1
|
Fu A, Lado FA. Seizure Detection, Prediction, and Forecasting. J Clin Neurophysiol 2024; 41:207-213. [PMID: 38436388 DOI: 10.1097/wnp.0000000000001045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
SUMMARY Among the many fears associated with seizures, patients with epilepsy are greatly frustrated and distressed over seizure's apparent unpredictable occurrence. However, increasing evidence have emerged over the years to support that seizure occurrence is not a random phenomenon as previously presumed; it has a cyclic rhythm that oscillates over multiple timescales. The pattern in rises and falls of seizure rate that varies over 24 hours, weeks, months, and years has become a target for the development of innovative devices that intend to detect, predict, and forecast seizures. This article will review the different tools and devices available or that have been previously studied for seizure detection, prediction, and forecasting, as well as the associated challenges and limitations with the utilization of these devices. Although there is strong evidence for rhythmicity in seizure occurrence, very little is known about the mechanism behind this oscillation. This article concludes with early insights into the regulations that may potentially drive this cyclical variability and future directions.
Collapse
Affiliation(s)
- Aradia Fu
- Department of Neurology, Zucker School of Medicine at Hofstra-Northwell, Great Neck, New York, U.S.A
| | | |
Collapse
|
2
|
Kline A, Forkert ND, Felfeliyan B, Pittman D, Goodyear B, Ronsky J. fMRI-Informed EEG for brain mapping of imagined lower limb movement: Feasibility of a brain computer interface. J Neurosci Methods 2021; 363:109339. [PMID: 34454954 DOI: 10.1016/j.jneumeth.2021.109339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/17/2021] [Accepted: 08/21/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND EEG and fMRI have contributed greatly to our understanding of brain activity and its link to behaviors by helping to identify both when and where the activity occurs. This is particularly important in the development of brain-computer interfaces (BCIs), where feed forward systems gather data from imagined brain activity and then send that information to an effector. The purpose of this study was to develop and evaluate a computational approach that enables an accurate mapping of spatial brain activity (fMRI) in relation to the temporal receptors (EEG electrodes) associated with imagined lower limb movement. NEW METHOD EEG and fMRI data from 16 healthy, male participants while imagining lower limb movement were used for this purpose. A combined analysis of fMRI data and EEG electrode locations was developed to identify EEG electrodes with a high likelihood of capturing imagined lower limb movement originating from various clusters of brain activity. This novel feature selection tool was used to develop an artificial neural network model to classify right and left lower limb movement. RESULTS Results showed that left versus right lower limb imagined movement could be classified with 66.5% accuracy using this approach. Comparison with existing methods: Adopting a purely data-driven approach for feature selection to use in the right/left classification task resulted in the same accuracy (66.6%) but with reduced interpretability. CONCLUSIONS The developed fMRI-informed EEG approach could pave the way towards improved brain computer interfaces for lower limb movement while also being applicable to other systems where fMRI could be helpful to inform EEG acquisition and processing.
Collapse
Affiliation(s)
- Adrienne Kline
- Department of Biomedical Engineering, University of Calgary, Calgary, Alberta, Canada.
| | - Nils D Forkert
- Department of Biomedical Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Banafshe Felfeliyan
- Department of Biomedical Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Daniel Pittman
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
| | - Bradley Goodyear
- Department of Biomedical Engineering, University of Calgary, Calgary, Alberta, Canada; Department of Radiology, University of Calgary, Calgary, Alberta, Canada
| | - Janet Ronsky
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
3
|
Hofmann SM, Klotzsche F, Mariola A, Nikulin V, Villringer A, Gaebler M. Decoding subjective emotional arousal from EEG during an immersive virtual reality experience. eLife 2021; 10:e64812. [PMID: 34708689 PMCID: PMC8673835 DOI: 10.7554/elife.64812] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 10/27/2021] [Indexed: 02/06/2023] Open
Abstract
Immersive virtual reality (VR) enables naturalistic neuroscientific studies while maintaining experimental control, but dynamic and interactive stimuli pose methodological challenges. We here probed the link between emotional arousal, a fundamental property of affective experience, and parieto-occipital alpha power under naturalistic stimulation: 37 young healthy adults completed an immersive VR experience, which included rollercoaster rides, while their EEG was recorded. They then continuously rated their subjective emotional arousal while viewing a replay of their experience. The association between emotional arousal and parieto-occipital alpha power was tested and confirmed by (1) decomposing the continuous EEG signal while maximizing the comodulation between alpha power and arousal ratings and by (2) decoding periods of high and low arousal with discriminative common spatial patterns and a long short-term memory recurrent neural network. We successfully combine EEG and a naturalistic immersive VR experience to extend previous findings on the neurophysiology of emotional arousal towards real-world neuroscience.
