1
|
Tamburini S, Zhang Y, Gagliardi A, Di Lascio G, Caproni E, Benedet M, Tomasi M, Corbellari R, Zanella I, Croia L, Grandi G, Müller M, Grandi A. Bacterial Outer Membrane Vesicles as a Platform for the Development of a Broadly Protective Human Papillomavirus Vaccine Based on the Minor Capsid Protein L2. Vaccines (Basel) 2023; 11:1582. [PMID: 37896984 PMCID: PMC10611245 DOI: 10.3390/vaccines11101582] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/27/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
Human papillomaviruses (HPVs) are a large family of viruses with a capsid composed of the L1 and L2 proteins, which bind to receptors of the basal epithelial cells and promote virus entry. The majority of sexually active people become exposed to HPV and the virus is the most common cause of cervical cancer. Vaccines are available based on the L1 protein, which self-assembles and forms virus-like particles (VLPs) when expressed in yeast and insect cells. Although very effective, these vaccines are HPV type-restricted and their costs limit broad vaccination campaigns. Recently, vaccine candidates based on the conserved L2 epitope from serotypes 16, 18, 31, 33, 35, 6, 51, and 59 were shown to elicit broadly neutralizing anti-HPV antibodies. In this study, we tested whether E. coli outer membrane vesicles (OMVs) could be successfully decorated with L2 polytopes and whether the engineered OMVs could induce neutralizing antibodies. OMVs represent an attractive vaccine platform owing to their intrinsic adjuvanticity and their low production costs. We show that strings of L2 epitopes could be efficiently expressed on the surface of the OMVs and a polypeptide composed of the L2 epitopes from serotypes 18, 33, 35, and 59 provided a broad cross-protective activity against a large panel of HPV serotypes as determined using pseudovirus neutralization assay. Considering the simplicity of the OMV production process, our work provides a highly effective and inexpensive solution to produce universal anti-HPV vaccines.
Collapse
Affiliation(s)
- Silvia Tamburini
- Department of Cellular, Computation and Integrative of Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy; (S.T.); (M.T.); (R.C.); (I.Z.); (L.C.)
| | - Yueru Zhang
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany; (Y.Z.); (M.M.)
| | - Assunta Gagliardi
- Toscana Life Sciences Foundation, Via Fiorentina 1, 53100 Siena, Italy; (A.G.); (G.D.L.); (E.C.); (M.B.); (A.G.)
| | - Gabriele Di Lascio
- Toscana Life Sciences Foundation, Via Fiorentina 1, 53100 Siena, Italy; (A.G.); (G.D.L.); (E.C.); (M.B.); (A.G.)
| | - Elena Caproni
- Toscana Life Sciences Foundation, Via Fiorentina 1, 53100 Siena, Italy; (A.G.); (G.D.L.); (E.C.); (M.B.); (A.G.)
| | - Mattia Benedet
- Toscana Life Sciences Foundation, Via Fiorentina 1, 53100 Siena, Italy; (A.G.); (G.D.L.); (E.C.); (M.B.); (A.G.)
| | - Michele Tomasi
- Department of Cellular, Computation and Integrative of Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy; (S.T.); (M.T.); (R.C.); (I.Z.); (L.C.)
| | - Riccardo Corbellari
- Department of Cellular, Computation and Integrative of Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy; (S.T.); (M.T.); (R.C.); (I.Z.); (L.C.)
| | - Ilaria Zanella
- Department of Cellular, Computation and Integrative of Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy; (S.T.); (M.T.); (R.C.); (I.Z.); (L.C.)
| | - Lorenzo Croia
- Department of Cellular, Computation and Integrative of Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy; (S.T.); (M.T.); (R.C.); (I.Z.); (L.C.)
| | - Guido Grandi
- Department of Cellular, Computation and Integrative of Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy; (S.T.); (M.T.); (R.C.); (I.Z.); (L.C.)
| | - Martin Müller
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany; (Y.Z.); (M.M.)
| | - Alberto Grandi
- Toscana Life Sciences Foundation, Via Fiorentina 1, 53100 Siena, Italy; (A.G.); (G.D.L.); (E.C.); (M.B.); (A.G.)
