1
|
Sharma S, Rani H, Mahesh Y, Jolly MK, Dixit J, Mahadevan V. Loss of p53 epigenetically modulates epithelial to mesenchymal transition in colorectal cancer. Transl Oncol 2024; 43:101848. [PMID: 38412660 PMCID: PMC10907866 DOI: 10.1016/j.tranon.2023.101848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/10/2023] [Accepted: 11/21/2023] [Indexed: 02/29/2024] Open
Abstract
Epithelial to Mesenchymal transition (EMT) drives cancer metastasis and is governed by genetic and epigenetic alterations at multiple levels of regulation. It is well established that loss/mutation of p53 confers oncogenic function to cancer cells and promotes metastasis. Though transcription factors like ZEB1, SLUG, SNAIL and TWIST have been implied in EMT signalling, p53 mediated alterations in the epigenetic machinery accompanying EMT are not clearly understood. This work attempts to explore epigenetic signalling during EMT in colorectal cancer (CRC) cells with varying status of p53. Towards this, we have induced EMT using TGFβ on CRC cell lines with wild type, null and mutant p53 and have assayed epigenetic alterations after EMT induction. Transcriptomic profiling of the four CRC cell lines revealed that the loss of p53 confers more mesenchymal phenotype with EMT induction than its mutant counterparts. This was also accompanied by upregulation of epigenetic writer and eraser machinery suggesting an epigenetic signalling cascade triggered by TGFβ signalling in CRC. Significant agonist and antagonistic relationships observed between EMT factor SNAI1 and SNAI2 with epigenetic enzymes KDM6A/6B and the chromatin organiser SATB1 in p53 null CRC cells suggest a crosstalk between epigenetic and EMT factors. The observed epigenetic regulation of EMT factor SNAI1 correlates with poor clinical outcomes in 270 colorectal cancer patients taken from TCGA-COAD. This unique p53 dependent interplay between epigenetic enzymes and EMT factors in CRC cells may be exploited for development of synergistic therapies for CRC patients presenting to the clinic with loss of p53.
Collapse
Affiliation(s)
- Shreya Sharma
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bangalore, India
| | - Harsha Rani
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bangalore, India
| | | | | | | | | |
Collapse
|
2
|
Shirani-Bidabadi S, Tabatabaee A, Tavazohi N, Hariri A, Aref AR, Zarrabi A, Casarcia N, Bishayee A, Mirian M. CRISPR technology: A versatile tool to model, screen, and reverse drug resistance in cancer. Eur J Cell Biol 2023; 102:151299. [PMID: 36809688 DOI: 10.1016/j.ejcb.2023.151299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Drug resistance is a serious challenge in cancer treatment that can render chemotherapy a failure. Understanding the mechanisms behind drug resistance and developing novel therapeutic approaches are cardinal steps in overcoming this issue. Clustered regularly interspaced short palindrome repeats (CRISPR) gene-editing technology has proven to be a useful tool to study cancer drug resistance mechanisms and target the responsible genes. In this review, we evaluated original research studies that used the CRISPR tool in three areas related to drug resistance, namely screening resistance-related genes, generating modified models of resistant cells and animals, and removing resistance by genetic manipulation. We reported the targeted genes, study models, and drug groups in these studies. In addition to discussing different applications of CRISPR technology in cancer drug resistance, we analyzed drug resistance mechanisms and provided examples of CRISPR's role in studying them. Although CRISPR is a powerful tool for examining drug resistance and sensitizing resistant cells to chemotherapy, more studies are required to overcome its disadvantages, such as off-target effects, immunotoxicity, and inefficient delivery of CRISPR/cas9 into the cells.
Collapse
Affiliation(s)
- Shiva Shirani-Bidabadi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Aliye Tabatabaee
- Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Nazita Tavazohi
- Novel Drug Delivery Systems Research Centre, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Amirali Hariri
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Translational Sciences, Xsphera Biosciences Inc., Boston, MA 02215, USA
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey
| | - Nicolette Casarcia
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| | - Mina Mirian
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran.
| |
Collapse
|
3
|
Tsirigoti C, Ali MM, Maturi V, Heldin CH, Moustakas A. Loss of SNAI1 induces cellular plasticity in invasive triple-negative breast cancer cells. Cell Death Dis 2022; 13:832. [PMID: 36171192 PMCID: PMC9519755 DOI: 10.1038/s41419-022-05280-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 01/23/2023]
Abstract
The transcription factor SNAI1 mediates epithelial-mesenchymal transition, fibroblast activation and controls inter-tissue migration. High SNAI1 expression characterizes metastatic triple-negative breast carcinomas, and its knockout by CRISPR/Cas9 uncovered an epithelio-mesenchymal phenotype accompanied by reduced signaling by the cytokine TGFβ. The SNAI1 knockout cells exhibited plasticity in differentiation, drifting towards the luminal phenotype, gained stemness potential and could differentiate into acinar mammospheres in 3D culture. Loss of SNAI1 de-repressed the transcription factor FOXA1, a pioneering factor of mammary luminal progenitors. FOXA1 induced a specific gene program, including the androgen receptor (AR). Inhibiting AR via a specific antagonist regenerated the basal phenotype and blocked acinar differentiation. Thus, loss of SNAI1 in the context of triple-negative breast carcinoma cells promotes an intermediary luminal progenitor phenotype that gains differentiation plasticity based on the dual transcriptional action of FOXA1 and AR. This function of SNAI1 provides means to separate cell invasiveness from progenitor cell de-differentiation as independent cellular programs.
