1
|
Kale A, Şener EF, Günay NE, Tahtasakal R, Demiryürek S, Günay N, Demiryürek AT. Evaluation of the rs35996865 polymorphism of the ROCK1 gene in sepsis. REVISTA DA ASSOCIAÇÃO MÉDICA BRASILEIRA 2022; 68:586-590. [DOI: 10.1590/1806-9282.20211105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/10/2022] [Indexed: 12/15/2022]
|
2
|
Luo S, Yang M, Zhao H, Han Y, Jiang N, Yang J, Chen W, Li C, Liu Y, Zhao C, Sun L. Caveolin-1 Regulates Cellular Metabolism: A Potential Therapeutic Target in Kidney Disease. Front Pharmacol 2021; 12:768100. [PMID: 34955837 PMCID: PMC8703113 DOI: 10.3389/fphar.2021.768100] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/08/2021] [Indexed: 01/09/2023] Open
Abstract
The kidney is an energy-consuming organ, and cellular metabolism plays an indispensable role in kidney-related diseases. Caveolin-1 (Cav-1), a multifunctional membrane protein, is the main component of caveolae on the plasma membrane. Caveolae are represented by tiny invaginations that are abundant on the plasma membrane and that serve as a platform to regulate cellular endocytosis, stress responses, and signal transduction. However, caveolae have received increasing attention as a metabolic platform that mediates the endocytosis of albumin, cholesterol, and glucose, participates in cellular metabolic reprogramming and is involved in the progression of kidney disease. It is worth noting that caveolae mainly depend on Cav-1 to perform the abovementioned cellular functions. Furthermore, the mechanism by which Cav-1 regulates cellular metabolism and participates in the pathophysiology of kidney diseases has not been completely elucidated. In this review, we introduce the structure and function of Cav-1 and its functions in regulating cellular metabolism, autophagy, and oxidative stress, focusing on the relationship between Cav-1 in cellular metabolism and kidney disease; in addition, Cav-1 that serves as a potential therapeutic target for treatment of kidney disease is also described.
Collapse
Affiliation(s)
- Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Ming Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Hao Zhao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Yachun Han
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Na Jiang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Jinfei Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Wei Chen
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Chenrui Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Yan Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Chanyue Zhao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| |
Collapse
|
3
|
Chun KH. Discovery of Cellular RhoA Functions by the Integrated Application of Gene Set Enrichment Analysis. Biomol Ther (Seoul) 2021; 30:98-116. [PMID: 34429388 PMCID: PMC8724844 DOI: 10.4062/biomolther.2021.075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/19/2021] [Accepted: 07/09/2021] [Indexed: 11/24/2022] Open
Abstract
The small GTPase RhoA has been studied extensively for its role in actin dynamics. In this study, multiple bioinformatics tools were applied cooperatively to the microarray dataset GSE64714 to explore previously unidentified functions of RhoA. Comparative gene expression analysis revealed 545 differentially expressed genes in RhoA-null cells versus controls. Gene set enrichment analysis (GSEA) was conducted with three gene set collections: (1) the hallmark, (2) the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and (3) the Gene Ontology Biological Process. GSEA results showed that RhoA is related strongly to diverse pathways: cell cycle/growth, DNA repair, metabolism, keratinization, response to fungus, and vesicular transport. These functions were verified by heatmap analysis, KEGG pathway diagramming, and direct acyclic graphing. The use of multiple gene set collections restricted the leakage of information extracted. However, gene sets from individual collections are heterogenous in gene element composition, number, and the contextual meaning embraced in names. Indeed, there was a limit to deriving functions with high accuracy and reliability simply from gene set names. The comparison of multiple gene set collections showed that although the gene sets had similar names, the gene elements were extremely heterogeneous. Thus, the type of collection chosen and the analytical context influence the interpretation of GSEA results. Nonetheless, the analyses of multiple collections made it possible to derive robust and consistent function identifications. This study confirmed several well-described roles of RhoA and revealed less explored functions, suggesting future research directions.
