1
|
Wang H, Qin L, Feng C, Wu M, Zhong H, Liu J, Wu Q, Que Y. Pathogen resistance was negatively regulated by the NAC transcription factor ScATAF1 in sugarcane. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108828. [PMID: 38896914 DOI: 10.1016/j.plaphy.2024.108828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/15/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
The NAC (NAM, ATAF, and CUC) is one of the largest transcription factor gene families in plants. In this study, 180, 141, and 131 NAC family members were identified from Saccharum complex, including S. officinarum, S. spontaneum, and Erianthus rufipilus. The Ka/Ks ratio of ATAF subfamily was all less than 1. Besides, 52 ATAF members from 12 representative plants were divided into three clades and there was only a significant expansion in maize. Surprisingly, ABA and JA cis-elements were abundant in hormonal response factor, followed by transcriptional regulator and abiotic stressor. The ATAF subfamily was differentially expressed in various tissues, under low temperature and smut pathogen treatments. Further, the ScATAF1 gene, with high expression in leaves, stem epidermis, and buds, was isolated. The encoded protein, lack of self-activation activity, was situated in the cell nucleus. Moreover, SA and JA stresses down-regulated the expression of this gene, while ABA, NaCl, and 4°C treatments led to its up-regulation. Interestingly, its expression in the smut susceptible sugarcane cultivars was much higher than the smut resistant ones. Notably, the colors presented slight brown in tobacco transiently overexpressing ScATAF1 at 1 d after DAB staining, while the symptoms were more obvious at 3 d after inoculation with Ralstonia solanacearum, with ROS, JA, and SA signaling pathway genes significantly up-regulated. We thus speculated ScATAF1 gene could negatively mediate hypersensitive reactions and produce ROS by JA and SA signaling pathways. These findings lay the groundwork for in-depth investigation on the biological roles of ATAF subfamily in sugarcane.
Collapse
Affiliation(s)
- Hengbo Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Instrumental Analysis Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China; National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Sanya, Haikou, 572024/571101, Hainan, China
| | - Liqian Qin
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Instrumental Analysis Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Chunyan Feng
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Instrumental Analysis Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Mingxing Wu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Instrumental Analysis Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Hui Zhong
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Instrumental Analysis Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Junhong Liu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Instrumental Analysis Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Qibin Wu
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Sanya, Haikou, 572024/571101, Hainan, China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Instrumental Analysis Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China; National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Sanya, Haikou, 572024/571101, Hainan, China.
| |
Collapse
|
2
|
Xiao S, Wu Y, Xu S, Jiang H, Hu Q, Yao W, Zhang M. Field evaluation of TaDREB2B-ectopic expression sugarcane ( Saccharum spp. hybrid) for drought tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:963377. [PMID: 36388609 PMCID: PMC9664057 DOI: 10.3389/fpls.2022.963377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Sugarcane is one of the most crucial sugar crops globally that supplies the main raw material for sugar and ethanol production, but drought stress causes a severe decline in sugarcane yield worldwide. Enhancing sugarcane drought resistance and reducing yield and quality losses is an ongoing challenge in sugarcane genetic improvement. Here, we introduced a Tripidium arundinaceum dehydration-responsive element-binding transcription factor (TaDREB2B) behind the drought-responsible RD29A promoter into a commercial sugarcane cultivar FN95-1702 and subsequently conducted a series of drought tolerance experiments and investigation of agronomic and quality traits. Physiological analysis indicated that Prd29A: TaDREB2B transgenic sugarcane significantly confers drought tolerance in both the greenhouses and the field by enhancing water retention capacity and reducing membrane damage without compromising growth. These transgenic plants exhibit obvious improvements in yield performance and various physiological traits under the limited-irrigation condition in the field, such as increasing 41.9% yield and 44.4% the number of ratooning sugarcane seedlings. Moreover, Prd29A: TaDREB2B transgenic plants do not penalize major quality traits, including sucrose content, gravity purity, Brix, etc. Collectively, our results demonstrated that the Prd29A-TaDREB2B promoter-transgene combination will be a useful biotechnological tool for the increase of drought tolerance and the minimum of yield losses in sugarcane.
Collapse
|
3
|
Wu J, Zhang M, Liu J, Huang Y, Xu L, Deng Z, Zhao X. Efficient Anchoring of Erianthus arundinaceus Chromatin Introgressed into Sugarcane by Specific Molecular Markers. Int J Mol Sci 2022; 23:ijms23169435. [PMID: 36012702 PMCID: PMC9408830 DOI: 10.3390/ijms23169435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022] Open
Abstract
Erianthus arundinaceus is a valuable gene reservoir for sugarcane improvement. However, insufficient molecular markers for high-accuracy identification and tracking of the introgression status of E. arundinaceus chromatin impede sugarcane breeding. Fortunately, suppression subtractive hybridization (SSH) technology provides an excellent opportunity for the development of high-throughput E. arundinaceus-specific molecular markers at a reasonable cost. In this study, we constructed a SSH library of E. arundinaceus. In total, 288 clones of E. arundinaceus-specific repetitive sequences were screened out and their distribution patterns on chromosomes were characterized by fluorescence in situ hybridization (FISH). A subtelomeric repetitive sequence Ea086 and a diffusive repetitive sequence Ea009, plus 45S rDNA-bearing E. arundinaceus chromosome repetitive sequence EaITS were developed as E. arundinaceus-specific molecular markers, namely, