] [Accepted: 01/07/2021] [Indexed: 11/19/2022] Open
Abstract
Bacterial extracellular DNA (eDNA) and activated platelets have been found to contribute to biofilm formation by Streptococcus mutans on injured heart valves to induce infective endocarditis (IE), yet the bacterial component directly responsible for biofilm formation or platelet adhesion remains unclear. Using in vivo survival assays coupled with microarray analysis, the present study identified a LiaR-regulated PspC domain-containing protein (PCP) in S. mutans that mediates bacterial biofilm formation in vivo. Reverse transcriptase- and chromatin immunoprecipitation-polymerase chain reaction assays confirmed the regulation of pcp by LiaR, while PCP is well-preserved among streptococcal pathogens. Deficiency of pcp reduced in vitro and in vivo biofilm formation and released the eDNA inside bacteria floe along with reduced bacterial platelet adhesion capacity in a fibrinogen-dependent manner. Therefore, LiaR-regulated PCP alone could determine release of bacterial eDNA and binding to platelets, thus contributing to biofilm formation in S. mutans-induced IE.
Collapse
Affiliation(s)
- Chiau-Jing Jung
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Chieh Hsu
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Jeng-Wei Chen
- Division of Cardiovascular Surgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hung-Wei Cheng
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chang-Tsu Yuan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Pathology, National Taiwan University Cancer Center, Taipei, Taiwan
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Min Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ron-Bin Hsu
- Division of Cardiovascular Surgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Jean-San Chia
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
10
|
ExPortal and the LiaFSR Regulatory System Coordinate the Response to Cell Membrane Stress in Streptococcus pyogenes. mBio 2020; 11:mBio.01804-20. [PMID: 32934083 PMCID: PMC7492735 DOI: 10.1128/mbio.01804-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Bacterial two-component systems sense and induce transcriptional changes in response to environmental stressors, including antimicrobials and human antimicrobial peptides. Since the stresses imposed by the host’s defensive responses may act as markers of specific temporal stages of disease progression or host compartments, pathogens often coordinately regulate stress response programs with virulence factor expression. The mechanism by which bacteria recognize these stresses and subsequently induce transcriptional responses remains not well understood. In this study, we showed that LiaFSR senses cell envelope stress through colocalization of LiaF and LiaS with the group A Streptococcus (GAS) ExPortal and is activated in direct response to ExPortal disruption by antimicrobials or human antimicrobial peptides. Our studies shed new light on the sensing of cell envelope stress in Gram-positive bacteria and may contribute to the development of therapies targeting these processes. LiaFSR is a gene regulatory system important for response to cell membrane stress in Gram-positive bacteria but is minimally studied in the important human pathogen group A Streptococcus (GAS). Using immunofluorescence and immunogold electron microscopy, we discovered that LiaF (a membrane-bound repressor protein) and LiaS (a sensor kinase) reside within the GAS membrane microdomain (ExPortal). Cell envelope stress induced by antimicrobials resulted in ExPortal disruption and activation of the LiaFSR system. The only human antimicrobial peptide whose presence resulted in ExPortal disruption and LiaFSR activation was the alpha-defensin human neutrophil peptide 1 (hNP-1). Elimination of membrane cardiolipin through targeted gene deletion resulted in loss of LiaS colocalization with the GAS ExPortal and activation of LiaFSR, whereas LiaF membrane localization was unaffected. Isogenic mutants lacking either LiaF or LiaS revealed a critical role of LiaF in ExPortal integrity. Thus, LiaF and LiaS colocalize with the GAS ExPortal by distinct mechanisms, further supporting codependence. These are the first data identifying a multicomponent signal system within the ExPortal, thereby providing new insight into bacterial intramembrane signaling in GAS that may serve as a paradigm for Gram-positive bacteria.
Collapse
|
11
|
Two-Component Signal Transduction Systems in the Human Pathogen Streptococcus agalactiae. Infect Immun 2020; 88:IAI.00931-19. [PMID: 31988177 DOI: 10.1128/iai.00931-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Streptococcus agalactiae (group B Streptococcus [GBS]) is an important cause of invasive infection in newborns, maternal women, and older individuals with underlying chronic illnesses. GBS has many mechanisms to adapt and survive in its host, and these mechanisms are often controlled via two-component signal transduction systems. In GBS, more than 20 distinct two-component systems (TCSs) have been classified to date, consisting of canonical TCSs as well as orphan and atypical sensors and regulators. These signal transducing systems are necessary for metabolic regulation, resistance to antibiotics and antimicrobials, pathogenesis, and adhesion to the mucosal surfaces to colonize the host. This minireview discusses the structures of these TCSs in GBS as well as how selected systems regulate essential cellular processes such as survival and colonization. GBS contains almost double the number of TCSs compared to the closely related Streptococcus pyogenes and Streptococcus pneumoniae, and while research on GBS TCSs has been increasing in recent years, no comprehensive reviews of these TCSs exist, making this review especially relevant.