Collapse
Affiliation(s)
- Kwang-Hoon Chun
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| |
Collapse
|
4
|
Abaj F, Saeedy SAG, Mirzaei K. Are caveolin-1 minor alleles more likely to be risk alleles in insulin resistance mechanisms in metabolic diseases? BMC Res Notes 2021; 14:185. [PMID: 34001235 PMCID: PMC8130340 DOI: 10.1186/s13104-021-05597-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 05/05/2021] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES Obesity and insulin resistance (IR) are interrelated in a range of ways. The IR-obesity relationship is not a cause-and-effect association. Molecular biology research has made tremendous strides in discovering contributors to find this association. Genes that control adipocyte function such as caveolin-1 (CAV1); probably interact in the pathogenesis of human IR in this context. The involvement of CAV1 in glucose/lipid homeostasis is revealed and could modify the signaling of the insulin receptor. We examined the association between CAV1 and insulin signaling in modifying dyslipidemia and fat composition in overweight and obese women with a prevalent variant in the CAV1 gene. RESULTS Minor allele carriers were slightly older and had higher BMI (p = 0.02), FMI (p = 0.006), and VLF (p = 0.01) values; and tended to have lower total cholesterol TC (p = 0.04), low-density lipoprotein cholesterol (LDL-C) (p = 0.001) and high-density lipoprotein cholesterol (HDL-C) (p = 0.003). HOMA-IR levels predicted fat mass index (FMI) 0.47 (0.08, 0.87), visceral fat level (VFL) 0.65 (0.23, 1.07), TC 6.82 (1.76, 11.88) and HDL-C - 1.663 (- 3.11, - 0.214) only between minor allele carriers in adjusted models. (β, CI). Our results cast a new light on the IR mechanism and future studies will elucidate the clinical relevance of CAV1-IR in patients with dyslipidemia and high fat composition.
Collapse
Affiliation(s)
- Faezeh Abaj
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), No. 44, Hojjat-dost Alley, Naderi St., Keshavarz Blvd, P.O. Box, 14155-6117, Tehran, Iran
| | | | - Khadijeh Mirzaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), No. 44, Hojjat-dost Alley, Naderi St., Keshavarz Blvd, P.O. Box, 14155-6117, Tehran, Iran.
| |
Collapse
|
5
|
Kim YW, Bak E, Wy S, Lee SC, Kim YJ, Kim YK, Park KH, Jeoung JW. Genetic Risk and Phenotype Correlation of Primary Open-Angle Glaucoma Based on Rho-Kinase Gene Polymorphisms. J Clin Med 2021; 10:jcm10091953. [PMID: 34062933 PMCID: PMC8124732 DOI: 10.3390/jcm10091953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/11/2022] Open
Abstract
Rho-associated coiled-coil kinase (ROCK) signaling can affect glaucoma risk by regulating trabecular meshwork outflow. We investigated the effect of ROCK gene polymorphism on the risks of primary open-angle glaucoma (POAG) and POAG-related phenotypes including intraocular pressure (IOP) in a Korean population. A total of 24 single-nucleotide polymorphisms (SNPs) from ROCK1 and ROCK2 were selected and genotyped for 363 POAG patients and 213 healthy controls. Among the 363 POAG patients, 282 were normal-tension glaucoma (NTG, baseline IOP ≤ 21 mmHg) and 81 were high-tension glaucoma (HTG, baseline IOP > 21 mmHg). The SNPs rs288979, rs1006881, rs35996865, rs10083915, and rs11873284 in ROCK1 (tagged to each other, r2 = 1) were nominally associated with risk of HTG (OR = 0.52, p = 0.045). However, there were no SNPs that were significantly associated with the risk of NTG. In the genotype-phenotype correlation analysis, the SNPs rs2230773 and rs3771106 in ROCK2 were significantly correlated with central corneal thickness (CCT)-adjusted IOP (p = 0.024) and axial length (AXL; p = 0.024), respectively. The present data implicated the role of ROCK in POAG development, and as such, can serve as a good reference for upcoming Rho/ROCK-pathway-related studies on POAG.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jin-Wook Jeoung