Collapse
Affiliation(s)
- Chrysoula Tsirigoti
- grid.8993.b0000 0004 1936 9457Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Mohamad Moustafa Ali
- grid.8993.b0000 0004 1936 9457Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Varun Maturi
- grid.8993.b0000 0004 1936 9457Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-751 23 Uppsala, Sweden ,grid.8993.b0000 0004 1936 9457Department of Pharmacy, Drug Delivery, Uppsala University, SE-752 37 Uppsala, Sweden
| | - Carl-Henrik Heldin
- grid.8993.b0000 0004 1936 9457Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Aristidis Moustakas
- grid.8993.b0000 0004 1936 9457Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-751 23 Uppsala, Sweden
| |
Collapse
|
4
|
Gonzalez-Salinas F, Martinez-Amador C, Trevino V. Characterizing genes associated with cancer using the CRISPR/Cas9 system: A systematic review of genes and methodological approaches. Gene 2022; 833:146595. [PMID: 35598687 DOI: 10.1016/j.gene.2022.146595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/22/2022] [Accepted: 05/16/2022] [Indexed: 12/24/2022]
Abstract
The CRISPR/Cas9 system enables a versatile set of genomes editing and genetic-based disease modeling tools due to its high specificity, efficiency, and accessible design and implementation. In cancer, the CRISPR/Cas9 system has been used to characterize genes and explore different mechanisms implicated in tumorigenesis. Different experimental strategies have been proposed in recent years, showing dependency on various intrinsic factors such as cancer type, gene function, mutation type, and technical approaches such as cell line, Cas9 expression, and transfection options. However, the successful methodological approaches, genes, and other experimental factors have not been analyzed. We, therefore, initially considered more than 1,300 research articles related to CRISPR/Cas9 in cancer to finally examine more than 400 full-text research publications. We summarize findings regarding target genes, RNA guide designs, cloning, Cas9 delivery systems, cell enrichment, and experimental validations. This analysis provides valuable information and guidance for future cancer gene validation experiments.
Collapse
Affiliation(s)
- Fernando Gonzalez-Salinas
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Morones Prieto avenue 3000, Monterrey, Nuevo Leon 64710, Mexico
| | - Claudia Martinez-Amador
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Morones Prieto avenue 3000, Monterrey, Nuevo Leon 64710, Mexico
| | - Victor Trevino
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Morones Prieto avenue 3000, Monterrey, Nuevo Leon 64710, Mexico; Tecnologico de Monterrey, The Institute for Obesity Research, Eugenio Garza Sada avenue 2501, Monterrey, Nuevo Leon 64849, México.
| |
Collapse
|
5
|
Dholariya S, Parchwani D, Radadiya M, Singh RD, Sonagra A, Patel D, Sharma G. CRISPR/Cas9: A Molecular Tool for Ovarian Cancer Management beyond Gene Editing. Crit Rev Oncog 2022; 27:1-22. [PMID: 37199299 DOI: 10.1615/critrevoncog.2022043814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Ovarian cancer manifests with early metastases and has an adverse outcome, impacting the health of women globally. Currently, this malignancy is often treated with cytoreductive surgery and platinum-based chemotherapy. This treatment option has a limited success rate due to tumor recurrence and chemoresistance. Consequently, the fundamental objective of ovarian cancer treatment is the development of novel treatment approaches. As a new robust tool, the CRISPR/Cas9 gene-editing system has shown immense promise in elucidating the molecular basis of all the facets of ovarian cancer. Due to the precise gene editing capabilities of CRISPR-Cas9, researchers have been able to conduct a more comprehensive investigation of the genesis of ovarian cancer. This gained knowledge can be translated into the development of novel diagnostic approaches and newer therapeutic targets for this dreadful malignancy. There is encouraging preclinical evidence that suggests that CRISPR/Cas9 is a powerful versatile tool for selectively targeting cancer cells and inhibiting tumor growth, establishing new signaling pathways involved in carcinogenesis, and verifying biomolecules as druggable targets. In this review, we analyzed the current research and progress made using CRISPR/Cas9-based engineering strategies in the diagnosis and treatment, as well as the challenges in bringing this method to clinics. This comprehensive analysis will lay the basis for subsequent research in the future for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Sagar Dholariya
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| | - Deepak Parchwani
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| | - Madhuri Radadiya
- Department of Radiology, Pandit Dindayal Upadhyay (PDU) Medical College, Rajkot, Gujarat, India
| | - Ragini D Singh
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| | - Amit Sonagra
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| | | | - Gaurav Sharma
- Department of Physiology, AIIMS, Rajkot, Gujarat, India
| |
Collapse
|
6
|
Akram F, Haq IU, Sahreen S, Nasir N, Naseem W, Imitaz M, Aqeel A. CRISPR/Cas9: A revolutionary genome editing tool for human cancers treatment. Technol Cancer Res Treat 2022; 21:15330338221132078. [PMID: 36254536 PMCID: PMC9580090 DOI: 10.1177/15330338221132078] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/10/2022] [Accepted: 09/19/2022] [Indexed: 11/11/2022] Open
Abstract
Cancer is a genetic disease stemming from genetic and epigenetic mutations and is the second most common cause of death across the globe. Clustered regularly interspaced short palindromic repeats (CRISPR) is an emerging gene-editing tool, acting as a defense system in bacteria and archaea. CRISPR/Cas9 technology holds immense potential in cancer diagnosis and treatment and has been utilized to develop cancer disease models such as medulloblastoma and glioblastoma mice models. In diagnostics, CRISPR can be used to quickly and efficiently detect genes involved in various cancer development, proliferation, metastasis, and drug resistance. CRISPR/Cas9 mediated cancer immunotherapy is a well-known treatment option after surgery, chemotherapy, and radiation therapy. It has marked a turning point in cancer treatment. However, despite its advantages and tremendous potential, there are many challenges such as off-target effects, editing efficiency of CRISPR/Cas9, efficient delivery of CRISPR/Cas9 components into the target cells and tissues, and low efficiency of HDR, which are some of the main issues and need further research and development for completely clinical application of this novel gene editing tool. Here, we present a CRISPR/Cas9 mediated cancer treatment method, its role and applications in various cancer treatments, its challenges, and possible solution to counter these challenges.
Collapse
Affiliation(s)
- Fatima Akram
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Ikram ul Haq
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
- Pakistan Academy of Sciences, Islamabad, Pakistan
| | - Sania Sahreen
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Narmeen Nasir
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Waqas Naseem
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Memoona Imitaz
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Amna Aqeel
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| |
Collapse
|
7
|
BMP2-induction of FN14 promotes protumorigenic signaling in gynecologic cancer cells. Cell Signal 2021; 87:110146. [PMID: 34517088 DOI: 10.1016/j.cellsig.2021.110146] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 01/12/2023]
Abstract
We previously reported that bone morphogenetic protein (BMP) signaling promotes tumorigenesis in gynecologic cancer cells. BMP2 enhances proliferation of ovarian and endometrial cancer cells via c-KIT induction, and triggers epithelial-mesenchymal transition (EMT) by SNAIL and/or SLUG induction, leading to increased cell migration. However, the downstream effectors of BMP signaling in gynecological cancer cells have not been clearly elucidated. In this study, we performed RNA-sequencing of Ishikawa endometrial and SKOV3 ovarian cancer cells after BMP2 stimulation, and identified TNFRSF12A, encoding fibroblast growth factor-inducible 14 (FN14) as a common BMP2-induced gene. FN14 knockdown suppressed BMP2-induced cell proliferation and migration, confirmed by MTS and scratch assays, respectively. In addition, FN14 silencing augmented chemosensitivity of SKOV3 cells. As a downstream effector of BMP signaling, FN14 modulated both c-KIT and SNAIL expression, which are important for growth and migration of ovarian and endometrial cancer cells. These results support the notion that the tumor promoting effects of BMP signaling in gynecological cancers are partially attributed to FN14 induction.
