1
|
Shen S, Yang Y, Shen P, Ma J, Fang B, Wang Q, Wang K, Shi P, Fan S, Fang X. circPDE4B prevents articular cartilage degeneration and promotes repair by acting as a scaffold for RIC8A and MID1. Ann Rheum Dis 2021; 80:1209-1219. [PMID: 34039624 PMCID: PMC8372377 DOI: 10.1136/annrheumdis-2021-219969] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/13/2021] [Indexed: 01/22/2023]
Abstract
OBJECTIVES Circular RNAs (circRNAs) have emerged as significant biological regulators. Herein, we aimed to elucidate the role of an unidentified circRNA (circPDE4B) that is reportedly downregulated in osteoarthritis (OA) tissues. METHODS The effects of circPDE4B were explored in human and mouse chondrocytes in vitro. Specifically, RNA pull-down (RPD)-mass spectrometry analysis (MS), immunoprecipitation, glutathione-S-transferase (GST) pull-down, RNA immunoprecipitation and RPD assays were performed to verify the interactions between circPDE4B and the RIC8 guanine nucleotide exchange factor A (RIC8A)/midline 1 (MID1) complex. A mouse model of OA was also employed to confirm the role of circPDE4B in OA pathogenesis in vivo. RESULTS circPDE4B regulates chondrocyte cell viability and extracellular matrix metabolism. Mechanistically, FUS RNA binding protein (FUS) was found to promote the splicing of circPDE4B, while downregulation of circPDE4B in OA is partially caused by upstream inhibition of FUS. Moreover, circPDE4B facilitates the association between RIC8A and MID1 by acting as a scaffold to promote RIC8A degradation through proteasomal degradation. Furthermore, ubiquitination of RIC8A at K415 abrogates RIC8A degradation. The circPDE4B-RIC8A axis was observed to play an important role in regulating downstream p38 mitogen-activated protein kinase (MAPK) signalling. Furthermore, delivery of a circPDE4B adeno-associated virus (AAV) abrogates the breakdown of cartilage matrix by medial meniscus destabilisation in mice, whereas a RIC8A AAV induces the opposite effect. CONCLUSION This work highlights the function of the circPDE4B-RIC8A axis in OA joints, as well as its regulation of MAPK-p38, suggesting this axis as a potential therapeutic target for OA.
Collapse
Affiliation(s)
- Shuying Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University school of medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Yute Yang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University school of medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Panyang Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University school of medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Jun Ma
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University school of medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Bin Fang
- Department of Spine Surgery, The Central Hospital Affiliated to Shaoxing University, Shaoxing, China
| | - Qingxin Wang
- Department of Spine Surgery, The Hospital of the Marine Police Corps of the Chinese people's Armed Police Force, Jiaxing, China
| | - Kefan Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University school of medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Peihua Shi
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University school of medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University school of medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Xiangqian Fang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University school of medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| |
Collapse
|
2
|
G Proteins and GPCRs in C. elegans Development: A Story of Mutual Infidelity. J Dev Biol 2018; 6:jdb6040028. [PMID: 30477278 PMCID: PMC6316442 DOI: 10.3390/jdb6040028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 11/15/2018] [Accepted: 11/22/2018] [Indexed: 12/14/2022] Open
Abstract
Many vital processes during C. elegans development, especially the establishment and maintenance of cell polarity in embryogenesis, are controlled by complex signaling pathways. G protein-coupled receptors (GPCRs), such as the four Frizzled family Wnt receptors, are linchpins in regulating and orchestrating several of these mechanisms. However, despite being GPCRs, which usually couple to G proteins, these receptors do not seem to activate classical heterotrimeric G protein-mediated signaling cascades. The view on signaling during embryogenesis is further complicated by the fact that heterotrimeric G proteins do play essential roles in cell polarity during embryogenesis, but their activity is modulated in a predominantly GPCR-independent manner via G protein regulators such as GEFs GAPs and GDIs. Further, the triggered downstream effectors are not typical. Only very few GPCR-dependent and G protein-mediated signaling pathways have been unambiguously defined in this context. This unusual and highly intriguing concept of separating GPCR function and G-protein activity, which is not restricted to embryogenesis in C. elegans but can also be found in other organisms, allows for essential and multi-faceted ways of regulating cellular communication and response. Although its relevance cannot be debated, its impact is still poorly discussed, and C. elegans is an ideal model to understand the underlying principles.
