1
|
Guo H, Li T, Wang Z. Pleiotropic genetic association analysis with multiple phenotypes using multivariate response best-subset selection. BMC Genomics 2023; 24:759. [PMID: 38082214 PMCID: PMC10712198 DOI: 10.1186/s12864-023-09820-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Genetic pleiotropy refers to the simultaneous association of a gene with multiple phenotypes. It is widely distributed in the whole genome and can help to understand the common genetic mechanism of diseases or traits. In this study, a multivariate response best-subset selection (MRBSS) model based pleiotropic association analysis method is proposed. Different from the traditional genetic association model, the high-dimensional genotypic data are viewed as response variables while the multiple phenotypic data as predictor variables. Moreover, the response best-subset selection procedure is converted into an 0-1 integer optimization problem by introducing a separation parameter and a tuning parameter. Furthermore, the model parameters are estimated by using the curve search under the modified Bayesian information criterion. Simulation experiments show that the proposed method MRBSS remarkably reduces the computational time, obtains higher statistical power under most of the considered scenarios, and controls the type I error rate at a low level. The application studies in the datasets of maize yield traits and pig lipid traits further verifies the effectiveness.
Collapse
Affiliation(s)
- Hongping Guo
- School of Mathematics and Statistics, Hubei Normal University, Huangshi, 435002, People's Republic of China.
| | - Tong Li
- School of Mathematics and Statistics, Hubei Normal University, Huangshi, 435002, People's Republic of China
| | - Zixuan Wang
- School of Mathematics and Statistics, South-Central Minzu University, Wuhan, 430074, People's Republic of China
| |
Collapse
|
2
|
Zeng Q, Du ZQ. Advances in the discovery of genetic elements underlying longissimus dorsi muscle growth and development in the pig. Anim Genet 2023; 54:709-720. [PMID: 37796678 DOI: 10.1111/age.13365] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 07/08/2023] [Accepted: 07/08/2023] [Indexed: 10/07/2023]
Abstract
As a major source of protein in human diets, pig meat plays a crucial role in ensuring global food security. Key determinants of meat production refer to the chemical and physical compositions or characteristics of muscle fibers, such as the number, hypertrophy potential, fiber-type conversion and intramuscular fat deposition. However, the growth and formation of muscle fibers comprises a complex process under spatio-temporal regulation, that is, the intermingled and concomitant proliferation, differentiation, migration and fusion of myoblasts. Recently, with the fast and continuous development of next-generation sequencing technology, the integration of quantitative trait loci mapping with genome-wide association studies (GWAS) has greatly helped animal geneticists to discover and explore thousands of functional or causal genetic elements underlying muscle growth and development. However, owing to the underlying complex molecular mechanisms, challenges to in-depth understanding and utilization remain, and the cost of large-scale sequencing, which requires integrated analyses of high-throughput omics data, is high. In this review, we mainly elaborate on research advances in integrative analyses (e.g. GWAS, omics) for identifying functional genes or genomic elements for longissimus dorsi muscle growth and development for different pig breeds, describing several successful transcriptome analyses and functional genomics cases, in an attempt to provide some perspective on the future functional annotation of genetic elements for muscle growth and development in pigs.
Collapse
Affiliation(s)
- Qingjie Zeng
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Zhi-Qiang Du
- College of Animal Science, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
3
|
Wang J, Jiang Z, Guo H, Li Z. Divided-and-combined omnibus test for genetic association analysis with high-dimensional data. Stat Methods Med Res 2023; 32:626-637. [PMID: 36652550 DOI: 10.1177/09622802231151204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Advances in biologic technology enable researchers to obtain a huge amount of genetic and genomic data, whose dimensions are often quite high on both phenotypes and variants. Testing their association with multiple phenotypes has been a hot topic in recent years. Traditional single phenotype multiple variant analysis has to be adjusted for multiple testing and thus suffers from substantial power loss due to ignorance of correlation across phenotypes. Similarity-based method, which uses the trace of product of two similarity matrices as a test statistic, has emerged as a useful tool to handle this problem. However, it loses power when the correlation strength within multiple phenotypes is middle or strong, for some signals represented by the eigenvalues of phenotypic similarity matrix are masked by others. We propose a divided-and-combined omnibus test to handle this drawback of the similarity-based method. Based on the divided-and-combined strategy, we first divide signals into two groups in a series of cut points according to eigenvalues of the phenotypic similarity matrix and combine analysis results via the Cauchy-combined method to reach a final statistic. Extensive simulations and application to a pig data demonstrate that the proposed statistic is much more powerful and robust than the original test under most of the considered scenarios, and sometimes the power increase can be more than 0.6. Divided-and-combined omnibus test facilitates genetic association analysis with high-dimensional data and achieves much higher power than the existing similarity based method. In fact, divided-and-combined omnibus test can be used whenever the association analysis between two multivariate variables needs to be conducted.