- BiOMViS Srl, Via Fiorentina 1, 53100 Siena, Italy
| |
Collapse
|
2
|
Dold C, Marsay L, Wang N, Silva-Reyes L, Clutterbuck E, Paterson GK, Sharkey K, Wyllie D, Beernink PT, Hill AV, Pollard AJ, Rollier CS. An adenoviral-vectored vaccine confers seroprotection against capsular group B meningococcal disease. Sci Transl Med 2023; 15:eade3901. [PMID: 37343082 DOI: 10.1126/scitranslmed.ade3901] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 05/30/2023] [Indexed: 06/23/2023]
Abstract
Adenoviral-vectored vaccines are licensed for prevention of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Ebola virus, but, for bacterial proteins, expression in a eukaryotic cell may affect the antigen's localization and conformation or lead to unwanted glycosylation. Here, we investigated the potential use of an adenoviral-vectored vaccine platform for capsular group B meningococcus (MenB). Vector-based candidate vaccines expressing MenB antigen factor H binding protein (fHbp) were generated, and immunogenicity was assessed in mouse models, including the functional antibody response by serum bactericidal assay (SBA) using human complement. All adenovirus-based vaccine candidates induced high antigen-specific antibody and T cell responses. A single dose induced functional serum bactericidal responses with titers superior or equal to those induced by two doses of protein-based comparators, as well as longer persistence and a similar breadth. The fHbp transgene was further optimized for human use by incorporating a mutation abrogating binding to the human complement inhibitor factor H. The resulting vaccine candidate induced high and persistent SBA responses in transgenic mice expressing human factor H. The optimized transgene was inserted into the clinically relevant ChAdOx1 backbone, and this vaccine has now progressed to clinical development. The results of this preclinical vaccine development study underline the potential of vaccines based on genetic material to induce functional antibody responses against bacterial outer membrane proteins.
Collapse
Affiliation(s)
- Christina Dold
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, CCVTM, Churchill Lane, Oxford OX3 7LE, UK
| | - Leanne Marsay
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, CCVTM, Churchill Lane, Oxford OX3 7LE, UK
| | - Nelson Wang
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, CCVTM, Churchill Lane, Oxford OX3 7LE, UK
| | - Laura Silva-Reyes
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, CCVTM, Churchill Lane, Oxford OX3 7LE, UK
| | - Elizabeth Clutterbuck
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, CCVTM, Churchill Lane, Oxford OX3 7LE, UK
| | - Gavin K Paterson
- Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Kelsey Sharkey
- Division of Infectious Diseases and Global Health, Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - David Wyllie
- Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Peter T Beernink
- Division of Infectious Diseases and Global Health, Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Adrian V Hill
- Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, CCVTM, Churchill Lane, Oxford OX3 7LE, UK
| | - Christine S Rollier
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, CCVTM, Churchill Lane, Oxford OX3 7LE, UK
- School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK
| |
Collapse
|
3
|
Grossman AS, Mauer TJ, Forest KT, Goodrich-Blair H. A Widespread Bacterial Secretion System with Diverse Substrates. mBio 2021; 12:e0195621. [PMID: 34399622 PMCID: PMC8406197 DOI: 10.1128/mbio.01956-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 01/26/2023] Open
Abstract
In host-associated bacteria, surface and secreted proteins mediate acquisition of nutrients, interactions with host cells, and specificity of tissue localization. In Gram-negative bacteria, the mechanism by which many proteins cross and/or become tethered to the outer membrane remains unclear. The domain of unknown function 560 (DUF560) occurs in outer membrane proteins throughout Proteobacteria and has been implicated in host-bacterium interactions and lipoprotein surface exposure. We used sequence similarity networking to reveal three subfamilies of DUF560 homologs. One subfamily includes those DUF560 proteins experimentally characterized thus far: NilB, a host range determinant of the nematode-mutualist Xenorhabdus nematophila, and the surface lipoprotein assembly modulators Slam1 and Slam2, which facilitate lipoprotein surface exposure in Neisseria meningitidis (Y. Hooda, C. C. Lai, A. Judd, C. M. Buckwalter, et al., Nat Microbiol 1:16009, 2016, https://doi.org/10.1038/nmicrobiol.2016.9; Y. Hooda, C. C. L. Lai, T. F. Moraes, Front Cell Infect Microbiol 7:207, 2017, https://doi.org/10.3389/fcimb.2017.00207). We show that DUF560 proteins from a second subfamily facilitate secretion of soluble, nonlipidated proteins across the outer membrane. Using in silico analysis, we demonstrate that DUF560 gene complement correlates with bacterial environment at a macro level and host association at a species level. The DUF560 protein superfamily represents a newly characterized Gram-negative secretion system capable of lipoprotein surface exposure and soluble protein secretion with conserved roles in facilitating symbiosis. In light of these data, we propose that it be titled the type 11 secretion system (TXISS). IMPORTANCE The microbial constituency of a host-associated microbiome emerges from a complex physical and chemical interplay of microbial colonization factors, host surface conditions, and host immunological responses. To fill unique niches within a host, bacteria encode surface and secreted proteins that enable interactions with and responses to the host and co-occurring microbes. Bioinformatic predictions of putative bacterial colonization factor localization and function facilitate hypotheses about the potential of bacteria to engage in pathogenic, mutualistic, or commensal activities. This study uses publicly available genome sequence data alongside experimental results from Xenorhabdus nematophila to demonstrate a role for DUF560 family proteins in secretion of bacterial effectors of host interactions. Our research delineates a broadly distributed family of proteins and enables more accurate predictions of the localization of colonization factors throughout Proteobacteria.