Collapse
|
8
|
Weidle UH, Nopora A. Clear Cell Renal Carcinoma: MicroRNAs With Efficacy in Preclinical In Vivo Models. Cancer Genomics Proteomics 2021; 18:349-368. [PMID: 33994361 PMCID: PMC8240043 DOI: 10.21873/cgp.20265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/16/2021] [Accepted: 02/24/2021] [Indexed: 01/07/2023] Open
Abstract
In order to identify new targets and treatment modalities for clear cell renal carcinoma, we surveyed the literature with respect to microRNAs involved in this disease. In this review, we have focused on up- and down-regulated miRs which mediate efficacy in preclinical clear-cell renal carcinoma-related in vivo models. We have identified 10 up-regulated and 33 down-regulated micro-RNAs according to this criterion. As proof-of-concept, micro-RNAs interfering with VEGF (miR-205p) and mTOR (mir-99a) pathways, which are modulated by approved drugs for this disease, have been identified. miRs targeting hypoxia induced factor-2α (HIF-2α) (miR-145), E3 ubiquitinylases speckle-type POZ protein (SPOP) (miR 520/372/373) and casitas B-lineage lymphoma (CBL) (miR-200a-3p), interfere with druggable targets. Further identified miRs interfere with cell-cycle dependent kinases, such as CDK2 (miR-200c), CDK4, 6 (miR-1) and CDK4, 9 (206c). Transmembrane receptor Ral interacting protein of 76 kD (RLIP76), targeted by mir-137, has emerged as another important target for ccRCC. Additional miRs and their targets merrying further preclinical validation are discussed.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Adam Nopora
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
9
|
Akram F, Ikram Ul Haq, Ahmed Z, Khan H, Ali MS. CRISPR-Cas9, A Promising Therapeutic Tool for Cancer Therapy: A Review. Protein Pept Lett 2021; 27:931-944. [PMID: 32264803 DOI: 10.2174/0929866527666200407112432] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/08/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023]
Abstract
Cancer is one of the most leading causes of mortality all over the world and remains a foremost social and economic burden. Mutations in the genome of individuals are taking place more frequently due to the excessive progress of xenobiotics and industrialization in the present world. With the progress in the field of molecular biology, it is possible to alter the genome and to observe the functional changes derived from genetic modulation using gene-editing technologies. Several therapies have been applied for the treatment of malignancy which affect the normal body cells; however, more effort is required to develop vsome latest therapeutic approaches for cancer biology and oncology exploiting these molecular biology advances. Recently, the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) associated protein 9 (Cas9) system has emerged as a powerful technology for cancer therapy because of its great accuracy and efficiency. Genome editing technologies have demonstrated a plethora of benefits to the biological sciences. CRISPR- Cas9, a versatile gene editing tool, has become a robust strategy for making alterations to the genome of organisms and a potent weapon in the arsenal of tumor treatment. It has revealed an excellent clinical potential for cancer therapy by discovering novel targets and has provided the researchers with the perception about how tumors respond to drug therapy. Stern efforts are in progress to enhance its efficiency of sequence specific targeting and consequently repressing offtarget effects. CRISPR-Cas9 uses specific proteins to convalesce mutations at genetic level. In CRISPR-Cas9 system, RNA-guided Cas9 endonuclease harnesses gene mutation, DNA deletion or insertion, transcriptional activation or repression, multiplex targeting only by manipulating 20-nucleotide components of RNA. Originally, CRISPR-Cas9 system was used by bacteria for their defense against different bacteriophages, and recently this system is receiving noteworthy appreciation due to its emerging role in the treatment of genetic disorders and carcinogenesis. CRISPR-Cas9 can be employed to promptly engineer oncolytic viruses and immune cells for cancer therapeutic applications. More notably, it has the ability to precisely edit genes not only in model organisms but also in human being that permits its use in therapeutic analysis. It also plays a significant role in the development of complete genomic libraries for cancer patients. In this review, we have highlighted the involvement of CRISPR-Cas9 system in cancer therapy accompanied by its prospective applications in various types of malignancy and cancer biology. In addition, some other conspicuous functions of this unique system have also been discussed beyond genome editing.
Collapse
Affiliation(s)
- Fatima Akram
- Institute of Industrial Biotechnology, GC University, Lahore-54000, Pakistan
| | - Ikram Ul Haq
- Institute of Industrial Biotechnology, GC University, Lahore-54000, Pakistan
| | - Zeeshan Ahmed
- Institute of Industrial Biotechnology, GC University, Lahore-54000, Pakistan
| | - Hamza Khan
- Institute of Industrial Biotechnology, GC University, Lahore-54000, Pakistan
| | | |
Collapse
|
10
|
Mohammadinejad R, Biagioni A, Arunkumar G, Shapiro R, Chang KC, Sedeeq M, Taiyab A, Hashemabadi M, Pardakhty A, Mandegary A, Thiery JP, Aref AR, Azimi I. EMT signaling: potential contribution of CRISPR/Cas gene editing. Cell Mol Life Sci 2020; 77:2701-2722. [PMID: 32008085 PMCID: PMC11104910 DOI: 10.1007/s00018-020-03449-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 12/24/2019] [Accepted: 01/02/2020] [Indexed: 02/06/2023]
Abstract
Epithelial to mesenchymal transition (EMT) is a complex plastic and reversible cellular process that has critical roles in diverse physiological and pathological phenomena. EMT is involved in embryonic development, organogenesis and tissue repair, as well as in fibrosis, cancer metastasis and drug resistance. In recent years, the ability to edit the genome using the clustered regularly interspaced palindromic repeats (CRISPR) and associated protein (Cas) system has greatly contributed to identify or validate critical genes in pathway signaling. This review delineates the complex EMT networks and discusses recent studies that have used CRISPR/Cas technology to further advance our understanding of the EMT process.