Collapse
Affiliation(s)
- Jinjuan Wang
- School of Mathematics and Statistics, 47833Beijing Institute of Technology, Beijing, China
| | - Zhenzhen Jiang
- LSC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China.,School of Mathematical Science, University of Chinese Academy of Sciences, Beijing, China
| | - Hongping Guo
- School of Mathematics and Statistics, Hubei Normal University, Huangshi, China
| | - Zhengbang Li
- School of Mathematics and Statistics, 12446Central China Normal University, Wuhan, China
| |
Collapse
|
4
|
Fang Y, Hao X, Xu Z, Sun H, Zhao Q, Cao R, Zhang Z, Ma P, Sun Y, Qi Z, Wei Q, Wang Q, Pan Y. Genome-Wide Detection of Runs of Homozygosity in Laiwu Pigs Revealed by Sequencing Data. Front Genet 2021; 12:629966. [PMID: 33995477 PMCID: PMC8116706 DOI: 10.3389/fgene.2021.629966] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/08/2021] [Indexed: 11/13/2022] Open
Abstract
Laiwu pigs, distinguished by their high intramuscular fat of 7-9%, is an indigenous pig breed of China, and recent studies also found that Laiwu pigs showed high resistance to Porcine circovirus type 2. However, with the introduction of commercial varieties, the population of Laiwu pigs has declined, and some lineages have disappeared, which could result in inbreeding. Runs of homozygosity (ROH) can be used as a good measure of individual inbreeding status and is also normally used to detect selection signatures so as to map the candidate genes associated with economically important traits. In this study, we used data from Genotyping by Genome Reducing and Sequencing to investigate the number, length, coverage, and distribution patterns of ROH in 93 Chinese Laiwu pigs and identified genomic regions with a high ROH frequency. The average inbreeding coefficient calculated by pedigree was 0.021, whereas that estimated by all detected ROH segments was 0.133. Covering 13.4% of the whole genome, a total of 7,508 ROH segments longer than 1 Mb were detected, whose average length was 3.76 Mb, and short segments (1-5 Mb) dominated. For individuals, the coverage was in the range between 0.56 and 36.86%. For chromosomes, SSC6 had the largest number (n = 688), and the number of ROH in SSC12 was the lowest (n = 215). Thirteen ROH islands were detected in our study, and 86 genes were found within those regions. Some of these genes were correlated with economically important traits, such as meat quality (ECI1, LRP12, NDUFA4L2, GIL1, and LYZ), immunity capacity (IL23A, STAT2, STAT6, TBK1, IFNG, and ITH2), production (DCSTAMP, RDH16, and GDF11), and reproduction (ODF1 and CDK2). A total of six significant Gene Ontology terms and nine significant Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were identified, most of which were correlated with disease resistance and biosynthesis processes, and one KEGG pathway was related to lipid metabolism. In addition, we aligned all of the ROH islands to the pig quantitative trait loci (QTL) database and finally found eight QTL related to the intramuscular fat trait. These results may help us understand the characteristics of Laiwu pigs and provide insight for future breeding strategies.