Collapse
|
12
|
Khara P, Biswas S, Biswas I. Induction of clpP expression by cell-wall targeting antibiotics in Streptococcus mutans. MICROBIOLOGY-SGM 2020; 166:641-653. [PMID: 32416745 DOI: 10.1099/mic.0.000920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Streptococcus mutans is one of the major bacteria of the human oral cavity that is associated with dental caries. The pathogenicity of this bacterium is attributed to its ability to rapidly respond and adapt to the ever-changing conditions of the oral cavity. The major player in this adaptive response is ClpP, an intracellular protease involved in degradation of misfolded proteins during stress responses. S. mutans encodes a single clpP gene with an upstream region uniquely containing multiple tandem repeat sequences (RSs). Here, we explored expression of clpP with respect to various stresses and report some new findings. First, we found that at sub-inhibitory concentration, certain cell-wall damaging antibiotics were able to induce clpP expression. Specifically, third- and fourth-generation cephalosporins that target penicillin-binding protein 3 (PBP3) strongly enhanced the clpP expression. However, induction of clpP was weak when the first-generation cephalosporins with lower affinity to PBP3 were used. Surprisingly, carbapenems, which primarily target PBP2, induced expression of clpP the least. Second, we found that a single RS element was capable of inducing clpP expression as efficiently as with the wild-type seven RS elements. Third, we found that the RS-element-mediated modulation of clpP expression was strain dependent, suggesting that specific host factors might be involved in the transcription. And finally, we observed that ClpP regulates its own expression, as the expression of clpP-gusA was higher in a clpP-deficient mutant. This suggests that ClpP is involved in the degradation of activator(s) involved in its own transcription.
Collapse
Affiliation(s)
- Pratick Khara
- Present address: Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, Texas, USA.,Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Saswati Biswas
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Indranil Biswas
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
13
|
Jani S, Sterzenbach K, Adatrao V, Tajbakhsh G, Mascher T, Golemi-Kotra D. Low phosphatase activity of LiaS and strong LiaR-DNA affinity explain the unusual LiaS to LiaR in vivo stoichiometry. BMC Microbiol 2020; 20:104. [PMID: 32349670 PMCID: PMC7191749 DOI: 10.1186/s12866-020-01796-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/20/2020] [Indexed: 11/20/2022] Open
Abstract
Background LiaRS mediates Bacillus subtilis response to cell envelope perturbations. A third protein, LiaF, has an inhibitory role over LiaRS in the absence of stimulus. Together, LiaF and LiaRS form a three-component system characterized by an unusual stoichiometry, a 4:1 ratio between LiaS and LiaR, the significance of which in the signal transduction mechanism of LiaRS is not entirely understood. Results We measured, for the first time, the kinetics of the phosphorylation-dependent processes of LiaRS, the DNA-binding affinity of LiaR, and characterized the effect of phosphorylation on LiaR oligomerization state. Our study reveals that LiaS is less proficient as a phosphatase. Consequently, unspecific phosphorylation of LiaR by acetyl phosphate may be significant in vivo. This drawback is exacerbated by the strong interaction between LiaR and its own promoter, as it can drive LiaRS into losing grip over its own control in the absence of stimuli. These intrinsic, seemingly ‘disadvantageous”, attributes of LiaRS are likely overcome by the higher concentration of LiaS over LiaR in vivo, and a pro-phosphatase role of LiaF. Conclusions Overall, our study shows that despite the conservative nature of two-component systems, they are, ultimately, tailored to meet specific cell needs by modulating the dynamics of interactions among their components and the kinetics of phosphorylation-mediated processes.
Collapse
Affiliation(s)
- Shailee Jani
- Department of Biology, York University, Toronto, ON, M3J1P3, Canada
| | - Karen Sterzenbach
- Institute for Microbiology, Technische Universität Dresden, Dresden, Germany
| | - Vijaya Adatrao
- Department of Biology, York University, Toronto, ON, M3J1P3, Canada
| | - Ghazal Tajbakhsh
- Department of Biology, York University, Toronto, ON, M3J1P3, Canada
| | - Thorsten Mascher
- Institute for Microbiology, Technische Universität Dresden, Dresden, Germany.