- Correspondence: ; Tel.: +82-2-2072-2438; Fax: +82-2-741-3187
| |
Collapse
|
6
|
Huang Z, Wang X, Ma L, Guo Z, Liu H, Du M, Chu H, Wang M, Wang Z, Zhang Z. Genetic variations in Hippo pathway genes influence bladder cancer risk in a Chinese population. Arch Toxicol 2020; 94:785-794. [DOI: 10.1007/s00204-020-02663-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/03/2020] [Indexed: 12/01/2022]
|
7
|
Caveolin-1 rs4730751 single-nucleotide polymorphism may not influence kidney transplant allograft survival. Sci Rep 2019; 9:15541. [PMID: 31664124 PMCID: PMC6820546 DOI: 10.1038/s41598-019-52079-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/11/2019] [Indexed: 11/27/2022] Open
Abstract
Caveolin-1 is a protein (encoded by the CAV1 gene) supposedly harboring a protective effect against fibrosis. CAV1 rs4730751 single nucleotide polymorphism (SNP) AA genotype was initially associated with lower graft survival compared to non-AA. However, subsequent studies could not find the same effect. CAV1 rs4730751 SNP was investigated on 918 kidney donors. Multivariate Cox-model analyses were performed to evaluate risk factors for graft loss. Longitudinal changes on long-term estimated glomerular filtration rate (eGFRs) were evaluated with a linear mixed model. Histopathological findings from protocolled biopsies after 3 months post transplantation were also analyzed. Donor CAV1 rs4730751 genotyping proportions were 7.1% for AA, 41.6% for AC and 51.3% for CC. The AA genotype, compared to non-AA, was not associated with lower graft survival censored or not for death (multivariate analysis: HR = 1.23 [0.74–2.05] and HR = 1.27 [0.84–1.92]). Linear mixed model on long-term eGFRs revealed also no significant difference according to the genotype, yet we observed a trend. AA genotype was also not associated with a higher degree of fibrosis index on protocolled kidney biopsies at 3 months. To conclude, donor CAV1 rs4730751 SNP may impact on kidney transplantation outcomes, but this study could not confirm this hypothesis.
Collapse
|
8
|
Gao Y, Li X, Liu XH, Zhao QH, Che XQ, Guo QH, Ren RJ, Wang G. Determining association of rho kinase 1 gene polymorphisms with risk of Alzheimer's disease: a multicenter pilot study. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:434. [PMID: 30596064 DOI: 10.21037/atm.2018.05.51] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background In addition to the increasing evidence for a molecular mechanism of rho kinase 1 (ROCK1) in Alzheimer's disease (AD), there are several published studies regarding the relationship between ROCK1 gene polymorphisms and neurological diseases. However, it is unknown whether there is an association between the polymorphisms of ROCK1 and AD. We sought to identify the potential association between ROCK1 gene polymorphisms and AD in the Chinese Han population. Methods A total of 295 patients with AD and 206 healthy controls from multiple centers were enrolled in this study. Three single-nucleotide polymorphisms (SNPs) (rs35996865, rs11873284, and rs2127958) in ROCK1 gene were analyzed using Sanger sequencing. Results We did not find any significant differences between AD and control groups with regards to the frequency of these three ROCK1 polymorphisms. Further, the three SNP genotype frequencies and allele frequencies did not show significant differences between patients of AD and controls in APOE4-stratified subjects (P>0.01). Additionally, the three SNPs did not show significant differences even when adopting a four-inheritance model by logistic regression. Conclusions This is the first multicenter pilot study to evaluate the contribution of ROCK1 genetic variance to AD risk. Our data demonstrated that the ROCK1 gene may not influence the risk of AD by interacting with APOE among Chinese Han people.