Collapse
Affiliation(s)
- Yifei Fang
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xinyu Hao
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhong Xu
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Sun
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qingbo Zhao
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Rui Cao
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhe Zhang
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Peipei Ma
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | - Qishan Wang
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yuchun Pan
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Ma C, Sun Y, Wang J, Kang L, Jiang Y. Identification of a promoter polymorphism affecting GPAT3 gene expression that is likely related to intramuscular fat content in pigs. Anim Biotechnol 2020; 33:1378-1381. [PMID: 33345707 DOI: 10.1080/10495398.2020.1858847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The intramuscular fat content (IMF) is an economically important trait in pigs and the Laiwu pig is famous for its excessively extremely high level of IMF. Our previous transcriptome study revealed that the dynamic expression of glycerol-phosphate acyltransferase 3 (GPAT3) is consistent with changes in the IMF of Laiwu pigs. In this study, we further analyzed the expression and polymorphism of GPAT3 in its promoter region. The results indicated that the expression of GPAT3 increased dramatically from 120 to 240 days and is consistent with changes in IMF deposition, and at both mRNA and protein levels, GPAT3 expression was markedly higher in the LD muscle of Laiwu pigs than that of Duroc × Landrace × Yorkshire pigs. Deletion from -1695 to -1187 of porcine GPAT3 greatly increased its transcription. Of the two SNPs identified, the transition from C to T at -1526 site increased the transcription of porcine GPAT3 and allele T mainly distributed in Laiwu pig population. These results collectively suggest that the SNP at -1526 site of GPAT3 may contribute to IMF deposition by affecting its expression in pigs.
Collapse
Affiliation(s)
- Cai Ma
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, PR China
| | - Yi Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, PR China
| | - Jiying Wang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, PR China
| | - Li Kang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, PR China
| | - Yunliang Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, PR China
| |
Collapse
|
6
|
Zhuang Z, Ding R, Peng L, Wu J, Ye Y, Zhou S, Wang X, Quan J, Zheng E, Cai G, Huang W, Yang J, Wu Z. Genome-wide association analyses identify known and novel loci for teat number in Duroc pigs using single-locus and multi-locus models. BMC Genomics 2020; 21:344. [PMID: 32380955 PMCID: PMC7204245 DOI: 10.1186/s12864-020-6742-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 04/16/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND More teats are necessary for sows to nurse larger litters to provide immunity and nutrient for piglets prior to weaning. Previous studies have reported the strong effect of an insertion mutation in the Vertebrae Development Associated (VRTN) gene on Sus scrofa chromosome 7 (SSC7) that increased the number of thoracic vertebrae and teat number in pigs. We used genome-wide association studies (GWAS) to map genetic markers and genes associated with teat number in two Duroc pig populations with different genetic backgrounds. A single marker method and several multi-locus methods were utilized. A meta-analysis that combined the effects and P-values of 34,681 single nucleotide polymorphisms (SNPs) that were common in the results of single marker GWAS of American and Canadian Duroc pigs was conducted. We also performed association tests between the VRTN insertion and teat number in the same populations. RESULTS A total of 97 SNPs were found to be associated with teat number. Among these, six, eight and seven SNPs were consistently detected with two, three and four multi-locus methods, respectively. Seven SNPs were concordantly identified between single marker and multi-locus methods. Moreover, 26 SNPs were newly found by multi-locus methods to be associated with teat number. Notably, we detected one consistent quantitative trait locus (QTL) on SSC7 for teat number using single-locus and meta-analysis of GWAS and the top SNP (rs692640845) explained 8.68% phenotypic variance of teat number in the Canadian Duroc pigs. The associations between the VRTN insertion and teat number in two Duroc pig populations were substantially weaker. Further analysis revealed that the effect of VRTN on teat number may be mediated by its LD with the true causal mutation. CONCLUSIONS Our study suggested that VRTN insertion may not be a strong or the only candidate causal mutation for the QTL on SSC7 for teat number in the analyzed Duroc pig populations. The combination of single-locus and multi-locus GWAS detected additional SNPs that were absent using only one model. The identified SNPs will be useful for the genetic improvement of teat number in pigs by assigning higher weights to associated SNPs in genomic selection.
Collapse
Affiliation(s)
- Zhanwei Zhuang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Rongrong Ding
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Longlong Peng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Jie Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Yong Ye
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Shenping Zhou
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Xingwang Wang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Jianping Quan
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Enqin Zheng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Gengyuan Cai
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Wen Huang
- Department of animal science, Michigan State University, East Lansing, MI, USA
| | - Jie Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China.
| | - Zhenfang Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China.