Collapse
Affiliation(s)
- Simon M Hofmann
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Felix Klotzsche
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Humboldt-Universität zu Berlin, Faculty of Philosophy, Berlin School of Mind and BrainBerlinGermany
| | - Alberto Mariola
- Sackler Centre for Consciousness Science, School of Engineering and Informatics, University of SussexBrightonUnited Kingdom
- Sussex Neuroscience, School of Life Sciences, University of SussexBrightonUnited Kingdom
| | - Vadim Nikulin
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Bernstein Center for Computational Neuroscience BerlinBerlinGermany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Humboldt-Universität zu Berlin, Faculty of Philosophy, Berlin School of Mind and BrainBerlinGermany
| | - Michael Gaebler
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Humboldt-Universität zu Berlin, Faculty of Philosophy, Berlin School of Mind and BrainBerlinGermany
| |
Collapse
|
4
|
Sahonero-Alvarez G, Singh AK, Sayrafian K, Bianchi L, Roman-Gonzalez A. A Functional BCI Model by the P2731 Working Group: Transducer. BRAIN-COMPUTER INTERFACES 2021. [DOI: 10.1080/2326263x.2021.1968633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | | | - Kamran Sayrafian
- Information Technology Laboratory, National Institute of Standards & Technology, Gaithersburg, USA
| | - Luigi Bianchi
- Civil Engineering and Computer Science Engineering Dept. Tor Vergata University of Rome, Rome, Italy
| | | |
Collapse
|
5
|
Zhang X, Yao L, Wang X, Monaghan JJM, Mcalpine D, Zhang Y. A survey on deep learning-based non-invasive brain signals: recent advances and new frontiers. J Neural Eng 2020; 18. [PMID: 33171452 DOI: 10.1088/1741-2552/abc902] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 11/10/2020] [Indexed: 12/25/2022]
Abstract
Brain signals refer to the biometric information collected from the human brain. The research on brain signals aims to discover the underlying neurological or physical status of the individuals by signal decoding. The emerging deep learning techniques have improved the study of brain signals significantly in recent years. In this work, we first present a taxonomy of non-invasive brain signals and the basics of deep learning algorithms. Then, we provide a comprehensive survey of the frontiers of applying deep learning for non-invasive brain signals analysis, by summarizing a large number of recent publications. Moreover, upon the deep learning-powered brain signal studies, we report the potential real-world applications which benefit not only disabled people but also normal individuals. Finally, we discuss the opening challenges and future directions.
Collapse
Affiliation(s)
- Xiang Zhang
- Harvard University, Cambridge, Massachusetts, UNITED STATES
| | - Lina Yao
- University of New South Wales, Sydney, New South Wales, AUSTRALIA
| | - Xianzhi Wang
- Faculty of Engineering and IT, University of Technology Sydney, 81 Broadway, Ultimo, Sydney, New South Wales, 2007, AUSTRALIA
| | | | - David Mcalpine
- Macquarie University, Sydney, New South Wales, AUSTRALIA
| | - Yu Zhang
- Stanford University, Stanford, California, 94305-6104, UNITED STATES
| |
Collapse
|
6
|
Zhang X, Ma Z, Zheng H, Li T, Chen K, Wang X, Liu C, Xu L, Wu X, Lin D, Lin H. The combination of brain-computer interfaces and artificial intelligence: applications and challenges. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:712. [PMID: 32617332 PMCID: PMC7327323 DOI: 10.21037/atm.2019.11.109] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Brain-computer interfaces (BCIs) have shown great prospects as real-time bidirectional links between living brains and actuators. Artificial intelligence (AI), which can advance the analysis and decoding of neural activity, has turbocharged the field of BCIs. Over the past decade, a wide range of BCI applications with AI assistance have emerged. These "smart" BCIs including motor and sensory BCIs have shown notable clinical success, improved the quality of paralyzed patients' lives, expanded the athletic ability of common people and accelerated the evolution of robots and neurophysiological discoveries. However, despite technological improvements, challenges remain with regard to the long training periods, real-time feedback, and monitoring of BCIs. In this article, the authors review the current state of AI as applied to BCIs and describe advances in BCI applications, their challenges and where they could be headed in the future.