| | | |
Collapse
|
14
|
Ganguly T, Kajfasz JK, Abranches J, Lemos JA. Regulatory circuits controlling Spx levels in Streptococcus mutans. Mol Microbiol 2020; 114:109-126. [PMID: 32189382 DOI: 10.1111/mmi.14499] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 02/01/2023]
Abstract
Spx is a major regulator of stress responses in Firmicutes. In Streptococcus mutans, two Spx homologues, SpxA1 and SpxA2, were identified as mediators of oxidative stress responses but the regulatory circuits controlling their levels and activity are presently unknown. Comparison of SpxA1 and SpxA2 protein sequences revealed differences at the C-terminal end, with SpxA1 containing an unusual number of acidic residues. Here, we showed that a green fluorescence protein (GFP) reporter becomes unstable when fused to the last 10 amino acids of SpxA2 but remained stable when fused to the C-terminal acidic tail of SpxA1. Inactivation of clpP or simultaneous inactivation of clpC and clpE stabilized the GFP::SpxA2tail fusion protein. Addition of acidic amino acids to the GFP::SpxA2tail chimera stabilized GFP, while deletion of the acidic residues destabilized GFP::SpxA1tail . Promoter reporter fusions revealed that spxA1 transcription is co-repressed by the metalloregulators PerR and SloR while spxA2 transcription is largely dependent on the envelope stress regulator LiaFSR. In agreement with spxA2 being part of the LiaR regulon, SpxA2 was found to be critical for the growth of S. mutans under envelope stress conditions. Finally, we showed that redox sensing is essential for SpxA1-dependent activation of oxidative stress responses but dispensable for SpxA2-mediated envelope stress responses.
Collapse
Affiliation(s)
- Tridib Ganguly
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Jessica K Kajfasz
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Jacqueline Abranches
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - José A Lemos
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
15
|
Baker JL, Saputo S, Faustoferri RC, Quivey RG. Streptococcus mutans SpxA2 relays the signal of cell envelope stress from LiaR to effectors that maintain cell wall and membrane homeostasis. Mol Oral Microbiol 2020; 35:118-128. [PMID: 32043713 DOI: 10.1111/omi.12282] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 12/01/2022]
Abstract
Streptococcus mutans is a major etiologic agent of dental caries, which is the most common chronic infectious disease worldwide. S. mutans is particularly adept at causing caries due to its exceptional capacity to form biofilms and its ability to survive acidic conditions that arrest acid production and growth in many more benign members of the oral microbiota. Two mechanisms utilized by S. mutans to tolerate acid are: modulation of the membrane fatty acid content and utilization of the F1 F0 -ATPase to pump protons out of the cytosol. In this study, the role of the spxA2 transcriptional regulator in these two pathways, and overall cell envelope homeostasis, was examined. Loss of spxA2 resulted in an increase in the proportion of saturated fatty acids in the S. mutans membrane and altered transcription of several genes involved in the production of these membrane fatty acids, including fabT and fabM. Furthermore, activity of the F1 F0 -ATPase was increased in the ∆spxA2 strain. Transcription of spxA2 was elevated in the presence of a variety of membrane stressors, and highly dependent on the liaR component of the LiaFSR system, which is known to sense cell envelope stress in many Gram-positive bacteria. Finally, deletion of ∆spxA2 led to altered susceptibility of S. mutans to membrane stressors. Overall, the results of this study indicate that spxA2 serves a crucial role in transmitting the signal of cell wall/membrane damage from the LiaFSR sensor to downstream effectors in the SpxA2 regulon which restore and maintain membrane and cell wall homeostasis.
Collapse
Affiliation(s)
- Jonathon L Baker
- Genomic Medicine Group, J. Craig Venter Institute, La Jolla, CA, USA
| | - Sarah Saputo
- Center for Oral Biology, Box 611, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Roberta C Faustoferri
- Center for Oral Biology, Box 611, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Robert G Quivey
- Center for Oral Biology, Box 611, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
16
|
Scoffield J, Michalek S, Harber G, Eipers P, Morrow C, Wu H. Dietary Nitrite Drives Disease Outcomes in Oral Polymicrobial Infections. J Dent Res 2019; 98:1020-1026. [PMID: 31219733 DOI: 10.1177/0022034519855348] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Streptococcus mutans resides in the oral polymicrobial biofilm and is a major contributor to the development of dental caries. Interestingly, high salivary nitrite concentrations have been associated with a decreased prevalence of dental caries. Moreover, the combination of hydrogen peroxide-producing oral commensal streptococci and nitrite has been shown to mediate the generation of reactive nitrogen species, which have antimicrobial activity. The goal of this study was to examine whether nitrite affects S. mutans virulence during polymicrobial infections with the commensal Streptococcus parasanguinis. Here, we report that the combination of S. parasanguinis and nitrite inhibited S. mutans growth and biofilm formation in vitro. Glucan production, which is critical for S. mutans biofilm formation, was also inhibited in 2-species biofilms with S. parasanguinis containing nitrite as compared with biofilms that contained no nitrite. In the in vivo caries model, enamel and dentin carious lesions were significantly reduced in rats that were colonized with S. parasanguinis prior to infection with S. mutans and received nitrite in the drinking water, as compared with animals that had a single S. mutans infection or were co-colonized with both bacteria and received no nitrite. Last, we report that S. mutans LiaS, a sensor kinase of the LiaFSR 3-component system, mediates resistance to nitrosative stress. In summary, our data demonstrate that commensal streptococci and nitrite provide protection against S. mutans pathogenesis. Modulating nitrite concentrations in the oral cavity could be a useful strategy to combat the prevalence of dental caries.