| |
Collapse
|
7
|
A Genome-Wide Association Study Identifies Quantitative Trait Loci Affecting Hematological Traits in Camelus bactrianus. Animals (Basel) 2020; 10:ani10010096. [PMID: 31936121 PMCID: PMC7023321 DOI: 10.3390/ani10010096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/06/2020] [Accepted: 01/06/2020] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Bactrian camels can adapt to harsh natural environments. This unique tolerance of camels is tightly linked to their hematological traits, which are related to their immune, metabolic, and disease status. Therefore, mapping genomic regions that affect blood cell traits can help identify genomic characteristics that can be used as biomarkers of immune, metabolic, and disease states. This knowledge will further our understanding of the camel’s tolerance mechanisms. Abstract Bactrian camels (Camelus bactrianus) are one of the few large livestock species that can survive in the Gobi Desert. Animal immunity and disease resistance are related to hematological traits, which are also associated with tolerance observed in Bactrian camels. However, no genome-wide association studies have examined the genetic mechanism of the immune capability of Bactrian camels. In the present study, we used genotyping-by-sequencing data generated from 366 Bactrian camel accessions to perform a genome-wide association study for 17 hematological traits. Of the 256,616 single-nucleotide polymorphisms (SNPs) obtained, 1,635 trait–SNP associations were among the top quantitative trait locus candidates. Lastly, 664 candidate genes associated with 13 blood traits were identified. The most significant were ZNF772, MTX2, ESRRG, MEI4, IL11, FRMPD4, GABPA, NTF4, CRYBG3, ENPP5, COL16A1, and CD207. The results of our genome-wide association study provide a list of significant SNPs and candidate genes, which offer valuable information for further dissection of the molecular mechanisms that regulate the camel’s hematological traits to ultimately reveal their tolerance mechanisms.
Collapse
|
8
|
Ma C, Wang W, Wang Y, Sun Y, Kang L, Zhang Q, Jiang Y. TMT-labeled quantitative proteomic analyses on the longissimus dorsi to identify the proteins underlying intramuscular fat content in pigs. J Proteomics 2019; 213:103630. [PMID: 31881348 DOI: 10.1016/j.jprot.2019.103630] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 11/11/2019] [Accepted: 12/22/2019] [Indexed: 11/17/2022]
Abstract
The Laiwu pig is famous for its excessively extremely high level of intramuscular fat content (IMF), however, the exact regulatory mechanism underlying intramuscular fat deposition in skeletal muscle is still unknown. As an economically important trait in pigs, IMF is controlled by multiple genes and biological pathways. In this study, we performed an integrated transcriptome-assisted TMT-labeled quantitative proteomic analysis of the longissimus dorsi (LD) muscle in Laiwu pigs at the fastest IMF deposition stage and identified 5074 unique proteins and 52 differentially abundant proteins (DAPs) (>1.5-fold cutoff, p < .05). These DAPs were hierarchically clustered in the LD muscle over two developmental stages from 120 d to 240 d. A comparison between transcriptomic (mRNA) and proteomic data revealed two differentially expressed genes corresponding to the DAPs. Changes in the levels of the nine proteins were further analyzed using RT-qPCR and parallel reaction monitoring (PRM). The proteins identified in this study could serve as candidates for elucidating the molecular mechanism of IMF deposition in pigs. SIGNIFICANCE: The intramuscular fat content (IMF) refers to the amount of fat within muscles and plays an important role in meat quality by affecting meat quality-related traits, such as tenderness, juiciness and flavor. Using the integrated transcriptome-assisted TMT-labeled quantitative proteomic approach to characterize changes in the proteomic profile of the longissimus dorsi muscle, we identified differentially abundant proteins, such as ALDH1B1, OTX2, AnxA6 and Zfp512, that are associated with intramuscular fat deposition and fat biosynthesis in pigs. These proteins could serve as candidates for elucidating the molecular mechanism of IMF deposition in pigs.
