1
|
Kong L, Yuan C, Guo T, Sun L, Liu J, Lu Z. Inhibitor of Myom3 inhibits proliferation and promotes differentiation of sheep myoblasts. Genomics 2024; 116:110921. [PMID: 39173892 DOI: 10.1016/j.ygeno.2024.110921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/31/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Skeletal muscle quality and yield are important production traits in livestock, and improving skeletal muscle quality while increasing its yield is an important goal of economic breeding. The proliferation and differentiation process of sheep myoblasts directly affects the growth and development of their muscles, thereby affecting the yield of mutton. Myomesin 3 (Myom3), as a functional gene related to muscle growth, currently lacks research on its function in myoblasts. This study aims to investigate the effect of the Myom3 gene on the proliferation and differentiation of sheep myoblasts and its potential molecular mechanisms. The results showed that inhibitor of Myom3 in the proliferation phase of myoblasts resulted in significant downregulation of the proliferation marker gene paired box 7 (Pax7) and myogenic regulatory factors (MRFs; Myf5, Myod1, Myog, P < 0.01), a significant decrease in the EdU-positive cell rate (P < 0.05), and a significant increase in the cell apoptosis rate (P < 0.01), which inhibited the proliferation of myoblasts and promoted their apoptosis. During the differentiation phase of myoblasts, the inhibitor of Myom3 resulted in significant downregulation of the Pax7 gene, upregulation of MRFs (Myod1, Myog, P < 0.05), and a significant increase in fusion index (P < 0.05), promoting the differentiation of myoblasts. Further transcriptome sequencing revealed that differentially expressed genes in the Myom3 interference group were mainly enriched in the MAPK signaling pathway, TNF signaling pathway, and IL-17 signaling pathway. In summary, the inhibitor of Myom3 inhibits myoblast proliferation and promotes myoblast differentiation. Therefore, Myom3 has a potential regulatory effect on the growth and development of sheep muscles, and in-depth functional research can be used for molecular breeding practices in sheep.
Collapse
Affiliation(s)
- Lingying Kong
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Chao Yuan
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Tingting Guo
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Lixia Sun
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Jianbin Liu
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
| | - Zengkui Lu
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
| |
Collapse
|
2
|
Rahimpour A, Pourmaleki E, Shams F, Payandeh Z, Pourzardosht N, Didehdar M, Gholami M. The effect of Ccnb1ip1 insulator on monoclonal antibody expression in Chinese hamster ovary cells. Mol Biol Rep 2022; 49:3461-3468. [PMID: 35076847 DOI: 10.1007/s11033-022-07182-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/20/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND The increasing need for therapeutic monoclonal antibodies (mAbs) entails the development of innovative and improved expression strategies. Chromatin insulators have been utilized for the enhancement of the heterologous proteins in mammalian cells. METHODS AND RESULTS In the current study the Ccnb1ip1 gene insulator element was utilized to construct a novel vector system for the expression of an anti-CD52 mAb in Chinese hamster ovary (CHO) cells. The insulator containing (pIns-mAb) and control (pmAb) vectors were generated and stable cell pools were established using these constructs. The expression level in the cells created with pIns-mAb vector was calculated to be 233 ng/mL, and the expression rate in the control vector was 210 ng/mL, which indicated a 10.9% increase in mAb expression in pIns-mAb pool. In addition, analysis of mAb expression in clonal cells established from each pool showed a 10% increase in antibody productivity in the highest mAb producing clone derived from the pIns-mAb pool compared to the clone isolated from pmAb pool. CONCLUSIONS More studies are needed to fully elucidate the effects of Ccnb1ip1 gene insulator on recombinant therapeutic protein expression in mammalian cells. The combination of this element with other chromatin-modifying elements might improve its augmentation effect which could pave the way for efficient and cost-effective production of therapeutic drugs.