Collapse
Affiliation(s)
- J Scoffield
- 1 Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.,2 Department of Pediatric Dentistry, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - S Michalek
- 1 Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - G Harber
- 1 Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - P Eipers
- 3 Department of Cell, Developmental, and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - C Morrow
- 3 Department of Cell, Developmental, and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - H Wu
- 2 Department of Pediatric Dentistry, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
17
|
Lemos JA, Palmer SR, Zeng L, Wen ZT, Kajfasz JK, Freires IA, Abranches J, Brady LJ. The Biology of Streptococcus mutans. Microbiol Spectr 2019; 7:10.1128/microbiolspec.GPP3-0051-2018. [PMID: 30657107 PMCID: PMC6615571 DOI: 10.1128/microbiolspec.gpp3-0051-2018] [Citation(s) in RCA: 333] [Impact Index Per Article: 66.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Indexed: 12/30/2022] Open
Abstract
As a major etiological agent of human dental caries, Streptococcus mutans resides primarily in biofilms that form on the tooth surfaces, also known as dental plaque. In addition to caries, S. mutans is responsible for cases of infective endocarditis with a subset of strains being indirectly implicated with the onset of additional extraoral pathologies. During the past 4 decades, functional studies of S. mutans have focused on understanding the molecular mechanisms the organism employs to form robust biofilms on tooth surfaces, to rapidly metabolize a wide variety of carbohydrates obtained from the host diet, and to survive numerous (and frequent) environmental challenges encountered in oral biofilms. In these areas of research, S. mutans has served as a model organism for ground-breaking new discoveries that have, at times, challenged long-standing dogmas based on bacterial paradigms such as Escherichia coli and Bacillus subtilis. In addition to sections dedicated to carbohydrate metabolism, biofilm formation, and stress responses, this article discusses newer developments in S. mutans biology research, namely, how S. mutans interspecies and cross-kingdom interactions dictate the development and pathogenic potential of oral biofilms and how next-generation sequencing technologies have led to a much better understanding of the physiology and diversity of S. mutans as a species.
Collapse
Affiliation(s)
- JA Lemos
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL
| | - SR Palmer
- Division of Biosciences, College of Dentistry, Ohio State University, Columbus, OH
| | - L Zeng
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL
| | - ZT Wen
- Dapartment of Comprehensive Dentistry and Biomaterials and Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA
| | - JK Kajfasz
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL
| | - IA Freires
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL
| | - J Abranches
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL
| | - LJ Brady
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL
| |
Collapse
|
18
|
Streptococcus mutans yidC1
and
yidC2
Impact Cell Envelope Biogenesis, the Biofilm Matrix, and Biofilm Biophysical Properties. J Bacteriol 2019; 201:JB.00396-18. [DOI: 10.1128/jb.00396-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/28/2018] [Indexed: 01/25/2023] Open
Abstract
YidC proteins are membrane-localized chaperone insertases that are universally conserved in all bacteria and are traditionally studied in the context of membrane protein insertion and assembly. Both YidC paralogs of the cariogenic pathogen
Streptococcus mutans
are required for proper envelope biogenesis and full virulence, indicating that these proteins may also contribute to optimal biofilm formation in streptococci. Here, we show that the deletion of either
yidC
results in changes to the structure and physical properties of the EPS matrix produced by
S. mutans
, ultimately impairing optimal biofilm development, diminishing its mechanical stability, and facilitating its removal. Importantly, the universal conservation of bacterial
yidC
orthologs, combined with our findings, provide a rationale for YidC as a possible drug target for antibiofilm therapies.