Collapse
Affiliation(s)
- Xiayin Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ziyue Ma
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Huaijin Zheng
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Tongkeng Li
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Kexin Chen
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xun Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Chenting Liu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Linxi Xu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaohang Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Duoru Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Haotian Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.,Center of Precision Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Wang K, Xu M, Wang Y, Zhang S, Chen L, Ming D. Enhance decoding of pre-movement EEG patterns for brain-computer interfaces. J Neural Eng 2020; 17:016033. [PMID: 31747642 DOI: 10.1088/1741-2552/ab598f] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE In recent years, brain-computer interface (BCI) systems based on electroencephalography (EEG) have developed rapidly. However, the decoding of voluntary finger pre-movements from EEG is still a challenge for BCIs. This study aimed to analyze the pre-movement EEG features in time and frequency domains and design an efficient method to decode the movement-related patterns. APPROACH In this study, we first investigated the EEG features induced by the intention of left and right finger movements. Specifically, the movement-related cortical potential (MRCP) and event-related desynchronization (ERD) features were extracted using discriminative canonical pattern matching (DCPM) and common spatial patterns (CSP), respectively. Then, the two types of features were classified by two fisher discriminant analysis (FDA) classifiers, respectively. Their decision values were further assembled to facilitate the classification. To verify the validity of the proposed method, a private dataset containing 12 subjects and a public dataset from BCI competition II were used for estimating the classification accuracy. MAIN RESULTS As a result, for the private dataset, the combination of DCPM and CSP achieved an average accuracy of 80.96%, which was 5.08% higher than the single DCPM method (p < 0.01) and 10.23% higher than the single CSP method (p < 0.01). Notably, the highest accuracy could achieve 91.5% for the combination method. The test accuracy of dataset IV of BCI competition II was 90%, which was equal to the best result in the existing literature. SIGNIFICANCE The results demonstrate the MRCP and ERD features of pre-movements contain significantly discriminative information, which are complementary to each other, and thereby could be well recognized by the proposed combination method of DCPM and CSP. Therefore, this study provides a promising approach for the decoding of pre-movement EEG patterns, which is significant for the development of BCIs.
Collapse
Affiliation(s)
- Kun Wang
- Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, People's Republic of China. Contributed equally to this work
| | | | | | | | | | | |
Collapse
|
8
|
Hramov AE, Maksimenko V, Koronovskii A, Runnova AE, Zhuravlev M, Pisarchik AN, Kurths J. Percept-related EEG classification using machine learning approach and features of functional brain connectivity. CHAOS (WOODBURY, N.Y.) 2019; 29:093110. [PMID: 31575147 DOI: 10.1063/1.5113844] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 08/08/2019] [Indexed: 06/10/2023]
Abstract
Machine learning is a promising approach for electroencephalographic (EEG) trials classification. Its efficiency is largely determined by the feature extraction and selection techniques reducing the dimensionality of input data. Dimensionality reduction is usually implemented via the mathematical approaches (e.g., principal component analysis, linear discriminant analysis, etc.) regardless of the origin of analyzed data. We hypothesize that since EEG features are determined by certain neurophysiological processes, they should have distinctive characteristics in spatiotemporal domain. If so, it is possible to specify the set of EEG principal features based on the prior knowledge about underlying neurophysiological processes. To test this hypothesis, we consider the classification of EEG trials related to the perception of ambiguous visual stimuli. We observe that EEG features, underlying the different ambiguous stimuli interpretations, are defined by the network properties of neuronal activity. Having analyzed functional neural interactions, we specify the brain area in which neural network architecture exhibits differences for different classes of EEG trials. We optimize the feedforward multilayer perceptron and develop a strategy for the training set selection to maximize the classification accuracy, being 85% when all channels are used. The revealed localization of the percept-related features allows about 95% accuracy, when the number of channels is reduced up to 90%. Obtained results can be used for classification of EEG trials associated with more complex cognitive tasks. Taking into account that cognitive activity is subserved by a distributed functional cortical network, its topological properties have to be considered when selecting optimal features for EEG trial classification.