Collapse
Affiliation(s)
- Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Alessio Biagioni
- Section of Experimental Pathology and Oncology, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Ganesan Arunkumar
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rebecca Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Kun-Che Chang
- Department of Ophthalmology, School of Medicine, Byers Eye Institute, Stanford University, Palo Alto, CA, 94303, USA
| | - Mohammed Sedeeq
- Division of Pharmacy, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Aftab Taiyab
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Mohammad Hashemabadi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University, Kerman, Iran
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abbas Pardakhty
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Mandegary
- Physiology Research Center, Institute of Neuropharmacology and Department of Toxicology & Pharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Jean-Paul Thiery
- Guangzhou Regenerative Medicine and Health, Guangdong Laboratory, Guangzhou, China
| | - Amir Reza Aref
- Department of Medical Oncology, Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA.
| | - Iman Azimi
- Division of Pharmacy, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia.
| |
Collapse
|
11
|
Gholami MD, Falak R, Heidari S, Khoshmirsafa M, Kazemi MH, Zarnani AH, Safari E, Tajik N, Kardar GA. A Truncated Snail1 Transcription Factor Alters the Expression of Essential EMT Markers and Suppresses Tumor Cell Migration in a Human Lung Cancer Cell Line. Recent Pat Anticancer Drug Discov 2020; 14:158-169. [PMID: 31131753 DOI: 10.2174/1574892814666190527111429] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 05/08/2019] [Accepted: 05/24/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Epithelial-to-Mesenchymal Transition (EMT) is necessary for metastasis. Zinc- finger domain-containing transcription factors, especially Snail1, bind to E-box motifs and play a crucial role in the induction and regulation of EMT. OBJECTIVE We hypothesized if C-terminal region of Snail1 (CSnail1) may competitively bind to E-box and block cancer metastasis. METHODS The CSnail1 gene coding sequence was inserted into the pIRES2-EGFP vector. Following transfection of A549 cells with the designed construct, EMT was induced with TGF-β1 and the expression of essential EMT markers was evaluated by real-time PCR and immunoblotting. We also monitored cell migration. RESULTS CSnail1 inhibited TGF-β1-induced N-cadherin and vimentin mRNA expression and increased β-catenin expression in transfected TGF-β1-treated A549 cells. A similar finding was obtained in western blotting. CSnail1 also blocked the migration of transfected cells in the scratch test. CONCLUSION Transfection of A549 cells with CSnail1 alters the expression of essential EMT markers and consequently suppresses tumor cell migration. These findings confirm the capability of CSnail1 in EMT blocking and in parallel to current patents could be applied as a novel strategy in the prevention of metastasis.
Collapse
Affiliation(s)
- Mohammad Davoodzadeh Gholami
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sahel Heidari
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Khoshmirsafa
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad H Kazemi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir-Hassan Zarnani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Elaheh Safari
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nader Tajik
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Gholam A Kardar
- Immunology Asthma & Allergy Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
E-cadherin loss in RMG-1 cells inhibits cell migration and its regulation by Rho GTPases. Biochem Biophys Rep 2019; 18:100650. [PMID: 31193165 PMCID: PMC6520553 DOI: 10.1016/j.bbrep.2019.100650] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/01/2019] [Accepted: 05/04/2019] [Indexed: 11/23/2022] Open
Abstract
E-cadherin is an adherens junction protein that forms intercellular contacts in epithelial cells. Downregulation of E-cadherin is frequently observed in epithelial tumors and it is a hallmark of epithelial–mesenchymal transition (EMT). However, recent findings suggest that E-cadherin plays a more complex role in certain types of cancers. Previous studies investigating the role of E-cadherin mainly used gene-knockdown systems; therefore, we used the CRISPR/Cas9n system to develop E-cadherin-knockout (EcadKO) ovarian cancer RMG-1 cell to clarify the role of E-cadherin in RMG-1 cells. EcadKO RMG-1 cells demonstrated a complete loss of the adherens junctions and failed to form cell clusters. Cell–extracellular matrix (ECM) interactions were increased in EcadKO RMG-1 cells. Upregulation of integrin beta1 and downregulation of collagen 4 were confirmed. EcadKO RMG-1 cells showed decreased β-catenin levels and decreased expression of its transcriptional target cyclin D1. Surprisingly, a marked decrease in the migratory ability of EcadKO RMG-1 cells was observed and the cellular response to Rho GTPase inhibitors was diminished. Thus, we demonstrated that E-cadherin in RMG-1 cells is indispensable for β-catenin expression and β-catenin mediated transcription and Rho GTPase-regulated directionally persistent cell migration. E-cadherin loss diminished the formation of cell clusters in RMG-1 cells. E-cadherin loss depleted β-catenin expression in RMG-1 cells. E-cadherin loss markedly decreased cell migration and response to RhoGTPase inhibitors during cell migration in RMG-1 cells.