Collapse
|
19
|
Wang Y, Wang X, Jiang W, Wang K, Luo J, Li W, Zhou X, Zhang L. Antimicrobial peptide GH12 suppresses cariogenic virulence factors of Streptococcus mutans. J Oral Microbiol 2018; 10:1442089. [PMID: 29503706 PMCID: PMC5827641 DOI: 10.1080/20002297.2018.1442089] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 02/14/2018] [Indexed: 02/05/2023] Open
Abstract
Cariogenic virulence factors of Streptococcus mutans include acidogenicity, aciduricity, and extracellular polysaccharides (EPS) synthesis. The de novo designed antimicrobial peptide GH12 has shown bactericidal effects on S. mutans, but its interaction with virulence and regulatory systems of S. mutans remains to be elucidated. The objectives were to investigate the effects of GH12 on virulence factors of S. mutans, and further explore the function mechanisms at enzymatic and transcriptional levels. To avoid decrease in bacterial viability, we limited GH12 to subinhibitory levels. We evaluated effects of GH12 on acidogenicity of S. mutans by pH drop, lactic acid measurement and lactate dehydrogenase (LDH) assay, on aciduricity through survival rate at pH 5.0 and F1F0-ATPase assay, and on EPS synthesis using quantitative measurement, morphology observation, vertical distribution analyses and biomass calculation. Afterwards, we conducted quantitative real-time PCR to acquire the expression profile of related genes. GH12 at 1/2 MIC (4 mg/L) inhibited acid production, survival rate, EPS synthesis, and biofilm formation. The enzymatic activity of LDH and F1F0-ATPase was inhibited, and ldh, gtfBCD, vicR, liaR, and comDE genes were significantly downregulated. In conclusion, GH12 inhibited virulence factors of S. mutans, through reducing the activity of related enzymes, downregulating virulence genes, and inactivating specific regulatory systems.
Collapse
Affiliation(s)
- Yufei Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Disease, Department of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiuqing Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Disease, Department of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wentao Jiang
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Disease, Department of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Kun Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Disease, Department of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Junyuan Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Disease, Department of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei Li
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Disease, Department of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Disease, Department of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Linglin Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Disease, Department of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Junker S, Maaβ S, Otto A, Michalik S, Morgenroth F, Gerth U, Hecker M, Becher D. Spectral Library Based Analysis of Arginine Phosphorylations in Staphylococcus aureus. Mol Cell Proteomics 2018; 17:335-348. [PMID: 29183913 PMCID: PMC5795395 DOI: 10.1074/mcp.ra117.000378] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Indexed: 12/19/2022] Open
Abstract
Reversible protein phosphorylation is one of the major mechanisms in the regulation of protein expression and protein activity, controlling physiological functions of the important human pathogen Staphylococcus aureus Phosphorylations at serine, threonine and tyrosine are known to influence for example protein activity in central metabolic pathways and the more energy-rich phosphorylations at histidine, aspartate or cysteine can be found as part of two component system sensor domains or mediating bacterial virulence. In addition to these well-known phosphorylations, the phosphorylation at arginine residues plays an essential role. Hence, the deletion mutant S. aureus COL ΔptpB (protein tyrosine phosphatase B) was studied because the protein PtpB is assumed to be an arginine phosphatase. A gel-free approach was applied to analyze the changes in the phosphoproteome of the deletion mutant ΔptpB and the wild type in growing cells, thereby focusing on the occurrence of phosphorylation on arginine residues. In order to enhance the reliability of identified phosphorylation sites at arginine residues, a subset of arginine phosphorylated peptides was chemically synthesized. Combined spectral libraries based on phosphoenriched samples, synthetic arginine phosphorylated peptides and classical proteome samples provide a sophisticated tool for the analysis of arginine phosphorylations. This way, 212 proteins phosphorylated on serine, threonine, tyrosine or arginine residues were identified within the mutant ΔptpB and 102 in wild type samples. Among them, 207 arginine phosphosites were identified exclusively within the mutant ΔptpB, widely distributed along the whole bacterial metabolism. This identification of putative targets of PtpB allows further investigation of the physiological relevance of arginine phosphorylations and provides the basis for reliable quantification of arginine phosphorylations in bacteria.