Collapse
Affiliation(s)
- Cai Ma
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No. 61 Daizong Street, Taian 271018, PR China
| | - Wenwen Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No. 61 Daizong Street, Taian 271018, PR China.
| | - Yuding Wang
- Department of Biology Science and Technology, Taishan 271018, PR China
| | - Yi Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No. 61 Daizong Street, Taian 271018, PR China.
| | - Li Kang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No. 61 Daizong Street, Taian 271018, PR China.
| | - Qin Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No. 61 Daizong Street, Taian 271018, PR China.
| | - Yunliang Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, No. 61 Daizong Street, Taian 271018, PR China.
| |
Collapse
|
9
|
Genome-wide scan reveals genetic divergence and diverse adaptive selection in Chinese local cattle. BMC Genomics 2019; 20:494. [PMID: 31200634 PMCID: PMC6570941 DOI: 10.1186/s12864-019-5822-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 05/21/2019] [Indexed: 01/18/2023] Open
Abstract
Background Understanding the population structure and genetic bases of well-adapted cattle breeds to local environments is one of the most essential tasks to develop appropriate genetic improvement programs. Results We performed a comprehensive study to investigate the population structure, divergence and selection signatures at genome-wide level in diverse Chinese local cattle using Bovine HD SNPs array, including two breeds from North China, one breed from Northwest China, three breeds from Southwest China and two breeds from South China. Population genetic analyses revealed the genetic structures of these populations were mostly related to the geographic locations. Notably, we detected 294 and 1263 candidate regions under selection using the di and iHS approaches, respectively. A series of group-specific and breed-specific candidate genes were identified, which are involved in immune response, sexual maturation, stature related, birth and bone weight, embryonic development, coat colors and adaptation. Furthermore, haplotype diversity and network pattern for candidate genes, including LPGAT1, LCORL, PPP1R8, RXFP2 and FANCA, suggest that these genes have been under differential selection pressures in various environmental conditions. Conclusions Our results shed insights into diverse selection during breed formation in Chinese local cattle. These findings may promote the application of genome-assisted breeding for well-adapted local breeds with economic and ecological importance. Electronic supplementary material The online version of this article (10.1186/s12864-019-5822-y) contains supplementary material, which is available to authorized users.
Collapse
|
10
|
Bovo S, Mazzoni G, Bertolini F, Schiavo G, Galimberti G, Gallo M, Dall'Olio S, Fontanesi L. Genome-wide association studies for 30 haematological and blood clinical-biochemical traits in Large White pigs reveal genomic regions affecting intermediate phenotypes. Sci Rep 2019; 9:7003. [PMID: 31065004 PMCID: PMC6504931 DOI: 10.1038/s41598-019-43297-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 04/16/2019] [Indexed: 12/20/2022] Open
Abstract
Haematological and clinical-biochemical parameters are considered indicators of the physiological/health status of animals and might serve as intermediate phenotypes to link physiological aspects to production and disease resistance traits. The dissection of the genetic variability affecting these phenotypes might be useful to describe the resilience of the animals and to support the usefulness of the pig as animal model. Here, we analysed 15 haematological and 15 clinical-biochemical traits in 843 Italian Large White pigs, via three genome-wide association scan approaches (single-trait, multi-trait and Bayesian). We identified 52 quantitative trait loci (QTLs) associated with 29 out of 30 analysed blood parameters, with the most significant QTL identified on porcine chromosome 14 for basophil count. Some QTL regions harbour genes that may be the obvious candidates: QTLs for cholesterol parameters identified genes (ADCY8, APOB, ATG5, CDKAL1, PCSK5, PRL and SOX6) that are directly involved in cholesterol metabolism; other QTLs highlighted genes encoding the enzymes being measured [ALT (known also as GPT) and AST (known also as GOT)]. Moreover, the multivariate approach strengthened the association results for several candidate genes. The obtained results can contribute to define new measurable phenotypes that could be applied in breeding programs as proxies for more complex traits.
Collapse
Affiliation(s)
- Samuele Bovo
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale G. Fanin 46, 40127, Bologna, Italy
| | - Gianluca Mazzoni
- Department of Health Technology, Technical University of Denmark (DTU), Lyngby, 2800, Denmark
| | - Francesca Bertolini
- National Institute of Aquatic Resources, Technical University of Denmark (DTU), Lyngby, 2800, Denmark
| | - Giuseppina Schiavo
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale G. Fanin 46, 40127, Bologna, Italy
| | - Giuliano Galimberti
- Department of Statistical Sciences "Paolo Fortunati", University of Bologna, Via delle Belle Arti 41, 40126, Bologna, Italy
| | - Maurizio Gallo
- Associazione Nazionale Allevatori Suini (ANAS), Via Nizza 53, 00198, Roma, Italy
| | - Stefania Dall'Olio
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale G. Fanin 46, 40127, Bologna, Italy
| | - Luca Fontanesi
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale G. Fanin 46, 40127, Bologna, Italy.