Collapse
Affiliation(s)
- Alex S. Grossman
- University of Tennessee—Knoxville, Department of Microbiology, Knoxville, Tennessee, USA
| | - Terra J. Mauer
- University of Wisconsin—Madison, Department of Bacteriology, Madison, Wisconsin, USA
| | - Katrina T. Forest
- University of Wisconsin—Madison, Department of Bacteriology, Madison, Wisconsin, USA
| | - Heidi Goodrich-Blair
- University of Tennessee—Knoxville, Department of Microbiology, Knoxville, Tennessee, USA
- University of Wisconsin—Madison, Department of Bacteriology, Madison, Wisconsin, USA
| |
Collapse
|
4
|
Nicchi S, Giuliani M, Giusti F, Pancotto L, Maione D, Delany I, Galeotti CL, Brettoni C. Decorating the surface of Escherichia coli with bacterial lipoproteins: a comparative analysis of different display systems. Microb Cell Fact 2021; 20:33. [PMID: 33531008 PMCID: PMC7853708 DOI: 10.1186/s12934-021-01528-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/23/2021] [Indexed: 11/10/2022] Open
Abstract
Background The display of recombinant proteins on cell surfaces has a plethora of applications including vaccine development, screening of peptide libraries, whole-cell biocatalysts and biosensor development for diagnostic, industrial or environmental purposes. In the last decades, a wide variety of surface display systems have been developed for the exposure of recombinant proteins on the surface of Escherichia coli, such as autotransporters and outer membrane proteins. Results In this study, we assess three approaches for the surface display of a panel of heterologous and homologous mature lipoproteins in E. coli: four from Neisseria meningitidis and four from the host strain that are known to be localised in the inner leaflet of the outer membrane. Constructs were made carrying the sequences coding for eight mature lipoproteins, each fused to the delivery portion of three different systems: the autotransporter adhesin involved in diffuse adherence-I (AIDA-I) from enteropathogenic E. coli, the Lpp’OmpA chimaera and a truncated form of the ice nucleation protein (INP), InaK-NC (N-terminal domain fused with C-terminal one) from Pseudomonas syringae. In contrast to what was observed for the INP constructs, when fused to the AIDA-I or Lpp’OmpA, most of the mature lipoproteins were displayed on the bacterial surface both at 37 and 25 °C as demonstrated by FACS analysis, confocal and transmission electron microscopy. Conclusions To our knowledge this is the first study that compares surface display systems using a number of passenger proteins. We have shown that the experimental conditions, including the choice of the carrier protein and the growth temperature, play an important role in the translocation of mature lipoproteins onto the bacterial surface. Despite all the optimization steps performed with the InaK-NC anchor motif, surface exposure of the passenger proteins used in this study was not achieved. For our experimental conditions, Lpp’OmpA chimaera has proved to be an efficient surface display system for the homologous passenger proteins although cell lysis and phenotype heterogeneity were observed. Finally, AIDA-I was found to be the best surface display system for mature lipoproteins (especially heterologous ones) in the E. coli host strain with no inhibition of growth and only limited phenotype heterogeneity.
Collapse
Affiliation(s)
- Sonia Nicchi
- GSK, via Fiorentina 1, 53100, Siena, Italy.,Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Neisseria meningitidis Urethritis Outbreak Isolates Express a Novel Factor H Binding Protein Variant That Is a Potential Target of Group B-Directed Meningococcal (MenB) Vaccines. Infect Immun 2020; 88:IAI.00462-20. [PMID: 32958529 DOI: 10.1128/iai.00462-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Factor H binding protein (FHbp) is an important Neisseria meningitidis virulence factor that binds a negative regulator of the alternative complement pathway, human factor H (FH). Binding of FH increases meningococcal resistance to complement-mediated killing. FHbp also is reported to prevent interaction of the antimicrobial peptide (AMP) LL-37 with the meningococcal surface and meningococcal killing. FHbp is a target of two licensed group B-directed meningococcal (MenB) vaccines. We found a new FHbp variant, peptide allele identification no. 896 (ID 896), was highly expressed by an emerging meningococcal pathotype, the nonencapsulated urethritis clade (US_NmUC). This clade has been responsible for outbreaks of urethritis in multiple U.S. cities since 2015, other mucosal infections, and cases of invasive meningococcal disease. FHbp ID 896 is a member of the variant group 1 (subfamily B), bound protective anti-FHbp monoclonal antibodies, bound high levels of human FH, and enhanced the resistance of the clade to complement-mediated killing in low levels of human complement likely present at human mucosal surfaces. Interestingly, expression of FHbp ID 896 resulted in augmented killing of the clade by LL-37. FHbp ID 896 of the clade was recognized by antibodies elicited by FHbp in MenB vaccines.
Collapse
|
6
|
Beernink PT. Effect of complement Factor H on antibody repertoire and protection elicited by meningococcal capsular group B vaccines containing Factor H binding protein. Hum Vaccin Immunother 2020; 16:703-712. [PMID: 31526219 DOI: 10.1080/21645515.2019.1664241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Bacteria produce surface ligands for host complement regulators including Factor H (FH), which allows the bacteria to evade immunity. Meningococcal Factor H binding protein (FHbp) is both a virulence factor and a vaccine antigen. Antibodies to FHbp can neutralize its function by inhibiting binding of FH to the bacteria and confer robust complement-mediated protection. However, in the presence of human or primate FH, antibodies to FHbp do not inhibit FH binding and the protective antibody responses are decreased. This immune suppression can be overcome by modification of the FHbp antigen to decrease FH binding, which modulates the antibody repertoire to inhibit FH binding and increase protection. When FHbp is present at sufficient density on the bacterial surface, two or more antibodies can synergize to activate the complement system. Thus, modification of FHbp antigens to decrease FH binding expands the anti-FHbp antibody repertoire and increases the potential for synergistic activity.
Collapse
Affiliation(s)
- Peter T Beernink
- Center for Immunobiology and Vaccine Development, UCSF Benioff Children's Hospital Oakland, Oakland, CA, USA.,Department of Pediatrics, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
7
|
Beernink PT, Vianzon V, Lewis LA, Moe GR, Granoff DM. A Meningococcal Outer Membrane Vesicle Vaccine with Overexpressed Mutant FHbp Elicits Higher Protective Antibody Responses in Infant Rhesus Macaques than a Licensed Serogroup B Vaccine. mBio 2019; 10:e01231-19. [PMID: 31213564 PMCID: PMC6581866 DOI: 10.1128/mbio.01231-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 05/15/2019] [Indexed: 01/08/2023] Open
Abstract
MenB-4C (Bexsero; GlaxoSmithKline Biologicals) is a licensed meningococcal vaccine for capsular B strains. The vaccine contains detergent-extracted outer membrane vesicles (dOMV) and three recombinant proteins, of which one is factor H binding protein (FHbp). In previous studies, overexpression of FHbp in native OMV (NOMV) with genetically attenuated endotoxin (LpxL1) and/or by the use of mutant FHbp antigens with low factor H (FH) binding increased serum bactericidal antibody (SBA) responses. In this study, we immunized 13 infant macaques with 2 doses of NOMV with overexpressed mutant (R41S) FHbp with low binding to macaque FH (NOMV-FHbp). Control macaques received MenB-4C (n = 13) or aluminum hydroxide adjuvant alone (n = 4). NOMV-FHbp elicited a 2-fold higher IgG anti-FHbp geometric mean titer (GMT) than MenB-4C (P = 0.003), and the anti-FHbp repertoire inhibited binding of FH to FHbp, whereas anti-FHbp antibodies to MenB-4C enhanced FH binding. MenB-4C elicited a 10-fold higher GMT against strain NZ98/254, which was used to prepare the dOMV component, whereas NOMV-FHbp elicited an 8-fold higher GMT against strain H44/76, which was the parent of the mutant NOMV-FHbp vaccine strain. Against four strains with PorA mismatched to both of the vaccines and different FHbp sequence variants, NOMV-FHbp elicited 6- to 14-fold higher SBA GMTs than MenB-4C (P ≤ 0.0002). Two of 13 macaques immunized with MenB-4C but 0 of 17 macaques immunized with NOMV-FHbp or adjuvant developed serum anti-FH autoantibodies (P = 0.18). Thus, the mutant NOMV-FHbp approach has the potential to elicit higher and broader SBA responses than a licensed group B vaccine that contains wild-type FHbp that binds FH. The mutant NOMV-FHbp also might pose less of a risk of eliciting anti-FH autoantibodies.IMPORTANCE There are two licensed meningococcal capsular B vaccines. Both contain recombinant factor H binding protein (FHbp), which can bind to host complement factor H (FH). The limitations of these vaccines include a lack of protection against some meningococcal strains and the potential to elicit autoantibodies to FH. We immunized infant macaques with a native outer membrane vesicle (NOMV) vaccine with genetically attenuated endotoxin and overproduced mutant FHbp with low binding to FH. The NOMV-FHbp vaccine stimulated higher levels of protective serum antibodies than a licensed meningococcal group B vaccine against five of six genetically diverse meningococcal strains tested. Two of 13 macaques immunized with the licensed vaccine, which contains FHbp that binds macaque FH, but 0 of 17 macaques given NOMV-FHbp or the negative control developed serum anti-FH autoantibodies Thus, in a relevant nonhuman primate model, the NOMV-FHbp vaccine elicited greater protective antibodies than the licensed vaccine and may pose less of a risk of anti-FH autoantibody.