Collapse
Affiliation(s)
- Sabryna Junker
- From the ‡Institute for Microbiology, University of Greifswald, Germany
| | - Sandra Maaβ
- From the ‡Institute for Microbiology, University of Greifswald, Germany
| | - Andreas Otto
- From the ‡Institute for Microbiology, University of Greifswald, Germany
| | - Stephan Michalik
- From the ‡Institute for Microbiology, University of Greifswald, Germany
| | | | - Ulf Gerth
- From the ‡Institute for Microbiology, University of Greifswald, Germany
| | - Michael Hecker
- From the ‡Institute for Microbiology, University of Greifswald, Germany
| | - Dörte Becher
- From the ‡Institute for Microbiology, University of Greifswald, Germany
| |
Collapse
|
21
|
Genome-Wide Screens Reveal New Gene Products That Influence Genetic Competence in Streptococcus mutans. J Bacteriol 2017; 200:JB.00508-17. [PMID: 29109185 DOI: 10.1128/jb.00508-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 10/26/2017] [Indexed: 12/11/2022] Open
Abstract
A network of genes and at least two peptide signaling molecules tightly control when Streptococcus mutans becomes competent to take up DNA from its environment. Widespread changes in the expression of genes occur when S. mutans is presented with competence signal peptides in vitro, including the increased production of the alternative sigma factor, ComX, which activates late competence genes. Still, the way that gene products that are regulated by competence peptides influence DNA uptake and cellular physiology are not well understood. Here, we developed and employed comprehensive transposon mutagenesis of the S. mutans genome, with a screen to identify mutants that aberrantly expressed comX, coupled with transposon sequencing (Tn-seq) to gain a more thorough understanding of the factors modulating comX expression and progression to the competent state. The screens effectively identified genes known to affect competence, e.g., comR, comS, comD, comE, cipB, clpX, rcrR, and ciaH, but disclosed an additional 20 genes that were not previously competence associated. The competence phenotypes of mutants were characterized, including by fluorescence microscopy to determine at which stage the mutants were impaired for comX activation. Among the novel genes studied were those implicated in cell division, the sensing of cell envelope stress, cell envelope biogenesis, and RNA stability. Our results provide a platform for determining the specific chemical and physical cues that are required for genetic competence in S. mutans, while highlighting the effectiveness of using Tn-seq in S. mutans to discover and study novel biological processes.IMPORTANCE Streptococcus mutans acquires DNA from its environment by becoming genetically competent, a physiologic state triggered by cell-cell communication using secreted peptides. Competence is important for acquiring novel genetic traits and has a strong influence on the expression of virulence-associated traits of S. mutans Here, we used transposon mutagenesis and genomic technologies to identify novel genes involved in competence development. In addition to identifying genes previously known to be required for comX expression, 20 additional genes were identified and characterized. The findings create opportunities to diminish the pathogenic potential of S. mutans, while validating technologies that can rapidly advance our understanding of the physiology, biology, and genetics of S. mutans and related pathogens.
Collapse
|
22
|
Junker S, Maaβ S, Otto A, Michalik S, Morgenroth F, Gerth U, Hecker M, Becher D. Spectral Library Based Analysis of Arginine Phosphorylations in Staphylococcus aureus. MOLECULAR & CELLULAR PROTEOMICS : MCP 2017. [PMID: 29183913 DOI: 10.1074/mcp.ra117.000378.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Reversible protein phosphorylation is one of the major mechanisms in the regulation of protein expression and protein activity, controlling physiological functions of the important human pathogen Staphylococcus aureus Phosphorylations at serine, threonine and tyrosine are known to influence for example protein activity in central metabolic pathways and the more energy-rich phosphorylations at histidine, aspartate or cysteine can be found as part of two component system sensor domains or mediating bacterial virulence. In addition to these well-known phosphorylations, the phosphorylation at arginine residues plays an essential role. Hence, the deletion mutant S. aureus COL ΔptpB (protein tyrosine phosphatase B) was studied because the protein PtpB is assumed to be an arginine phosphatase. A gel-free approach was applied to analyze the changes in the phosphoproteome of the deletion mutant ΔptpB and the wild type in growing cells, thereby focusing on the occurrence of phosphorylation on arginine residues. In order to enhance the reliability of identified phosphorylation sites at arginine residues, a subset of arginine phosphorylated peptides was chemically synthesized. Combined spectral libraries based on phosphoenriched samples, synthetic arginine phosphorylated peptides and classical proteome samples provide a sophisticated tool for the analysis of arginine phosphorylations. This way, 212 proteins phosphorylated on serine, threonine, tyrosine or arginine residues were identified within the mutant ΔptpB and 102 in wild type samples. Among them, 207 arginine phosphosites were identified exclusively within the mutant ΔptpB, widely distributed along the whole bacterial metabolism. This identification of putative targets of PtpB allows further investigation of the physiological relevance of arginine phosphorylations and provides the basis for reliable quantification of arginine phosphorylations in bacteria.