Collapse
Affiliation(s)
- Azam Rahimpour
- Medical Nano-Technology & Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Es'hagh Pourmaleki
- Medical Nano-Technology & Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Forough Shams
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Payandeh
- Immunology Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Navid Pourzardosht
- Biochemistry Department, Guilan University of Medical Sciences, Rasht, Iran
| | - Mojtaba Didehdar
- Department of Medical Parasitology and Mycology, School of Medicine, Arak University of Medical Sciences, Arāk, Iran
| | - Milad Gholami
- Department of Biochemistry and Genetics, School of Medicine, Arak University of Medical Sciences, Arāk, Iran.
| |
Collapse
|
3
|
Chintala S, Quist KM, Gonzalez-DeWhitt PA, Katzenellenbogen RA. High expression of NFX1-123 in HPV positive head and neck squamous cell carcinomas. Head Neck 2022; 44:177-188. [PMID: 34693597 PMCID: PMC8688290 DOI: 10.1002/hed.26906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/21/2021] [Accepted: 10/15/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND High-risk human papillomaviruses (HR HPV) cause nearly all cervical cancers and, in the United States, the majority of head and neck cancers (HNSCCs). NFX1-123 is overexpressed in cervical cancers, and NFX1-123 partners with the HR HPV type 16 E6 oncoprotein to affect multiple growth, differentiation, and immune response genes. However, neither the expression of NFX1-123 nor the levels of these genes have been investigated in HPV positive (HPV+) or negative (HPV-) HNSCCs. METHODS The Cancer Genome Atlas Splicing Variants Database and HNSCC cell lines were used to quantify expression of NFX1-123 and cellular genes increased in cervical cancers. RESULTS NFX1-123 was increased in HPV+ HNSCCs compared to HPV- HNSCCs. LCE1B, KRT16, SPRR2G, and FBN2 were highly expressed in HNSCCs compared to normal tissues. Notch1 and CCNB1IP1 had greater expression in HPV+ HNSCCs compared to HPV- HNSCCs. CONCLUSION NFX1-123 and a subset of its known targets were increased in HPV+ HNSCCs.
Collapse
Affiliation(s)
| | | | | | - Rachel A. Katzenellenbogen
- Correspondence: Rachel A. Katzenellenbogen, Indiana University School of Medicine, Herman B. Wells Center for Pediatric Research, 1044 W. Walnut Street, R4 366, Indianapolis, IN 46202, 317-278-0107,
| |
Collapse
|
4
|
Amoushahi M, Lykke-Hartmann K. Distinct Signaling Pathways Distinguish in vivo From in vitro Growth in Murine Ovarian Follicle Activation and Maturation. Front Cell Dev Biol 2021; 9:708076. [PMID: 34368158 PMCID: PMC8346253 DOI: 10.3389/fcell.2021.708076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/18/2021] [Indexed: 11/24/2022] Open
Abstract
Women with cancer and low ovarian reserves face serious challenges in infertility treatment. Ovarian tissue cryopreservation is currently used for such patients to preserve fertility. One major challenge is the activation of dormant ovarian follicles, which is hampered by our limited biological understanding of molecular determinants that activate dormant follicles and help maintain healthy follicles during growth. Here, we investigated the transcriptomes of oocytes isolated from dormant (primordial) and activated (primary) follicles under in vivo and in vitro conditions. We compared the biological relevance of the initial molecular markers of mature metaphase II (MII) oocytes developed in vivo or in vitro. The expression levels of genes involved in the cell cycle, signal transduction, and Wnt signaling were highly enriched in oocytes from primary follicles and MII oocytes. Interestingly, we detected strong downregulation of the expression of genes involved in mitochondrial and reactive oxygen species (ROS) production in oocytes from primordial follicles, in contrast to oocytes from primary follicles and MII oocytes. Our results showed a dynamic pattern in mitochondrial and ROS production-related genes, emphasizing their important role(s) in primordial follicle activation and oocyte maturation. The transcriptome of MII oocytes showed a major divergence from that of oocytes of primordial and primary follicles.