Collapse
Affiliation(s)
- Peter T Beernink
- Center for Immunobiology and Vaccine Development, University of California, San Francisco (UCSF) Benioff Children's Hospital Oakland, Oakland, California, USA
- Department of Pediatrics, School of Medicine, UCSF, San Francisco, California, USA
| | - Vianca Vianzon
- Center for Immunobiology and Vaccine Development, University of California, San Francisco (UCSF) Benioff Children's Hospital Oakland, Oakland, California, USA
| | - Lisa A Lewis
- Division of Immunology and Infectious Diseases, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Gregory R Moe
- Center for Immunobiology and Vaccine Development, University of California, San Francisco (UCSF) Benioff Children's Hospital Oakland, Oakland, California, USA
- Department of Pediatrics, School of Medicine, UCSF, San Francisco, California, USA
| | - Dan M Granoff
- Center for Immunobiology and Vaccine Development, University of California, San Francisco (UCSF) Benioff Children's Hospital Oakland, Oakland, California, USA
- Department of Pediatrics, School of Medicine, UCSF, San Francisco, California, USA
| |
Collapse
|
8
|
Fantappiè L, Irene C, De Santis M, Armini A, Gagliardi A, Tomasi M, Parri M, Cafardi V, Bonomi S, Ganfini L, Zerbini F, Zanella I, Carnemolla C, Bini L, Grandi A, Grandi G. Some Gram-negative Lipoproteins Keep Their Surface Topology When Transplanted from One Species to Another and Deliver Foreign Polypeptides to the Bacterial Surface. Mol Cell Proteomics 2017; 16:1348-1364. [PMID: 28483926 PMCID: PMC5500766 DOI: 10.1074/mcp.m116.065094] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 05/05/2017] [Indexed: 11/29/2022] Open
Abstract
In Gram-negative bacteria, outer membrane-associated lipoproteins can either face the periplasm or protrude out of the bacterial surface. The mechanisms involved in lipoprotein transport through the outer membrane are not fully elucidated. Some lipoproteins reach the surface by using species-specific transport machinery. By contrast, a still poorly characterized group of lipoproteins appears to always cross the outer membrane, even when transplanted from one organism to another. To investigate such lipoproteins, we tested the expression and compartmentalization in E. coli of three surface-exposed lipoproteins, two from Neisseria meningitidis (Nm-fHbp and NHBA) and one from Aggregatibacter actinomycetemcomitans (Aa-fHbp). We found that all three lipoproteins were lipidated and compartmentalized in the E. coli outer membrane and in outer membrane vesicles. Furthermore, fluorescent antibody cell sorting analysis, proteolytic surface shaving, and confocal microscopy revealed that all three proteins were also exposed on the surface of the outer membrane. Removal or substitution of the first four amino acids following the lipidated cysteine residue and extensive deletions of the C-terminal regions in Nm-fHbp did not prevent the protein from reaching the surface of the outer membrane. Heterologous polypeptides, fused to the C termini of Nm-fHbp and NHBA, were efficiently transported to the E. coli cell surface and compartmentalized in outer membrane vesicles, demonstrating that these lipoproteins can be exploited in biotechnological applications requiring Gram-negative bacterial surface display of foreign polypeptides.
Collapse
Affiliation(s)
- Laura Fantappiè
- From the ‡Synthetic and Structural Vaccinology Unit, CIBIO, University of Trento, Via Sommarive, 9, 38123 Povo, Trento, Italy
| | - Carmela Irene
- From the ‡Synthetic and Structural Vaccinology Unit, CIBIO, University of Trento, Via Sommarive, 9, 38123 Povo, Trento, Italy
| | - Micaela De Santis
- From the ‡Synthetic and Structural Vaccinology Unit, CIBIO, University of Trento, Via Sommarive, 9, 38123 Povo, Trento, Italy
| | - Alessandro Armini
- §Functional Proteomics Lab., Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Assunta Gagliardi
- §Functional Proteomics Lab., Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Michele Tomasi
- From the ‡Synthetic and Structural Vaccinology Unit, CIBIO, University of Trento, Via Sommarive, 9, 38123 Povo, Trento, Italy
| | - Matteo Parri
- ¶Toscana Life Sciences Scientific Park, Via Fiorentina, 1 53100, Siena, Italy
| | - Valeria Cafardi
- From the ‡Synthetic and Structural Vaccinology Unit, CIBIO, University of Trento, Via Sommarive, 9, 38123 Povo, Trento, Italy
| | - Serena Bonomi
- From the ‡Synthetic and Structural Vaccinology Unit, CIBIO, University of Trento, Via Sommarive, 9, 38123 Povo, Trento, Italy