| |
Collapse
|
11
|
Evaluating the contribution of gut microbiome to the variance of porcine serum glucose and lipid concentration. Sci Rep 2017; 7:14928. [PMID: 29097803 PMCID: PMC5668236 DOI: 10.1038/s41598-017-15044-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 10/19/2017] [Indexed: 02/07/2023] Open
Abstract
Serum glucose and lipids are important indicators for host metabolic condition. Interaction of host and gut microbes regulates the metabolism process. However, how much the gut microbiome contributes to the variance of serum glucose and lipids is largely unknown. Here we carried out a 16S rRNA gene based association study between cecum microbiome and the concentration of serum glucose and lipids in 240 Chinese Erhualian pigs. We identified tens of bacterial taxa associated with serum glucose and lipids. The butyrate-producing bacteria were significantly associated with serum glucose level. The pathogenic bacteria belonging to Proteobacteria and Fusobacteria showed significant associations with increased serum lipid levels, while the bacteria Lactobacillus and Bacilli had negative correlations with serum lipids. Cross-validation analysis revealed that 23.8% variation of serum glucose and 1.6%~6.0% variations of serum lipids were explained by gut microbiome. Furthermore, predicted function capacities related to nutrition intake, transport and carbohydrate metabolism were significantly associated with serum glucose level, while the pathways related to antioxidant metabolism and bile synthesis tended to be associated with serum lipid level. The results provide meaningful information to get insight into the effect of gut microbiome on serum glucose and lipid levels in pigs.
Collapse
|
12
|
Wang Y, Ma C, Sun Y, Li Y, Kang L, Jiang Y. Dynamic transcriptome and DNA methylome analyses on longissimus dorsi to identify genes underlying intramuscular fat content in pigs. BMC Genomics 2017; 18:780. [PMID: 29025412 PMCID: PMC5639760 DOI: 10.1186/s12864-017-4201-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 10/08/2017] [Indexed: 01/12/2023] Open
Abstract
Background The intramuscular fat content (IMF) refers to the amount of fat within muscles, including the sum of phospholipids mainly found in cell membranes, triglycerides and cholesterol, and is determined both by hyperplasia and hypertrophy of adipocyte during the development of pigs. The IMF content is an important economic trait that is genetically controlled by multiple genes. The Laiwu pig is an indigenous fatty pig breed distributed in North China, characterized by excessively higher level of IMF content (9%~12%), therefore, is suitable for the identification of genes controlling IMF variations. To identify genes underlying IMF deposition, we performed genome-wide transcriptome and methylome analyses on longissimus dorsi (LD) muscle in Laiwu pigs across four developmental stages. Results A total of 22,524 expressed genes were detected and 1158 differentially expressed genes (DEGs) were hierarchically clustered in the LD muscle over four developmental stages from 60 d to 400 d. These genes were significantly clustered into four temporal expression profiles, and genes participating in fat cell differentiation and lipid biosynthesis processes were identified. From 120 d to 240 d, the period with the maximum IMF deposition rate, the lipid biosynthesis related genes (FOSL1, FAM213B and G0S2), transcription factors (TFs) (EGR1, KLF5, SREBF2, TP53 and TWIST1) and enriched pathways (steroid biosynthesis and fatty acid biosynthesis) were revealed; and fat biosynthesis relevant genes showing differences in DNA methylation in gene body or intergenic region were detected, such as FASN, PVALB, ID2, SH3PXD2B and EGR1. Conclusions This study provides a comprehensive landscape of transcriptome of the LD muscle in Laiwu pigs ranging from 60 to 400 days old, and methylome of the LD muscle in 120 d and 240 d Laiwu pigs. A set of candidate genes and TFs involved in fat biosynthesis process were identified, which were probably responsible for IMF deposition. The results from this study would provide a reference for the identification of genes controlling IMF variation, and for exploring molecular mechanisms underlying IMF deposition in pigs. Electronic supplementary material The online version of this article (10.1186/s12864-017-4201-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuding Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Taian, 271018, People's Republic of China.,Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China
| | - Cai Ma
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Taian, 271018, People's Republic of China
| | - Yi Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Taian, 271018, People's Republic of China
| | - Yi Li
- Central Hospital of Taian, Taian, 271018, People's Republic of China
| | - Li Kang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Taian, 271018, People's Republic of China
| | - Yunliang Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Taian, 271018, People's Republic of China.