Collapse
Affiliation(s)
| | - Karin Lykke-Hartmann
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
5
|
Islam I, Baba Y, Witarto AB, Yoshida W. G-quadruplex–forming GGA repeat region functions as a negative regulator of the Ccnb1ip1 enhancer. Biosci Biotechnol Biochem 2019; 83:1697-1702. [DOI: 10.1080/09168451.2019.1611412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
ABSTRACT
An enhancer located upstream of the transcriptional start site of Ccnb1ip1 containing two GGA-rich regions and a 14-GGA repeat (GGA)14 region has been previously identified. Three copies of four GGA repeats in the c-myb promoter that form a tetrad:heptad:heptad:tetrad (T:H:H:T) dimerized G-quadruplex (G4) structure reportedly functions as both a transcriptional repressor and activator. Here, the secondary structures of the two GGA-rich and (GGA)14 regions were analyzed using circular dichroism spectral analysis, which indicated that the two GGA-rich DNAs formed parallel-type G4 structures, whereas (GGA)14 DNA formed the T:H:H:T dimerized G4 structure. Reporter assays demonstrated that individual regions did not show enhancer activity; however, the deletion of the (GGA)14 region resulted in 1.5-fold higher enhancer activity than that of the whole enhancer. These results indicate that the (GGA)14 region that forms the T:H:H:T dimerized G4 structure functions as a negative regulator of the Ccnb1ip1 enhancer.
Collapse
Affiliation(s)
- Izzul Islam
- Graduate School of Bionics, Tokyo University of Technology, Hachioji, Japan
- Department of Biotechnology, Sumbawa University of Technology, Sumbawa Besar, Indonesia
| | - Yuji Baba
- Graduate School of Bionics, Tokyo University of Technology, Hachioji, Japan
| | - Arief Budi Witarto
- Department of Biotechnology, Sumbawa University of Technology, Sumbawa Besar, Indonesia
| | - Wataru Yoshida
- Graduate School of Bionics, Tokyo University of Technology, Hachioji, Japan
| |
Collapse
|
6
|
Katoh N, Kuroda K, Tomikawa J, Ogata-Kawata H, Ozaki R, Ochiai A, Kitade M, Takeda S, Nakabayashi K, Hata K. Reciprocal changes of H3K27ac and H3K27me3 at the promoter regions of the critical genes for endometrial decidualization. Epigenomics 2018; 10:1243-1257. [PMID: 30212243 DOI: 10.2217/epi-2018-0006] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AIM Decidualization is essential for embryo implantation and placental development. We aimed to obtain transcriptome and epigenome profiles for primary endometrial stromal cells (ESCs) and in vitro decidualized cells. MATERIALS & METHODS ESCs isolated from human endometrial tissues remained untreated (D0), or decidualized for 4 days (D4) and 8 days (D8) in the presence of 8-bromo-cAMP and progesterone. RESULTS Among the epigenetic modifications examined (DNA methylation, H3K27ac, H3K9me3 and H3K27me3), the H3K27ac patterns changed most dramatically, with a moderate correlation with gene expression changes, upon decidualization. Subsets of up- and down-regulated genes upon decidualization were associated with reciprocal changes of H3K27ac and H3K27me3 modifications at their promoter region, and were enriched with genes essential for decidualization such as WNT4, ZBTB16, PROK1 and GREB1. CONCLUSION Our dataset is useful to further elucidate the molecular mechanisms underlying decidualization.