Collapse
|
13
|
Xiao B, Shi X, Bai J. miR-30a regulates the proliferation and invasion of breast cancer cells by targeting Snail. Oncol Lett 2018; 17:406-413. [PMID: 30655781 DOI: 10.3892/ol.2018.9552] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/07/2018] [Indexed: 02/07/2023] Open
Abstract
The present study aims to investigate the effect of miR-30a on the proliferative and invasive abilities of breast cancer cells, and to observe the role of miR-30a in the pathogenesis of breast cancer. With the increase of pathological grade and malignant degree of breast cancer cells, the miR-30a expression level gradually decreased (P<0.01). Transfection with miR-30a mimic significantly inhibited the proliferative and invasive ability of SK-BR-3 cells (P<0.01), while transfection with anti-miR-30a significantly improved the proliferative and invasive ability of these cells (P<0.01). It was revealed using bioinformatic methods that Snail was the functional target gene of miR-30a, and this was verified by the results of a luciferase reporter gene assay. The results of analysis of Snail expression in breast cancer tissues and breast cancer cells revealed that with the increase in pathological grade and malignant degree of breast cancer cells, Snail expression levels gradually increased (P<0.01). Western blotting revealed that miR-30a significantly inhibited Snail expression in SK-BR-3 cells, upregulated the expression of EMT-associated E-cadherin, and downregulated the expression of EMT-associated N-cadherin and Vimentin. MiR-30a was able to affect the proliferation and invasion of breast cancer cells by regulating Snail expression, and therefore has a regulatory effect on the occurrence and development of breast cancer.
Collapse
Affiliation(s)
- Baoqiang Xiao
- Department of General Surgery, No. 254 Hospital of The People's Liberation Army, Tianjin 300142, P.R. China
| | - Xuejing Shi
- Department of Breast Surgery, Tianjin Central Obstetrics and Gynecology Hospital, Tianjin 300142, P.R. China
| | - Jianping Bai
- Department of General Surgery, No. 254 Hospital of The People's Liberation Army, Tianjin 300142, P.R. China
| |
Collapse
|
14
|
Maturi V, Morén A, Enroth S, Heldin CH, Moustakas A. Genomewide binding of transcription factor Snail1 in triple-negative breast cancer cells. Mol Oncol 2018; 12:1153-1174. [PMID: 29729076 PMCID: PMC6026864 DOI: 10.1002/1878-0261.12317] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 03/28/2018] [Accepted: 04/15/2018] [Indexed: 12/15/2022] Open
Abstract
Transcriptional regulation mediated by the zinc finger protein Snail1 controls early embryogenesis. By binding to the epithelial tumor suppressor CDH1 gene, Snail1 initiates the epithelial–mesenchymal transition (EMT). The EMT generates stem‐like cells and promotes invasiveness during cancer progression. Accordingly, Snail1 mRNA and protein is abundantly expressed in triple‐negative breast cancers with enhanced metastatic potential and phenotypic signs of the EMT. Such high endogenous Snail1 protein levels permit quantitative chromatin immunoprecipitation‐sequencing (ChIP‐seq) analysis. Snail1 associated with 185 genes at cis regulatory regions in the Hs578T triple‐negative breast cancer cell model. These genes include morphogenetic regulators and signaling components that control polarized differentiation. Using the CRISPR/Cas9 system in Hs578T cells, a double deletion of 10 bp each was engineered into the first exon and into the second exon–intron junction of Snail1, suppressing Snail1 expression and causing misregulation of several hundred genes. Specific attention to regulators of chromatin organization provides a possible link to new phenotypes uncovered by the Snail1 loss‐of‐function mutation. On the other hand, genetic inactivation of Snail1 was not sufficient to establish a full epithelial transition to these tumor cells. Thus, Snail1 contributes to the malignant phenotype of breast cancer cells via diverse new mechanisms.
Collapse
Affiliation(s)
- Varun Maturi
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Ludwig Institute for Cancer Research, Uppsala University, Sweden
| | - Anita Morén
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Ludwig Institute for Cancer Research, Uppsala University, Sweden
| | - Stefan Enroth
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| | - Carl-Henrik Heldin
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Ludwig Institute for Cancer Research, Uppsala University, Sweden
| | - Aristidis Moustakas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Ludwig Institute for Cancer Research, Uppsala University, Sweden
| |
Collapse
|
15
|
Ratan ZA, Son YJ, Haidere MF, Uddin BMM, Yusuf MA, Zaman SB, Kim JH, Banu LA, Cho JY. CRISPR-Cas9: a promising genetic engineering approach in cancer research. Ther Adv Med Oncol 2018; 10:1758834018755089. [PMID: 29434679 PMCID: PMC5802696 DOI: 10.1177/1758834018755089] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/22/2017] [Indexed: 12/26/2022] Open
Abstract
Bacteria and archaea possess adaptive immunity against foreign genetic materials through clustered regularly interspaced short palindromic repeat (CRISPR) systems. The discovery of this intriguing bacterial system heralded a revolutionary change in the field of medical science. The CRISPR and CRISPR-associated protein 9 (Cas9) based molecular mechanism has been applied to genome editing. This CRISPR-Cas9 technique is now able to mediate precise genetic corrections or disruptions in in vitro and in vivo environments. The accuracy and versatility of CRISPR-Cas have been capitalized upon in biological and medical research and bring new hope to cancer research. Cancer involves complex alterations and multiple mutations, translocations and chromosomal losses and gains. The ability to identify and correct such mutations is an important goal in cancer treatment. In the context of this complex cancer genomic landscape, there is a need for a simple and flexible genetic tool that can easily identify functional cancer driver genes within a comparatively short time. The CRISPR-Cas system shows promising potential for modeling, repairing and correcting genetic events in different types of cancer. This article reviews the concept of CRISPR-Cas, its application and related advantages in oncology.
Collapse
Affiliation(s)
- Zubair Ahmed Ratan
- Department of Biomedical Engineering, Khulna University of Engineering and Technology, Khulna, Bangladesh
| | - Young-Jin Son
- Department of Pharmacy, Sunchon National University, Suncheon, Korea
| | | | | | - Md Abdullah Yusuf
- Department of Microbiology, National Institute of Neurosciences & Hospital, Dhaka, Bangladesh
| | - Sojib Bin Zaman
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Jong-Hoon Kim
- Department of Physiology, College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Korea
| | - Laila Anjuman Banu
- Department of Anatomy, Bangabandhu Sheikh Mujib Medical University (BSMMU), Shahbag, Dhaka 1000, Bangladesh
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, Korea
| |
Collapse
|
16
|
Zhao Z, Wang S, Lin Y, Miao Y, Zeng Y, Nie Y, Guo P, Jiang G, Wu J. Epithelial-mesenchymal transition in cancer: Role of the IL-8/IL-8R axis. Oncol Lett 2017; 13:4577-4584. [PMID: 28599458 DOI: 10.3892/ol.2017.6034] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 01/19/2017] [Indexed: 12/26/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a biological process that is associated with cancer metastasis and invasion. In cancer, EMT promotes cell motility, invasion and distant metastasis. Interleukin (IL)-8 is highly expressed in tumors and may induce EMT. The IL-8/IL-8R axis has a vital role in EMT in carcinoma, which is regulated by several signaling pathways, including the transforming growth factor β-spleen associated tyrosine kinase/Src-AKT/extracellular signal-regulated kinase, p38/Jun N-terminal kinase-activating transcription factor-2, phosphoinositide 3-kinase/AKT, nuclear factor-κB and Wnt signaling pathways. Blocking the IL-8/IL-8R signaling pathway may be a novel strategy to reduce metastasis and improve patient survival rates. This review will cover IL-8-IL-8R signaling pathway in tumor epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Zhiwei Zhao
- West China Medical Center, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shichao Wang
- West China Medical Center, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,School of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Yingbo Lin
- Department of Oncology and Pathology, Karolinska Institute, Cancer Centre Karolinska, SE-171 76 Stockholm, Sweden
| | - Yali Miao
- West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ye Zeng
- West China Medical Center, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yongmei Nie
- School of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Peng Guo
- West China Medical Center, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Guangyao Jiang
- Outpatient Building, West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jiang Wu
- West China Medical Center, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,School of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| |
Collapse
|
17
|
Wang K, Jin W, Jin P, Fei X, Wang X, Chen X. miR-211-5p Suppresses Metastatic Behavior by Targeting SNAI1 in Renal Cancer. Mol Cancer Res 2017; 15:448-456. [PMID: 28057716 DOI: 10.1158/1541-7786.mcr-16-0288] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 11/16/2022]
Abstract
The Snail family transcriptional repressor 1 (SNAI1) is known to promote metastatic phenotypes in renal cell carcinoma (RCC). However, the mechanism by which SNAI1 promotes RCC metastasis remains largely unexplored. Here, bioinformatics and quantitative validation revealed that miR-211-5p was downregulated in metastatic RCC clinical specimens compared with nonmetastatic RCC tissues. Overexpression of miR-211-5p suppressed RCC cell migration and invasion via downregulation of SNAI1 expression. Luciferase reporter assays demonstrated that miR-211-5p directly targeted 3'-UTR of SNAI1. Furthermore, miR-211-5p decreased xenograft tumor weight and reduced in vivo tumor metastasis in mice. These findings indicate that miR-211-5p-mediated inhibition of SNAIL1 expression contributes to the suppression of RCC progression.Implications: Targeting the miR-211-5p/SNAI1 signaling pathway may be a novel therapeutic approach for the treatment of RCC metastasis. Mol Cancer Res; 15(4); 448-56. ©2017 AACR.