| | - Luisa Ganfini
- From the ‡Synthetic and Structural Vaccinology Unit, CIBIO, University of Trento, Via Sommarive, 9, 38123 Povo, Trento, Italy
| | - Francesca Zerbini
- From the ‡Synthetic and Structural Vaccinology Unit, CIBIO, University of Trento, Via Sommarive, 9, 38123 Povo, Trento, Italy
| | - Ilaria Zanella
- From the ‡Synthetic and Structural Vaccinology Unit, CIBIO, University of Trento, Via Sommarive, 9, 38123 Povo, Trento, Italy
| | - Chiara Carnemolla
- §Functional Proteomics Lab., Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Luca Bini
- §Functional Proteomics Lab., Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Alberto Grandi
- ¶Toscana Life Sciences Scientific Park, Via Fiorentina, 1 53100, Siena, Italy
| | - Guido Grandi
- From the ‡Synthetic and Structural Vaccinology Unit, CIBIO, University of Trento, Via Sommarive, 9, 38123 Povo, Trento, Italy;
| |
Collapse
|
9
|
Granoff DM, Giuntini S, Gowans FA, Lujan E, Sharkey K, Beernink PT. Enhanced protective antibody to a mutant meningococcal factor H-binding protein with low-factor H binding. JCI Insight 2016; 1:e88907. [PMID: 27668287 DOI: 10.1172/jci.insight.88907] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Meningococcal factor H-binding protein (FHbp) is an antigen in 2 serogroup B meningococcal vaccines. FHbp specifically binds human and some nonhuman primate complement FH. To investigate the effect of binding of FH to FHbp on protective antibody responses, we immunized infant rhesus macaques with either a control recombinant FHbp antigen that bound macaque FH or a mutant antigen with 2 amino acid substitutions and >250-fold lower affinity for FH. The mutant antigen elicited 3-fold higher serum IgG anti-FHbp titers and up to 15-fold higher serum bactericidal titers than the control FHbp vaccine. When comparing sera with similar IgG anti-FHbp titers, the antibodies elicited by the mutant antigen gave greater deposition of complement component C4b on live meningococci (classical complement pathway) and inhibited binding of FH, while the anti-FHbp antibodies elicited by the control vaccine enhanced FH binding. Thus, the mutant FHbp vaccine elicited an anti-FHbp antibody repertoire directed at FHbp epitopes within the FH binding site, which resulted in greater protective activity than the antibodies elicited by the control vaccine, which targeted FHbp epitopes outside of the FH combining site. Binding of a host protein to a vaccine antigen impairs protective antibody responses, which can be overcome with low-binding mutant antigens.
Collapse
|
10
|
Meningococcal Factor H Binding Protein Vaccine Antigens with Increased Thermal Stability and Decreased Binding of Human Factor H. Infect Immun 2016; 84:1735-1742. [PMID: 27021245 DOI: 10.1128/iai.01491-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/21/2016] [Indexed: 11/20/2022] Open
Abstract
Neisseria meningitidis causes cases of bacterial meningitis and sepsis. Factor H binding protein (FHbp) is a component of two licensed meningococcal serogroup B vaccines. FHbp recruits the complement regulator factor H (FH) to the bacterial surface, which inhibits the complement alternative pathway and promotes immune evasion. Binding of human FH impairs the protective antibody responses to FHbp, and mutation of FHbp to decrease binding of FH can increase the protective responses. In a previous study, we identified two amino acid substitutions in FHbp variant group 2 that increased its thermal stability by 21°C and stabilized epitopes recognized by protective monoclonal antibodies (MAbs). Our hypothesis was that combining substitutions to increase stability and decrease FH binding would increase protective antibody responses in the presence of human FH. In the present study, we generated four new FHbp single mutants that decreased FH binding and retained binding of anti-FHbp MAbs and immunogenicity in wild-type mice. From these mutants, we selected two, K219N and G220S, to combine with the stabilized double-mutant FHbp antigen. The two triple mutants decreased FH binding >200-fold, increased the thermal stability of the N-terminal domain by 21°C, and bound better to an anti-FHbp MAb than the wild-type FHbp. In human-FH-transgenic mice, the FHbp triple mutants elicited 8- to 15-fold-higher protective antibody responses than the wild-type FHbp antigen. Collectively, the data suggest that mutations to eliminate binding of human FH and to promote conformational stability act synergistically to optimize FHbp immunogenicity.