Collapse
Affiliation(s)
- Sabryna Junker
- From the ‡Institute for Microbiology, University of Greifswald, Germany
| | - Sandra Maaβ
- From the ‡Institute for Microbiology, University of Greifswald, Germany
| | - Andreas Otto
- From the ‡Institute for Microbiology, University of Greifswald, Germany
| | - Stephan Michalik
- From the ‡Institute for Microbiology, University of Greifswald, Germany
| | | | - Ulf Gerth
- From the ‡Institute for Microbiology, University of Greifswald, Germany
| | - Michael Hecker
- From the ‡Institute for Microbiology, University of Greifswald, Germany
| | - Dörte Becher
- From the ‡Institute for Microbiology, University of Greifswald, Germany
| |
Collapse
|
23
|
Increased Pilus Production Conferred by a Naturally Occurring Mutation Alters Host-Pathogen Interaction in Favor of Carriage in Streptococcus pyogenes. Infect Immun 2017; 85:IAI.00949-16. [PMID: 28264907 DOI: 10.1128/iai.00949-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/28/2017] [Indexed: 12/25/2022] Open
Abstract
Studies of the human pathogen group A Streptococcus (GAS) define the carrier phenotype to be an increased ability to adhere to and persist on epithelial surfaces and a decreased ability to cause disease. We tested the hypothesis that a single amino acid change (Arg135Gly) in a highly conserved sensor kinase (LiaS) of a poorly defined GAS regulatory system contributes to a carrier phenotype through increased pilus production. When introduced into an emm serotype-matched invasive strain, the carrier allele (the gene encoding the LiaS protein with an arginine-to-glycine change at position 135 [liaSR135G]) recapitulated a carrier phenotype defined by an increased ability to adhere to mucosal surfaces and a decreased ability to cause disease. Gene transcript analyses revealed that the liaS mutation significantly altered transcription of the genes encoding pilus in the presence of bacitracin. Elimination of pilus production in the isogenic carrier mutant decreased its ability to colonize the mouse nasopharynx and to adhere to and be internalized by cultured human epithelial cells and restored the virulence phenotype in a mouse model of necrotizing fasciitis. We also observed significantly reduced survival of the isogenic carrier mutant compared to that of the parental invasive strain after exposure to human neutrophils. Elimination of pilus in the isogenic carrier mutant increased the level of survival after exposure to human neutrophils to that for the parental invasive strain. Together, our data demonstrate that the carrier mutation (liaSR135G) affects pilus expression. Our data suggest new mechanisms of pilus gene regulation in GAS and that the invasiveness associated with pilus gene regulation in GAS differs from the enhanced invasiveness associated with increased pilus production in other bacterial pathogens.
Collapse
|
24
|
Szafrański SP, Deng ZL, Tomasch J, Jarek M, Bhuju S, Rohde M, Sztajer H, Wagner-Döbler I. Quorum sensing of Streptococcus mutans is activated by Aggregatibacter actinomycetemcomitans and by the periodontal microbiome. BMC Genomics 2017; 18:238. [PMID: 28320314 PMCID: PMC5359896 DOI: 10.1186/s12864-017-3618-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/10/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The oral cavity is inhabited by complex microbial communities forming biofilms that can cause caries and periodontitis. Cell-cell communication might play an important role in modulating the physiologies of individual species, but evidence so far is limited. RESULTS Here we demonstrate that a pathogen of the oral cavity, Aggregatibacter actinomycetemcomitans (A. act.), triggers expression of the quorum sensing (QS) regulon of Streptococcus mutans, a well-studied model organism for cariogenic streptococci, in dual-species biofilms grown on artificial saliva. The gene for the synthesis of the QS signal XIP is essential for this interaction. Transcriptome sequencing of biofilms revealed that S. mutans up-regulated the complete QS regulon (transformasome and mutacins) in the presence of A. act. and down-regulated oxidative stress related genes. A.act. required the presence of S. mutans for growth. Fimbriae and toxins were its most highly expressed genes and up-regulation of anaerobic metabolism, chaperones and iron acquisition genes was observed in co-culture. Metatranscriptomes from periodontal pockets showed highly variable levels of S. mutans and low levels of A. act.. Transcripts of the alternative sigma-factor SigX, the key regulator of QS in S. mutans, were significantly enriched in periodontal pockets compared to single cultures (log2 4.159, FDR ≤0.001, and expression of mutacin related genes and transformasome components could be detected. CONCLUSION The data show that the complete QS regulon of S. mutans can be induced by an unrelated oral pathogen and S. mutans may be competent in oral biofilms in vivo.
Collapse
Affiliation(s)
- Szymon P Szafrański
- Microbial Communication, Helmholtz-Center for Infection Research, Braunschweig, Germany.,Present address: Hannover Medical School (MHH), Hannover, Germany
| | - Zhi-Luo Deng
- Microbial Communication, Helmholtz-Center for Infection Research, Braunschweig, Germany
| | - Jürgen Tomasch
- Microbial Communication, Helmholtz-Center for Infection Research, Braunschweig, Germany
| | - Michael Jarek
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sabin Bhuju
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Helena Sztajer
- Microbial Communication, Helmholtz-Center for Infection Research, Braunschweig, Germany
| | - Irene Wagner-Döbler
- Microbial Communication, Helmholtz-Center for Infection Research, Braunschweig, Germany.