Collapse
Affiliation(s)
- Alexander E Hramov
- Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, 420500 Innopolis, The Republic of Tatarstan, Russia
| | - Vladimir Maksimenko
- Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, 420500 Innopolis, The Republic of Tatarstan, Russia
| | - Alexey Koronovskii
- Faculty of Nonlinear Processes, Saratov State University, 410012 Saratov, Russia
| | - Anastasiya E Runnova
- Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, 420500 Innopolis, The Republic of Tatarstan, Russia
| | - Maxim Zhuravlev
- Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, 420500 Innopolis, The Republic of Tatarstan, Russia
| | - Alexander N Pisarchik
- Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, 420500 Innopolis, The Republic of Tatarstan, Russia
| | - Jürgen Kurths
- Potsdam Institute for Climate Impact Research, 14473 Potsdam, Germany
| |
Collapse
|
9
|
Arco JE, Díaz-Gutiérrez P, Ramírez J, Ruz M. Atlas-Based Classification Algorithms for Identification of Informative Brain Regions in fMRI Data. Neuroinformatics 2019; 18:219-236. [PMID: 31402435 DOI: 10.1007/s12021-019-09435-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Multi-voxel pattern analysis (MVPA) has been successfully applied to neuroimaging data due to its larger sensitivity compared to univariate traditional techniques. Searchlight is the most widely employed approach to assign functional value to different regions of the brain. However, its performance depends on the size of the sphere, which can overestimate the region of activation when a large sphere size is employed. In the current study, we examined the validity of two different alternatives to Searchlight: an atlas-based local averaging method (ABLA, Schrouff et al. Neuroinformatics 16, 117-143, 2013a) and a Multi-Kernel Learning (MKL, Rakotomamonjy et al. Journal of Machine Learning 9, 2491-2521, 2008) approach, in a scenario where the goal is to find the informative brain regions that support certain mental operations. These methods employ weights to measure the informativeness of a brain region and highly reduce the large computational cost that Searchlight entails. We evaluated their performance in two different scenarios where the differential BOLD activation between experimental conditions was large vs. small, and employed nine different atlases to assess the influence of diverse brain parcellations. Results show that both methods were able to localize informative regions when differences between conditions were large, demonstrating a large sensitivity and stability in the identification of regions across atlases. Moreover, the sign of the weights reported by these methods provided the directionality of univariate approaches. However, when differences were small, only ABLA localized informative regions. Thus, our results show that atlas-based methods are useful alternatives to Searchlight, but that the nature of the classification to perform should be taken into account when choosing the specific method to implement.
Collapse
Affiliation(s)
- Juan E Arco
- Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain
| | - Paloma Díaz-Gutiérrez
- Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain
| | - Javier Ramírez
- Department of Signal Theory, Networking and Communications, University of Granada, Granada, Spain
| | - María Ruz
- Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain.
| |
Collapse
|
10
|
Silva GA. A New Frontier: The Convergence of Nanotechnology, Brain Machine Interfaces, and Artificial Intelligence. Front Neurosci 2018; 12:843. [PMID: 30505265 PMCID: PMC6250836 DOI: 10.3389/fnins.2018.00843] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/29/2018] [Indexed: 12/17/2022] Open
Abstract
A confluence of technological capabilities is creating an opportunity for machine learning and artificial intelligence (AI) to enable "smart" nanoengineered brain machine interfaces (BMI). This new generation of technologies will be able to communicate with the brain in ways that support contextual learning and adaptation to changing functional requirements. This applies to both invasive technologies aimed at restoring neurological function, as in the case of neural prosthesis, as well as non-invasive technologies enabled by signals such as electroencephalograph (EEG). Advances in computation, hardware, and algorithms that learn and adapt in a contextually dependent way will be able to leverage the capabilities that nanoengineering offers the design and functionality of BMI. We explore the enabling capabilities that these devices may exhibit, why they matter, and the state of the technologies necessary to build them. We also discuss a number of open technical challenges and problems that will need to be solved in order to achieve this.