Collapse
Affiliation(s)
- Kefeng Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wei Jin
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Jin
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiang Fei
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xia Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaonan Chen
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
18
|
Moustakas A, Heldin CH. Mechanisms of TGFβ-Induced Epithelial-Mesenchymal Transition. J Clin Med 2016; 5:jcm5070063. [PMID: 27367735 PMCID: PMC4961994 DOI: 10.3390/jcm5070063] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/22/2016] [Accepted: 06/22/2016] [Indexed: 02/07/2023] Open
Abstract
Transitory phenotypic changes such as the epithelial–mesenchymal transition (EMT) help embryonic cells to generate migratory descendants that populate new sites and establish the distinct tissues in the developing embryo. The mesenchymal descendants of diverse epithelia also participate in the wound healing response of adult tissues, and facilitate the progression of cancer. EMT can be induced by several extracellular cues in the microenvironment of a given epithelial tissue. One such cue, transforming growth factor β (TGFβ), prominently induces EMT via a group of specific transcription factors. The potency of TGFβ is partly based on its ability to perform two parallel molecular functions, i.e. to induce the expression of growth factors, cytokines and chemokines, which sequentially and in a complementary manner help to establish and maintain the EMT, and to mediate signaling crosstalk with other developmental signaling pathways, thus promoting changes in cell differentiation. The molecules that are activated by TGFβ signaling or act as cooperating partners of this pathway are impossible to exhaust within a single coherent and contemporary report. Here, we present selected examples to illustrate the key principles of the circuits that control EMT under the influence of TGFβ.
Collapse
Affiliation(s)
- Aristidis Moustakas
- Ludwig Cancer Research, Science for Life Laboratory, Uppsala University, Box 595, SE 751 24 Uppsala, Sweden.
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE 751 23 Uppsala, Sweden.
| | - Carl-Henrik Heldin
- Ludwig Cancer Research, Science for Life Laboratory, Uppsala University, Box 595, SE 751 24 Uppsala, Sweden.
| |
Collapse
|
19
|
Cai H, Jiang D, Qi F, Xu J, Yu L, Xiao Q. HRP-3 protects the hepatoma cells from glucose deprivation-induced apoptosis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:14383-14391. [PMID: 26823754 PMCID: PMC4713540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 10/22/2015] [Indexed: 06/05/2023]
Abstract
UNLABELLED Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide. It is important for HCC cells to resist to apoptosis caused by adverse energy pressure in microenvironment during the HCC tumorigenesis. HRP-3, a member of hepatoma-derived growth factor (HDGF)-related proteins (HRP) family, was shown to be highly up-regulated in HCC tissues and play an important role in HCC pathogenesis based on our previous research. The aim of the study was to investigate the HRP-3's role in HCC cells endurance against energy pressure. METHOD The HRP-3 expression level in primary rat hepatocytes and human HCC cell lines were examined when changing the extracellular glucose concentration. To assess biological function of HRP-3 during glucose deprivation, HRP-3 stable knockdown and control clones of SMMC-7721 and SK-hep1 were constructed for further analysis including cellular morphology observation, apoptotic sub G1 peak analysis and the mTOR-mediated phosphorylation of S6K1 detection in the absence of glucose. RESULTS Expression level of HRP-3 protein was highly up-regulated both in primary rat hepatocytes and HCC cells as prolonging the stimulation of glucose deprivation. Both morphology and sub-G1 phase analyses indicated that stable knockdown of HRP-3 sensitized HCC cells to glucose deprivation-induced cell apoptosis. Furthermore, silence of HRP-3 prevented the de-phosphorylation of S6K1 induced by glucose deprivation, which was an essential molecular event for HCC cell survival in energy pressure. CONCLUSIONS We propose that glucose deprivation-induced HRP-3 up-regulation potentially plays a major role in protecting HCC cells against apoptosis caused by energy pressure.
Collapse
Affiliation(s)
- Hao Cai
- The State Key Laboratory of Genetics Engineering, School of Life Science, Fudan UniversityShanghai 200438, P. R. China
| | - Deke Jiang
- The State Key Laboratory of Genetics Engineering, School of Life Science, Fudan UniversityShanghai 200438, P. R. China
- Center for Genomic Transformational Medicine and Prevention, School of Public Health, Fudan UniversityShanghai 200032, P. R. China
| | - Fang Qi
- The Second Department of Surgery, Hospital of China No. 17 Metallurgical Construction CorpMaanshan 243000, Anhui, P. R. China
| | - Jianfeng Xu
- Center for Genomic Transformational Medicine and Prevention, School of Public Health, Fudan UniversityShanghai 200032, P. R. China
| | - Long Yu
- The State Key Laboratory of Genetics Engineering, School of Life Science, Fudan UniversityShanghai 200438, P. R. China
| | - Qianyi Xiao
- Center for Genomic Transformational Medicine and Prevention, School of Public Health, Fudan UniversityShanghai 200032, P. R. China
| |
Collapse
|