Collapse
|
3
|
Toro-Tapia G, Villaseca S, Beyer A, Roycroft A, Marcellini S, Mayor R, Torrejón M. The Ric-8A/Gα13/FAK signalling cascade controls focal adhesion formation during neural crest cell migration in Xenopus. Development 2018; 145:dev.164269. [PMID: 30297374 DOI: 10.1242/dev.164269] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 09/23/2018] [Indexed: 12/22/2022]
Abstract
Ric-8A is a pleiotropic guanine nucleotide exchange factor involved in the activation of various heterotrimeric G-protein pathways during adulthood and early development. Here, we sought to determine the downstream effectors of Ric-8A during the migration of the vertebrate cranial neural crest (NC) cells. We show that the Gα13 knockdown phenocopies the Ric-8A morphant condition, causing actin cytoskeleton alteration, protrusion instability, and a strong reduction in the number and dynamics of focal adhesions. In addition, the overexpression of Gα13 is sufficient to rescue Ric-8A-depleted cells. Ric-8A and Gα13 physically interact and colocalize in protrusions of the cells leading edge. The focal adhesion kinase FAK colocalizes and interacts with the endogenous Gα13, and a constitutively active form of Src efficiently rescues the Gα13 morphant phenotype in NC cells. We propose that Ric-8A-mediated Gα13 signalling is required for proper cranial NC cell migration by regulating focal adhesion dynamics and protrusion formation.
Collapse
Affiliation(s)
- Gabriela Toro-Tapia
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción 4030000, Chile
| | - Soraya Villaseca
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción 4030000, Chile
| | - Andrea Beyer
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción 4030000, Chile
| | - Alice Roycroft
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Sylvain Marcellini
- Departamento de Biología Cellular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción 4030000, Chile
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Marcela Torrejón
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción 4030000, Chile
| |
Collapse
|
4
|
Ruisu K, Meier R, Kask K, Tõnissoo T, Velling T, Pooga M. RIC8A is essential for the organisation of actin cytoskeleton and cell-matrix interaction. Exp Cell Res 2017; 357:181-191. [PMID: 28526238 DOI: 10.1016/j.yexcr.2017.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 05/09/2017] [Accepted: 05/14/2017] [Indexed: 01/07/2023]
Abstract
RIC8A functions as a chaperone and guanine nucleotide exchange factor for a subset of G protein α subunits. Multiple G protein subunits mediate various signalling events that regulate cell adhesion and migration and the involvement of RIC8A in some of these processes has been demonstrated. We have previously shown that the deficiency of RIC8A causes a failure in mouse gastrulation and neurogenesis - major events in embryogenesis that rely on proper association of cells with the extracellular matrix (ECM) and involve active cell migration. To elaborate on these findings, we used Ric8a-/- mouse embryonic stem cells and Ric8a-deficient mouse embryonic fibroblasts, and found that RIC8A plays an important role in the organisation and remodelling of actin cytoskeleton and cell-ECM association. Ric8a-deficient cells were able to attach to different ECM components, but were unable to spread correctly, and did not form stress fibres or focal adhesion complexes. We also found that the presence of RIC8A is necessary for the activation of β1 integrins and integrin-mediated cell migration.
Collapse
Affiliation(s)
- Katrin Ruisu
- Department of Developmental Biology, Institute of Molecular and Cell Biology, University of Tartu, 23 Riia St., Tartu 51010, Estonia.
| | - Riho Meier
- Department of Developmental Biology, Institute of Molecular and Cell Biology, University of Tartu, 23 Riia St., Tartu 51010, Estonia; Competence Centre on Health Technologies, Tiigi 61b, 50410 Tartu, Estonia
| | - Keiu Kask
- Department of Developmental Biology, Institute of Molecular and Cell Biology, University of Tartu, 23 Riia St., Tartu 51010, Estonia
| | - Tambet Tõnissoo
- Department of Developmental Biology, Institute of Molecular and Cell Biology, University of Tartu, 23 Riia St., Tartu 51010, Estonia; Competence Centre on Health Technologies, Tiigi 61b, 50410 Tartu, Estonia
| | - Teet Velling
- Department of Developmental Biology, Institute of Molecular and Cell Biology, University of Tartu, 23 Riia St., Tartu 51010, Estonia; Competence Centre on Health Technologies, Tiigi 61b, 50410 Tartu, Estonia
| | - Margus Pooga
- Department of Developmental Biology, Institute of Molecular and Cell Biology, University of Tartu, 23 Riia St., Tartu 51010, Estonia; Competence Centre on Health Technologies, Tiigi 61b, 50410 Tartu, Estonia
| |
Collapse
|
5
|
OOgenesis_Pred: A sequence-based method for predicting oogenesis proteins by six different modes of Chou's pseudo amino acid composition. J Theor Biol 2017; 414:128-136. [DOI: 10.1016/j.jtbi.2016.11.028] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 11/25/2016] [Accepted: 11/29/2016] [Indexed: 12/22/2022]
|