| |
Collapse
|
25
|
Abstract
Lactic acid bacteria (LAB) are important starter, commensal, or pathogenic microorganisms. The stress physiology of LAB has been studied in depth for over 2 decades, fueled mostly by the technological implications of LAB robustness in the food industry. Survival of probiotic LAB in the host and the potential relatedness of LAB virulence to their stress resilience have intensified interest in the field. Thus, a wealth of information concerning stress responses exists today for strains as diverse as starter (e.g., Lactococcus lactis), probiotic (e.g., several Lactobacillus spp.), and pathogenic (e.g., Enterococcus and Streptococcus spp.) LAB. Here we present the state of the art for LAB stress behavior. We describe the multitude of stresses that LAB are confronted with, and we present the experimental context used to study the stress responses of LAB, focusing on adaptation, habituation, and cross-protection as well as on self-induced multistress resistance in stationary phase, biofilms, and dormancy. We also consider stress responses at the population and single-cell levels. Subsequently, we concentrate on the stress defense mechanisms that have been reported to date, grouping them according to their direct participation in preserving cell energy, defending macromolecules, and protecting the cell envelope. Stress-induced responses of probiotic LAB and commensal/pathogenic LAB are highlighted separately due to the complexity of the peculiar multistress conditions to which these bacteria are subjected in their hosts. Induction of prophages under environmental stresses is then discussed. Finally, we present systems-based strategies to characterize the "stressome" of LAB and to engineer new food-related and probiotic LAB with improved stress tolerance.
Collapse
|
26
|
Harp JR, Saito HE, Bourdon AK, Reyes J, Arias CA, Campagna SR, Fozo EM. Exogenous Fatty Acids Protect Enterococcus faecalis from Daptomycin-Induced Membrane Stress Independently of the Response Regulator LiaR. Appl Environ Microbiol 2016; 82:4410-4420. [PMID: 27208105 PMCID: PMC4959211 DOI: 10.1128/aem.00933-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/09/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Enterococcus faecalis is a commensal bacterium of the gastrointestinal tract that can cause nosocomial infections in immunocompromised humans. The hallmarks of this organism are its ability to survive in a variety of stressful habitats and, in particular, its ability to withstand membrane damage. One strategy used by E. faecalis to protect itself from membrane-damaging agents, including the antibiotic daptomycin, involves incorporation of exogenous fatty acids from bile or serum into the cell membrane. Additionally, the response regulator LiaR (a member of the LiaFSR [lipid II-interacting antibiotic response regulator and sensor] system associated with cell envelope stress responses) is required for the basal level of resistance E. faecalis has to daptomycin-induced membrane damage. This study aimed to determine if membrane fatty acid changes could provide protection against membrane stressors in a LiaR-deficient strain of E. faecalis We noted that despite the loss of LiaR, the organism readily incorporated exogenous fatty acids into its membrane, and indeed growth in the presence of exogenous fatty acids increased the survival of LiaR-deficient cells when challenged with a variety of membrane stressors, including daptomycin. Combined, our results suggest that E. faecalis can utilize both LiaR-dependent and -independent mechanisms to protect itself from membrane damage. IMPORTANCE Enterococcus faecalis is responsible for a significant number of nosocomial infections. Worse, many of the antibiotics used to treat E. faecalis infection are no longer effective, as this organism has developed resistance to them. The drug daptomycin has been successfully used to treat some of these resistant strains; however, daptomycin-resistant isolates have been identified in hospitals. Many daptomycin-resistant isolates are found to harbor mutations in the genetic locus liaFSR, which is involved in membrane stress responses. Another mechanism shown to increase tolerance to daptomycin involves the incorporation of exogenous fatty acids from host fluids like serum or bile. This improved tolerance was found to be independent of liaFSR and suggests that there are additional ways to impact sensitivity to daptomycin. Thus, further studies are needed to understand how host fatty acid sources can influence antibiotic susceptibility.
Collapse
Affiliation(s)
- John R Harp
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Holly E Saito
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Allen K Bourdon
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee, USA
| | - Jinnethe Reyes
- Department of Internal Medicine, Division of Infectious Diseases and Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, Texas, USA
| | - Cesar A Arias
- Department of Internal Medicine, Division of Infectious Diseases and Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, Texas, USA
- Molecular Genetics and Antimicrobial Resistance Unit, International Center for Microbial Genomics, Universidad El Bosque, Bogotá, Colombia
| | - Shawn R Campagna
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee, USA
| | - Elizabeth M Fozo
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
27
|
Baker JL, Faustoferri RC, Quivey RG. Acid-adaptive mechanisms of Streptococcus mutans-the more we know, the more we don't. Mol Oral Microbiol 2016; 32:107-117. [PMID: 27115703 DOI: 10.1111/omi.12162] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2016] [Indexed: 01/19/2023]
Affiliation(s)
- J L Baker
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - R C Faustoferri
- Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - R G Quivey
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.,Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|