Collapse
|
11
|
Pajon R, Lujan E, Granoff DM. A meningococcal NOMV-FHbp vaccine for Africa elicits broader serum bactericidal antibody responses against serogroup B and non-B strains than a licensed serogroup B vaccine. Vaccine 2015; 34:643-649. [PMID: 26709637 DOI: 10.1016/j.vaccine.2015.12.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 12/09/2015] [Accepted: 12/11/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND Meningococcal epidemics in Sub-Sahara caused by serogroup A strains are controlled by a group A polysaccharide conjugate vaccine. Strains with serogroups C, W and X continue to cause epidemics. Protein antigens in licensed serogroup B vaccines are shared among serogroup B and non-B strains. PURPOSE Compare serum bactericidal antibody responses elicited by an investigational native outer membrane vesicle vaccine with over-expressed Factor H binding protein (NOMV-FHbp) and a licensed serogroup B vaccine (MenB-4C) against African serogroup A, B, C, W and X strains. METHODS Human Factor H (FH) transgenic mice were immunized with NOMV-FHbp prepared from a mutant African meningococcal strain containing genetically attenuated endotoxin and a mutant sub-family B FHbp antigen with low FH binding, or with MenB-4C, which contains a recombinant sub-family B FHbp antigen that binds human FH, and three other antigens, NHba, NadA and PorA P1.4, capable of eliciting bactericidal antibody. RESULTS The NOMV-FHbp elicited serum bactericidal activity against 12 of 13 serogroup A, B, W or X strains from Africa, and four isogenic serogroup B mutants with sub-family B FHbp sequence variants. There was no activity against a serogroup B mutant with sub-family A FHbp, or two serogroup C isolates from a recent outbreak in Northern Nigeria, which were mismatched for both PorA and sub-family of the FHbp vaccine antigen. For MenB-4C, NHba was expressed by all 16 African isolates tested, FHbp sub-family B in 13, and NadA in five. However, MenB-4C elicited titers ≥ 1:10 against only one isolate, and against only two of four serogroup B mutant strains with sub-family B FHbp sequence variants. CONCLUSIONS NOMV-FHbp has greater potential to confer serogroup-independent protection in Africa than the licensed MenB-4C vaccine. However, the NOMV-FHbp vaccine will require inclusion of sub-family A FHbp for coverage against recent serogroup C strains causing outbreaks in Northern Nigeria.
Collapse
Affiliation(s)
- Rolando Pajon
- Center for Immunobiology and Vaccine Development, UCSF Benioff Children's Hospital Oakland Research Institute, Oakland, CA, USA
| | - Eduardo Lujan
- Center for Immunobiology and Vaccine Development, UCSF Benioff Children's Hospital Oakland Research Institute, Oakland, CA, USA
| | - Dan M Granoff
- Center for Immunobiology and Vaccine Development, UCSF Benioff Children's Hospital Oakland Research Institute, Oakland, CA, USA.
| |
Collapse
|
12
|
Impaired Immunogenicity of Meningococcal Neisserial Surface Protein A in Human Complement Factor H Transgenic Mice. Infect Immun 2015; 84:452-8. [PMID: 26597984 DOI: 10.1128/iai.01267-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 11/14/2015] [Indexed: 01/20/2023] Open
Abstract
Neisserial surface protein A (NspA) is a highly conserved outer membrane protein previously investigated as a meningococcal vaccine candidate. Despite eliciting serum bactericidal activity in mice, a recombinant NspA vaccine failed to elicit serum bactericidal antibodies in a phase 1 clinical trial in humans. The discordant results may be explained by the recent discovery that NspA is a human-specific ligand of the complement inhibitor factor H (FH). Therefore, in humans but not mice, NspA would be expected to form a complex with FH, which could impair human anti-NspA protective antibody responses. To investigate this question, we immunized human FH transgenic BALB/c mice with three doses of recombinant NspA expressed in Escherichia coli microvesicles, with each dose being separated by 3 weeks. Three of 12 (25%) transgenic mice and 13 of 14 wild-type mice responded with bactericidal titers of ≥1:10 in postimmunization sera (P = 0.0008, Fisher's exact test). In contrast, human FH transgenic and wild-type mice immunized with a control meningococcal native outer membrane vesicle vaccine had similar serum bactericidal antibody responses directed at PorA, which is not known to bind human FH, and a mutant factor H binding protein (FHbp) antigen with a >50-fold lower level of FH binding than wild-type FHbp antigen binding.Thus, human FH can impair anti-NspA serum bactericidal antibody responses, which may explain the poor immunogenicity of the NspA vaccine previously tested in humans. A mutant NspA vaccine engineered to have decreased binding to human FH may increase protective antibody responses in humans.