Collapse
Affiliation(s)
- Ying Gao
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xia Li
- Alzheimer's Disease and Related Disorders Center, Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Xiao-Hong Liu
- Department of Neurology, Shanghai Putuo District People's Hospital, Shanghai 200060, China
| | - Qian-Hua Zhao
- Department of Neurology & Institute of Neurology, WHO Collaborating Center for Research and Training in Neurosciences, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiang-Qian Che
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qi-Hao Guo
- Department of Neurology & Institute of Neurology, WHO Collaborating Center for Research and Training in Neurosciences, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ru-Jing Ren
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Gang Wang
- Department of Neurology & Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
9
|
Liu J, Liu B, Guo Y, Chen Z, Sun W, Gao W, Wu H, Wang Y. MiR-199a-3p acts as a tumor suppressor in clear cell renal cell carcinoma. Pathol Res Pract 2018; 214:806-813. [PMID: 29773428 DOI: 10.1016/j.prp.2018.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/27/2018] [Accepted: 05/05/2018] [Indexed: 10/16/2022]
Abstract
OBJECTIVES To explore the biological function and mechanism of miR-199a-3p in clear cell renal cell carcinoma (CCRCC). METHODS We investigated the expression of miR-199a-3p in CCRCC through quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Over expression of miR-199a-3p was performed in CCRCC cell lines, and cell growth curve, colony formation capacity, cell invasion, wound healing and cell apoptosis assay were used for investigating the roles of miR-199a-3p in CCRCC. RESULTS The expression of miR-199a-3p in CCRCC tissues was significantly lower than that in para-carcinoma tissues. Functional assay showed that over expression of miR-199a-3p influenced cell growth, colony formation, cell invasion, cell migration and cell apoptosis in CCRCC cell lines. CONCLUSIONS Our work suggested that miR-199a-3p was related to cell growth, colony formation, cell invasion, cell migration and cell apoptosis, which might act as a tumor suppressor in CCRCC.
Collapse
Affiliation(s)
- Jianmin Liu
- Department of Urology, First Affiliated Hospital of Bengbu Medical College, Anhui Province, PR China.
| | - Beibei Liu
- Department of Urology, First Affiliated Hospital of Bengbu Medical College, Anhui Province, PR China
| | - Yuanyuan Guo
- Department of Urology, First Affiliated Hospital of Bengbu Medical College, Anhui Province, PR China
| | - Zhijun Chen
- Department of Urology, First Affiliated Hospital of Bengbu Medical College, Anhui Province, PR China
| | - Wei Sun
- Department of Urology, First Affiliated Hospital of Bengbu Medical College, Anhui Province, PR China
| | - Wuyue Gao
- Department of Urology, First Affiliated Hospital of Bengbu Medical College, Anhui Province, PR China
| | - Hongliang Wu
- Department of Urology, First Affiliated Hospital of Bengbu Medical College, Anhui Province, PR China
| | - Yan Wang
- Department of Urology, First Affiliated Hospital of Bengbu Medical College, Anhui Province, PR China
| |
Collapse
|
10
|
Wang M, Tian T, Ma X, Zhu W, Guo Y, Duan Z, Fan J, Lin S, Liu K, Zheng Y, Sheng Q, Dai ZJ, Peng H. Genetic polymorphisms in caveolin-1 associate with breast cancer risk in Chinese Han population. Oncotarget 2017; 8:91654-91661. [PMID: 29207674 PMCID: PMC5710954 DOI: 10.18632/oncotarget.21560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/22/2017] [Indexed: 02/06/2023] Open
Abstract
Caveolin-1(CAV-1) was demonstrated to be a tumor suppressor gene and be implicated in the development of breast cancer (BC). Numerous potentially functional polymorphisms in CAV-1 have been identified, but their effects on BC were not clear. This case-control study aims to evaluate the relationship between CAV-1 polymorphisms and BC risk. 560 BC patients and 583 healthy controls were enrolled in the present study, all from Chinese Han population. We detected 3 single nucleotide polymorphisms (rs3807987, rs1997623, and rs7804372) in CAV-1 using the Sequenom MassARRAY method. The association between CAV-1genotypes and BC risk was assessed in six genetic models by calculating the odds ratio (OR) and 95% confidence intervals (95% CIs) with χ2-test. The CAV-1 rs3807987 polymorphism was observed to increase the risk of BC And the A allele of rs3807987 relates to a larger tumor size (≥2cm) and lower incidence of PR-positive BC while the AA genotype of rs7804372 associates with a higher ER and Her-2 positive rate among BC patients. In addition, Ars1997623Grs3807987Trs7804372 haplotype was linked to a decreased risk of BC (OR =0.64, 95%CI=0.44-0.93), whereas Crs1997623Ars3807987Trs7804372 haplotype was related to an increased BC risk (OR =1.74, 95%CI=1.04-2.92). Our study suggests that CAV-1 rs3807987 can increase the BC risk among Chinese Han women. And the rs3807987 and rs7804372 in CAV-1 may serve as predictors for prognosis of BC.