| |
Collapse
|
13
|
Frederiksen SD, Karlskov-Mortensen P, Pant SD, Guerin M, Lesnik P, Jørgensen CB, Cirera S, Bruun CS, Mark T, Fredholm M. Haplotypes on pig chromosome 3 distinguish metabolically healthy from unhealthy obese individuals. PLoS One 2017; 12:e0178828. [PMID: 28570654 PMCID: PMC5453593 DOI: 10.1371/journal.pone.0178828] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 05/19/2017] [Indexed: 01/29/2023] Open
Abstract
We have established a pig resource population specifically designed to elucidate the genetics involved in development of obesity and obesity related co-morbidities by crossing the obesity prone Göttingen Minipig breed with two lean production pig breeds. In this study we have performed genome wide association (GWA) to identify loci with effect on blood lipid levels. The most significantly associated single nucleotide polymorphisms (SNPs) were used for linkage disequilibrium (LD) and haplotype analyses. Three separate haploblocks which influence the ratio between high density lipoprotein cholesterol and total cholesterol (HDL-C/CT), triglycerides (TG) and low density lipoprotein cholesterol (LDL-C) levels respectively were identified on Sus Scrofa chromosome 3 (SSC3). Large additive genetic effects were found for the HDL-C/CT and LDL-C haplotypes. Haplotypes segregating from Göttingen Minipigs were shown to impose a positive effect on blood lipid levels. Thus, the genetic profile of the Göttingen Minipig breed seems to support a phenotype comparable to the metabolic healthy obese (MHO) phenotype in humans.
Collapse
Affiliation(s)
- Simona D. Frederiksen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Karlskov-Mortensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sameer D. Pant
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, Australia
| | - Maryse Guerin
- INSERM UMR_S1166, Integrative Biology of Atherosclerosis Team, Paris, France
| | - Philippe Lesnik
- INSERM UMR_S1166, Integrative Biology of Atherosclerosis Team, Paris, France
| | - Claus B. Jørgensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Susanna Cirera
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Camilla S. Bruun
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Mark
- Novo Nordisk, Scandinavia AB, Region Denmark, Maaloev, Denmark
| | - Merete Fredholm
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
14
|
González-Prendes R, Quintanilla R, Cánovas A, Manunza A, Figueiredo Cardoso T, Jordana J, Noguera JL, Pena RN, Amills M. Joint QTL mapping and gene expression analysis identify positional candidate genes influencing pork quality traits. Sci Rep 2017; 7:39830. [PMID: 28054563 PMCID: PMC5215505 DOI: 10.1038/srep39830] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 11/29/2016] [Indexed: 12/28/2022] Open
Abstract
Meat quality traits have an increasing importance in the pig industry because of their strong impact on consumer acceptance. Herewith, we have combined phenotypic and microarray expression data to map loci with potential effects on five meat quality traits recorded in the longissimus dorsi (LD) and gluteus medius (GM) muscles of 350 Duroc pigs, i.e. pH at 24 hours post-mortem (pH24), electric conductivity (CE) and muscle redness (a*), lightness (L*) and yellowness (b*). We have found significant genome-wide associations for CE of LD on SSC4 (~104 Mb), SSC5 (~15 Mb) and SSC13 (~137 Mb), while several additional regions were significantly associated with meat quality traits at the chromosome-wide level. There was a low positional concordance between the associations found for LD and GM traits, a feature that reflects the existence of differences in the genetic determinism of meat quality phenotypes in these two muscles. The performance of an eQTL search for SNPs mapping to the regions associated with meat quality traits demonstrated that the GM a* SSC3 and pH24 SSC17 QTL display positional concordance with cis-eQTL regulating the expression of several genes with a potential role on muscle metabolism.