Collapse
Affiliation(s)
- Gabriel A. Silva
- Departments of Bioengineering and Neurosciences, Center for Engineered Natural Intelligence, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
11
|
Schaeffer MC, Aksenova T. Data-Driven Transducer Design and Identification for Internally-Paced Motor Brain Computer Interfaces: A Review. Front Neurosci 2018; 12:540. [PMID: 30158847 PMCID: PMC6104172 DOI: 10.3389/fnins.2018.00540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 07/17/2018] [Indexed: 11/13/2022] Open
Abstract
Brain-Computer Interfaces (BCIs) are systems that establish a direct communication pathway between the users' brain activity and external effectors. They offer the potential to improve the quality of life of motor-impaired patients. Motor BCIs aim to permit severely motor-impaired users to regain limb mobility by controlling orthoses or prostheses. In particular, motor BCI systems benefit patients if the decoded actions reflect the users' intentions with an accuracy that enables them to efficiently interact with their environment. One of the main challenges of BCI systems is to adapt the BCI's signal translation blocks to the user to reach a high decoding accuracy. This paper will review the literature of data-driven and user-specific transducer design and identification approaches and it focuses on internally-paced motor BCIs. In particular, continuous kinematic biomimetic and mental-task decoders are reviewed. Furthermore, static and dynamic decoding approaches, linear and non-linear decoding, offline and real-time identification algorithms are considered. The current progress and challenges related to the design of clinical-compatible motor BCI transducers are additionally discussed.
Collapse
Affiliation(s)
| | - Tetiana Aksenova
- CEA, LETI, CLINATEC, MINATEC Campus, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Seizure prediction has made important advances over the last decade, with the recent demonstration that prospective seizure prediction is possible, though there remain significant obstacles to broader application. In this review, we will describe insights gained from long-term trials, with the aim of identifying research goals for the next decade. RECENT FINDINGS Unexpected results from these studies, including strong and highly individual relationships between spikes and seizures, diurnal patterns of seizure activity, and the coexistence of different seizure populations within individual patients exhibiting distinctive dynamics, have caused us to re-evaluate many prior assumptions in seizure prediction studies and suggest alternative strategies that could be employed in the search for algorithms providing greater clinical utility. Advances in analytical approaches, particularly deep-learning techniques, harbour great promise and in combination with less-invasive systems with sufficiently power-efficient computational capacity will bring broader clinical application within reach. SUMMARY We conclude the review with an exercise in wishful thinking, which asks what the ideal seizure prediction dataset would look like and how these data should be manipulated to maximize benefits for patients. The motivation for structuring the review in this way is to create a forward-looking, optimistic critique of the existing methodologies.
Collapse
|
13
|
Lotte F, Bougrain L, Cichocki A, Clerc M, Congedo M, Rakotomamonjy A, Yger F. A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update. J Neural Eng 2018; 15:031005. [DOI: 10.1088/1741-2552/aab2f2] [Citation(s) in RCA: 848] [Impact Index Per Article: 141.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
14
|
Hramov AE, Frolov NS, Maksimenko VA, Makarov VV, Koronovskii AA, Garcia-Prieto J, Antón-Toro LF, Maestú F, Pisarchik AN. Artificial neural network detects human uncertainty. CHAOS (WOODBURY, N.Y.) 2018; 28:033607. [PMID: 29604631 DOI: 10.1063/1.5002892] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Artificial neural networks (ANNs) are known to be a powerful tool for data analysis. They are used in social science, robotics, and neurophysiology for solving tasks of classification, forecasting, pattern recognition, etc. In neuroscience, ANNs allow the recognition of specific forms of brain activity from multichannel EEG or MEG data. This makes the ANN an efficient computational core for brain-machine systems. However, despite significant achievements of artificial intelligence in recognition and classification of well-reproducible patterns of neural activity, the use of ANNs for recognition and classification of patterns in neural networks still requires additional attention, especially in ambiguous situations. According to this, in this research, we demonstrate the efficiency of application of the ANN for classification of human MEG trials corresponding to the perception of bistable visual stimuli with different degrees of ambiguity. We show that along with classification of brain states associated with multistable image interpretations, in the case of significant ambiguity, the ANN can detect an uncertain state when the observer doubts about the image interpretation. With the obtained results, we describe the possible application of ANNs for detection of bistable brain activity associated with difficulties in the decision-making process.