Collapse
|
13
|
Giuntini S, Beernink PT, Granoff DM. Effect of complement Factor H on anti-FHbp serum bactericidal antibody responses of infant rhesus macaques boosted with a licensed meningococcal serogroup B vaccine. Vaccine 2015; 33:7168-7175. [PMID: 26562320 DOI: 10.1016/j.vaccine.2015.10.135] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/28/2015] [Accepted: 10/30/2015] [Indexed: 10/22/2022]
Abstract
FHbp is a major serogroup B meningococcal vaccine antigen. Binding of complement Factor H (FH) to FHbp is specific for human and some non-human primate FH. In previous studies, FH binding to FHbp vaccines impaired protective anti-FHbp antibody responses. In this study we investigated anti-FHbp antibody responses to a third dose of a licensed serogroup B vaccine (MenB-4C) in infant macaques vaccinated in a previous study with MenB-4C. Six macaques with high binding of FH to FHbp (FH(high)), and six with FH(low) baseline phenotypes, were immunized three months after dose 2. After dose 2, macaques with the FH(low) baseline phenotype had serum anti-FHbp antibodies that enhanced FH binding to FHbp (functionally converting them to a FH(high) phenotype). In this group, activation of the classical complement pathway (C4b deposition) by serum anti-FHbp antibody, and anti-FHbp serum bactericidal titers were lower after dose 3 than after dose 2 (p<0.02). In macaques with the FH(high) baseline phenotype, the respective anti-FHbp C4b deposition and bactericidal titers were similar after doses 2 and 3. Two macaques developed serum anti-FH autoantibodies after dose 2, which were not detected after dose 3. In conclusion, in macaques with the FH(low) baseline phenotype whose post-dose 2 serum anti-FHbp antibodies had converted them to FH(high), the anti-FHbp antibody repertoire to dose 3 was skewed to less protective epitopes than after dose 2. Mutant FHbp vaccines that eliminate FH binding may avoid eliciting anti-FHbp antibodies that enhance FH binding, and confer greater protection with less risk of inducing anti-FH autoantibodies than FHbp vaccines that bind FH.
Collapse
Affiliation(s)
- Serena Giuntini
- Center for Immunobiology and Vaccine Development, UCSF Benioff Children's Hospital Oakland, 5700 Martin Luther King Jr. Way, Oakland, CA 94609, United States
| | - Peter T Beernink
- Center for Immunobiology and Vaccine Development, UCSF Benioff Children's Hospital Oakland, 5700 Martin Luther King Jr. Way, Oakland, CA 94609, United States
| | - Dan M Granoff
- Center for Immunobiology and Vaccine Development, UCSF Benioff Children's Hospital Oakland, 5700 Martin Luther King Jr. Way, Oakland, CA 94609, United States.
| |
Collapse
|
14
|
Abstract
Two licensed serogroup B meningococcal vaccines contain factor H binding protein (FHbp). The antigen specifically binds human FH, which downregulates complement. In wild-type mice whose mouse FH does not bind to FHbp vaccines, the serum anti-FHbp antibody response inhibited binding of human FH to FHbp. The inhibition was important for eliciting broad anti-FHbp serum bactericidal activity. In human FH transgenic mice and some nonhuman primates, FHbp was able to form a complex with FH and FHbp vaccination elicited anti-FHbp antibodies that did not inhibit FH binding. To investigate the human anti-FHbp repertoire, we cloned immunoglobulin heavy- and light-chain-variable-region genes of individual B cells from three adults immunized with FHbp vaccines and generated 10 sequence-distinct native anti-FHbp antibody fragments (Fabs). All 10 Fabs bound to live meningococci; only 1 slightly inhibited binding of human FH, while 4 enhanced FH binding. Affinity-purified anti-FHbp antibody from serum of a fourth immunized adult also enhanced binding of human FH to live meningococcal bacteria. Despite the bound FH, the affinity-purified serum anti-FHbp antibodies elicited human complement-mediated bactericidal activity that was amplified by the alternative pathway. The lack of FH inhibition by the human anti-FHbp Fabs and serum antibodies suggests that binding of human FH to the vaccine antigen skews the anti-FHbp antibody repertoire to epitopes outside the FH-binding site. Mutant FHbp vaccines with decreased FH binding may represent a means to redirect the human antibody repertoire to epitopes within the FH binding site, which can inhibit FH binding and, potentially, increase safety and protective activity. Two meningococcal vaccines contain factor H binding protein (FHbp). Immunized mice whose mouse factor H (FH) does not bind to FHbp develop serum anti-FHbp antibodies that block binding of human FH to the bacteria. With less bound FH, the bacteria become more susceptible to complement killing. To investigate human responses, we isolated 10 recombinant anti-FHbp antibody fragments (Fabs) from immune cells of three immunized adults. One slightly inhibited binding of FH to the bacteria, and four enhanced FH binding. Purified serum anti-FHbp antibodies from a fourth immunized adult also enhanced FH binding. Although bound FH would be expected to block the alternative pathway, the human anti-FHbp antibodies retained bactericidal activity and the ability to activate the alternative pathway. Mutant FHbp vaccines with decreased binding to human FH may redirect the human antibody repertoire to epitopes within the FH binding site that inhibit FH binding, which are expected to increase protective activity.
Collapse
|