Collapse
Affiliation(s)
- Meng Wang
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Tian Tian
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaobin Ma
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wenge Zhu
- Department of Biochemistry and Molecular Medicine, The George Washington University Medical School, Washington, DC, USA
| | - Yan Guo
- School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Zhao Duan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jiangbo Fan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Shuai Lin
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Kang Liu
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yi Zheng
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Qianwen Sheng
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zhi-Jun Dai
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Huixia Peng
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
11
|
Zhang J, Xue F, Chen S, Zhang D, Lu C, Tang G. The influence of caveolin-1 gene polymorphisms on hepatitis B virus-related hepatocellular carcinoma susceptibility in Chinese Han population: A case-control study. Medicine (Baltimore) 2017; 96:e7359. [PMID: 29049173 PMCID: PMC5662339 DOI: 10.1097/md.0000000000007359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This study aimed to explore the genetic association of polymorphisms in caveolin-1 gene (CAV1) with hepatitis B virus-related hepatocellular carcinoma (HBV-related HCC) susceptibility in a Chinese Han population.The genotyping of polymorphism was conducted using polymerase chain reaction-restriction fragment length polymorphism method. Whether the genotype distribution of polymorphisms in the healthy controls was consistent with Hardy-Weinberg equilibrium (HWE) was detected. The genotype and allele frequency difference between the 2 groups was compared by chi-square test. Odds ratio (OR) and 95% confidence interval (95% CI) were calculated to show the relative risk of HCC which resulted from genetic variants in CAV1. Moreover, the linkage disequilibrium of CAV1 polymorphisms was analyzed by Haploview.The AG genotype and A allele of rs1049334 showed significantly higher frequency in HCC patients than that of chronic HBV patients and the healthy controls (P < .05); so their carriage obviously increased the susceptibility to HBV-related HCC, irrespective of the fact whether individuals were infected with hepatitis B virus or not (AG vs GG: OR 1.958, 95% CI 1.050-3.650, OR 1.899, 95% CI 1.034-3.487; A vs G: OR 1.667, 95% CI 1.033-2.689, OR 1.777, 95% CI 1.103-2.863). Additionally, A-G haplotype of rs3807989-rs1049334 showed the protective role for HBV-related HCC (OR 0.102, 95% CI 0.035-0.293; OR 0.135, 95% CI 0.046-0.395).CAV1 rs1049334 polymorphism is significantly associated with the occurrence risk of HBV-related HCC, and the interaction of polymorphisms should not be neglected.