Collapse
Affiliation(s)
- Alexander E Hramov
- Artificial Intelligence Systems and Neurotechnologies, Yuri Gagarin State Technical University of Saratov, Politehnicheskaya, 77, Saratov 410054, Russia
| | - Nikita S Frolov
- Artificial Intelligence Systems and Neurotechnologies, Yuri Gagarin State Technical University of Saratov, Politehnicheskaya, 77, Saratov 410054, Russia
| | - Vladimir A Maksimenko
- Artificial Intelligence Systems and Neurotechnologies, Yuri Gagarin State Technical University of Saratov, Politehnicheskaya, 77, Saratov 410054, Russia
| | - Vladimir V Makarov
- Artificial Intelligence Systems and Neurotechnologies, Yuri Gagarin State Technical University of Saratov, Politehnicheskaya, 77, Saratov 410054, Russia
| | | | - Juan Garcia-Prieto
- Center for Biomedical Technology, Technical University of Madrid, Campus Montegancedo, 28223 Pozuelo de Alarcon, Madrid, Spain
| | - Luis Fernando Antón-Toro
- Center for Biomedical Technology, Technical University of Madrid, Campus Montegancedo, 28223 Pozuelo de Alarcon, Madrid, Spain
| | - Fernando Maestú
- Center for Biomedical Technology, Technical University of Madrid, Campus Montegancedo, 28223 Pozuelo de Alarcon, Madrid, Spain
| | - Alexander N Pisarchik
- Artificial Intelligence Systems and Neurotechnologies, Yuri Gagarin State Technical University of Saratov, Politehnicheskaya, 77, Saratov 410054, Russia
| |
Collapse
|
15
|
Dhindsa K, Carcone D, Becker S. Toward an Open-Ended BCI: A User-Centered Coadaptive Design. Neural Comput 2017; 29:2742-2768. [PMID: 28777722 DOI: 10.1162/neco_a_01001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Brain-computer interfaces (BCIs) allow users to control a device by interpreting their brain activity. For simplicity, these devices are designed to be operated by purposefully modulating specific predetermined neurophysiological signals, such as the sensorimotor rhythm. However, the ability to modulate a given neurophysiological signal is highly variable across individuals, contributing to the inconsistent performance of BCIs for different users. These differences suggest that individuals who experience poor BCI performance with one class of brain signals might have good results with another. In order to take advantage of individual abilities as they relate to BCI control, we need to move beyond the current approaches. In this letter, we explore a new BCI design aimed at a more individualized and user-focused experience, which we call open-ended BCI. Individual users were given the freedom to discover their own mental strategies as opposed to being trained to modulate a given brain signal. They then underwent multiple coadaptive training sessions with the BCI. Our first open-ended BCI performed similarly to comparable BCIs while accommodating a wider variety of mental strategies without a priori knowledge of the specific brain signals any individual might use. Post hoc analysis revealed individual differences in terms of which sensory modality yielded optimal performance. We found a large and significant effect of individual differences in background training and expertise, such as in musical training, on BCI performance. Future research should be focused on finding more generalized solutions to user training and brain state decoding methods to fully utilize the abilities of different individuals in an open-ended BCI. Accounting for each individual's areas of expertise could have important implications on BCI training and BCI application design.
Collapse
Affiliation(s)
- Kiret Dhindsa
- Neurotechnology and Neuroplasticity Lab, Department of Psychology, Neuroscience, and Behaviour, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Dean Carcone
- Neurotechnology and Neuroplasticity Lab, Department of Psychology, Neuroscience, and Behaviour, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Suzanna Becker
- Neurotechnology and Neuroplasticity Lab, Department of Psychology, Neuroscience, and Behaviour, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
16
|
Kiral-Kornek I, Mendis D, Nurse ES, Mashford BS, Freestone DR, Grayden DB, Harrer S. TrueNorth-enabled real-time classification of EEG data for brain-computer interfacing. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2017:1648-1651. [PMID: 29060200 DOI: 10.1109/embc.2017.8037156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Brain-computer interfaces are commonly proposed to assist individuals with locked-in syndrome to interact with the world around them. In this paper, we present a pipeline to move from recorded brain signals to real-time classification on a low-power platform, such as IBM's TrueNorth Neurosynaptic System. Our results on a EEG-based hand squeeze task show that using a convolutional neural network and a time preserving signal representation strategy provides a good balance between high accuracy and feasibility in a real-time application. This pathway can be adapted to the management of a variety of conditions, including spinal cord injury, epilepsy and Parkinson's disease.
Collapse
|