Collapse
Affiliation(s)
- Noriko Katoh
- Department of Maternal-Fetal Biology, National Research Institute for Child Health & Development, Tokyo 157-8535, Japan.,Department of Obstetrics & Gynecology, Faculty of Medicine, Juntendo University, Tokyo 113-8431, Japan
| | - Keiji Kuroda
- Department of Obstetrics & Gynecology, Faculty of Medicine, Juntendo University, Tokyo 113-8431, Japan
| | - Junko Tomikawa
- Department of Maternal-Fetal Biology, National Research Institute for Child Health & Development, Tokyo 157-8535, Japan
| | - Hiroko Ogata-Kawata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health & Development, Tokyo 157-8535, Japan
| | - Rie Ozaki
- Department of Obstetrics & Gynecology, Faculty of Medicine, Juntendo University, Tokyo 113-8431, Japan
| | - Asako Ochiai
- Department of Obstetrics & Gynecology, Faculty of Medicine, Juntendo University, Tokyo 113-8431, Japan
| | - Mari Kitade
- Department of Obstetrics & Gynecology, Faculty of Medicine, Juntendo University, Tokyo 113-8431, Japan
| | - Satoru Takeda
- Department of Obstetrics & Gynecology, Faculty of Medicine, Juntendo University, Tokyo 113-8431, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health & Development, Tokyo 157-8535, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health & Development, Tokyo 157-8535, Japan
| |
Collapse
|
7
|
Bay DH, Busch A, Lisdat F, Iida K, Ikebukuro K, Nagasawa K, Karube I, Yoshida W. Identification of G-quadruplex structures that possess transcriptional regulating functions in the Dele and Cdc6 CpG islands. BMC Mol Biol 2017; 18:17. [PMID: 28655335 PMCID: PMC5488298 DOI: 10.1186/s12867-017-0094-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 06/23/2017] [Indexed: 12/29/2022] Open
Abstract
Background G-quadruplex is a DNA secondary structure that has been shown to play an important role in biological systems. In a previous study, we identified 1998 G-quadruplex-forming sequences using a mouse CpG islands DNA microarray with a fluorescent-labeled G-quadruplex ligand. Among these putative G-quadruplex-forming sequences, G-quadruplex formation was verified for 10 randomly selected sequences by CD spectroscopy and DMS footprinting analysis. In this study, the biological function of the 10 G-quadruplex-forming sequences in the transcriptional regulation has been analyzed using a reporter assay. Results When G-quadruplex-forming sequences from the Dele and Cdc6 genes have been cloned in reporter vectors carrying a minimal promoter and the luciferase gene, luciferase expression is activated. This has also been detected in experiments applying a promoterless reporter vector. Mutational analysis reveals that guanine bases, which form the G-tetrads, are important in the activation. In addition, the activation has been found to decrease by the telomestatin derivative L1H1-7OTD which can bind to the G-quadruplex DNA. When Dele and Cdc6 CpG islands, containing the G-quadruplex-forming sequence, have been cloned in the promoterless reporter vector, the luciferase expression is activated. Mutational analysis reveals that the expression level is decreased by mutation on Dele G-quadruplex; however, increased by mutation on Cdc6 G-quadruplex. Conclusion Dele and Cdc6 G-quadruplex formation is significant in the transcriptional regulation. Dele and Cdc6 G-quadruplex DNA alone possess enhancer and promotor function. When studied in more complex CpG islands Dele G-quadruplex also demonstrates promotor activity, whereas Cdc6 G-quadruplex may possess a dual function of transcriptional regulation. Electronic supplementary material The online version of this article (doi:10.1186/s12867-017-0094-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniyah H Bay
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo, 192-0982, Japan.,Biology Department, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Annika Busch
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo, 192-0982, Japan.,Biosystems Technology, Institute of Applied Life Sciences, Technical University of Applied Sciences Wildau, Wildau, Germany
| | - Fred Lisdat
- Biosystems Technology, Institute of Applied Life Sciences, Technical University of Applied Sciences Wildau, Wildau, Germany
| | - Keisuke Iida
- Graduate School of Science and Engineering, Saitama University, c/o Saitama Cancer Center, Saitama, Japan
| | - Kazunori Ikebukuro
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Kazuo Nagasawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Isao Karube
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo, 192-0982, Japan
| | - Wataru Yoshida
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo, 192-0982, Japan.
| |
Collapse
|