Collapse
Affiliation(s)
| | - Fangxi Xue
- Department of Gastroenterology, Linyi Central Hospital, Linyi, China
| | | | | | | | | |
Collapse
|
12
|
Amaya CN, Mitchell DC, Bryan BA. Rho kinase proteins display aberrant upregulation in vascular tumors and contribute to vascular tumor growth. BMC Cancer 2017; 17:485. [PMID: 28709411 PMCID: PMC5513090 DOI: 10.1186/s12885-017-3470-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 07/02/2017] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The serine/threonine protein kinases ROCK1 and 2 are key RhoA-mediated regulators of cell shape and cytoskeletal dynamics. These proteins perform multiple functions in vascular endothelial cell physiology and are attractive targets for cancer therapy based on their roles as oncogenes and metastatic promoters. Given their critical functions in both of these processes, we hypothesized that molecular targeting of ROCK proteins would be exceedingly effective against vascular tumors such as hemangiomas and angiosarcomas, which are neoplasms composed of aberrant endothelial cells. METHODS In this study, we compared ROCK1 and 2 protein expression in a large panel of benign and malignant vascular tumors to that of normal vasculature. We then utilized shRNA technology to knockdown the expression of ROCK1 and 2 in SVR tumor-forming vascular cells, and evaluated tumor size and proliferation rate in a xenograft model. Finally, we employed proteomics and metabolomics to assess how knockdown of the ROCK paralogs induced alterations in protein expression/phosphorylation and metabolite concentrations in the xenograft tumors. RESULTS Our findings revealed that ROCK1 was overexpressed in malignant vascular tumors such as hemangioendotheliomas and angiosarcomas, and ROCK2 was overexpressed in both benign and malignant vascular tumors including hemangiomas, hemangioendotheliomas, hemangiopericytomas, and angiosarcomas. shRNA-mediated knockdown of ROCK2, but not ROCK1, in xenograft vascular tumors significantly reduced tumor size and proliferative index compared to control tumors. Proteomics and metabolomics analysis of the xenograft tumors revealed both overlapping as well as unique roles for the ROCK paralogs in regulating signal transduction and metabolite concentrations. CONCLUSIONS Collectively, these data indicate that ROCK proteins are overexpressed in diverse vascular tumors and suggest that specific targeting of ROCK2 proteins may show efficacy against malignant vascular tumors.
Collapse
Affiliation(s)
- Clarissa N Amaya
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Paul L. Foster School of Medicine, Center of Excellence in Cancer Research, 5001 El Paso Drive, MSB1 Room 2111, El Paso, TX, 79905, USA
| | - Dianne C Mitchell
- Minerva Genetics, 5130 Gateway Blvd East, Suite 315, El Paso, TX, 79905, USA
| | - Brad A Bryan
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Paul L. Foster School of Medicine, Center of Excellence in Cancer Research, 5001 El Paso Drive, MSB1 Room 2111, El Paso, TX, 79905, USA. .,Minerva Genetics, 5130 Gateway Blvd East, Suite 315, El Paso, TX, 79905, USA.
| |
Collapse
|
13
|
Flavone inhibits migration through DLC1/RhoA pathway by decreasing ROS generation in breast cancer cells. In Vitro Cell Dev Biol Anim 2016; 52:589-97. [DOI: 10.1007/s11626-016-0010-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/11/2016] [Indexed: 12/14/2022]
|
14
|
Zucchini C, Martinelli M, De Sanctis P, Rodia MT, Mattei G, Ugolini G, Montroni I, Ghignone F, Solmi R. Possible Gender-Related Modulation by the ROCK1 Gene in Colorectal Cancer Susceptibility. Pathobiology 2015; 82:252-8. [PMID: 26562026 DOI: 10.1159/000439405] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 08/12/2015] [Indexed: 11/19/2022] Open
Abstract
AIM In view of accumulating evidence supporting a pivotal role of the Rho/ROCK pathway in cancer, we investigated Rho-kinase polymorphisms as potential susceptibility factors in colorectal cancer (CRC) in a representative sample of the Italian population. METHODS DNA obtained from the peripheral blood samples of 137 CRC patients and 141 healthy controls was genotyped for four ROCK1 (rs35996865; rs73963110; rs2127958; rs288980) and five ROCK2 (rs12692437; rs7563468; rs35768389; rs17463896; rs16857265) selected single nucleotide polymorphisms. RESULTS None of the allelic variants of the nine selected markers was associated with the occurrence of CRC or with the development of regional lymph node metastasis. By contrast, the ROCK1 rs35996865 G variant allele was significantly more frequent in male patients (p = 0.028) than in the control group. CONCLUSION This finding is, at present, the first that points to a possible gender-related modulation by the ROCK1 gene in CRC susceptibility.
Collapse
Affiliation(s)
- Cinzia Zucchini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|