Collapse
Affiliation(s)
- Rayner González-Prendes
- Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Campus Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Raquel Quintanilla
- Animal Breeding and Genetics Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Torre Marimon, Caldes de Montbui 08140, Spain
| | - Angela Cánovas
- Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Campus Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Arianna Manunza
- Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Campus Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Tainã Figueiredo Cardoso
- Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Campus Universitat Autònoma de Barcelona, Bellaterra 08193, Spain.,CAPES Foundation, Ministry of Education of Brazil, Brasilia D. F., Zip Code 70.040-020, Brazil
| | - Jordi Jordana
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - José Luis Noguera
- Animal Breeding and Genetics Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Torre Marimon, Caldes de Montbui 08140, Spain
| | - Ramona N Pena
- Department of Animal Science, University of Lleida - Agrotecnio Center, Lleida 25198, Spain
| | - Marcel Amills
- Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Campus Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| |
Collapse
|
15
|
Huang X, Huang T, Deng W, Yan G, Qiu H, Huang Y, Ke S, Hou Y, Zhang Y, Zhang Z, Fang S, Zhou L, Yang B, Ren J, Ai H, Huang L. Genome-wide association studies identify susceptibility loci affecting respiratory disease in Chinese Erhualian pigs under natural conditions. Anim Genet 2016; 48:30-37. [PMID: 27615547 DOI: 10.1111/age.12504] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2016] [Indexed: 11/28/2022]
Abstract
Prevalence of swine respiratory disease causes poor growth performance in and serious economic losses to the swine industry. In this study, a categorical trait of enzootic pneumonia-like (EPL) score representing the infection gradient of a respiratory disease, more likely enzootic pneumonia, was recorded in a herd of 332 Chinese Erhualian pigs. According to their EPL scores and the disease effect on weight gains, these pigs were grouped into controls (EPL score ≤ 1) and cases (EPL score > 1). The weight gain of the case group reduced significantly at days 180, 210, 240 and 300 as compared to the control group. The heritability of EPL score was estimated to be 0.24 based on the pedigree information using a linear mixed model. All 332 Erhualian pigs and their nine sire parents were genotyped with Illumina Porcine 60K SNP chips. Two genome-wide association studies were performed under a generalized linear mixed model and a case-control model respectively. In total, five loci surpassed the suggestive significance level (P = 2.98 × 10-5 ) on chromosomes 2, 8, 12 and 14. CXCL6, CXCL8, KIT and CTBP2 were highlighted as candidate genes that might play important roles in determining resistance/susceptibility to swine EP-like respiratory disease. The findings advance understanding of the genetic basis of resistance/susceptibility to respiratory disease in pigs.
Collapse
Affiliation(s)
- X Huang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - T Huang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - W Deng
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - G Yan
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - H Qiu
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Y Huang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - S Ke
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Y Hou
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Y Zhang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Z Zhang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - S Fang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - L Zhou
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - B Yang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - J Ren
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - H Ai
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - L Huang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| |
Collapse
|
16
|
Abstract
Background Piglet birth weight variability, a trait also known as the within-litter homogeneity of birth weight, reflects the sow’s prolificacy, because it is positively genetically correlated with preweaning mortality but negatively correlated with the mean growth of piglets during sucking. In addition, the maternal additive genetic variance and heritability has been found exist for this trait, thus, reduction in the variability of piglet birth weight to improve the sow prolificacy is possible by selective breeding. Results We performed a genome wide association study (GWAS) in 82 sows with extreme standard deviation of birth weights within the first parity to identify significant SNPs, and finally 266 genome-wide significant SNPs (p < 0.01) were identified. These SNPs were mainly enriched on chromosome 7, 1, 13, 14, 15 and 18. We further scanned genes of the top 50 SNPs with the lowest p values and found some genes involved in plasma glucose homeostasis (GLP1R) and lipid metabolism as well as maternal-fetal lipid transport (AACS, APOB, OSBPL10 and LRP1B) which may contribute to the birth weight variability trait. Conclusions Birth weight variability trait has a low heritability. It is not easy to get significant signal by GWAS using small sample size. Herein, we identified some candidate chromosome regions especially chromosome 7 and suggested five genes which may provide some information for the further study. Electronic supplementary material The online version of this article (doi:10.1186/s12863-015-0309-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xuemin Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China. .,Institute of Animal Science, Jiangsu Academy of Agricultural Science, Nanjing, 210014, China.
| | - Xiaolei Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China. .,Institute for Genomic Diversity, Cornell University, Ithaca, NY, 14853, USA.
| | - Dadong Deng
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Mei Yu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xiaoping Li
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|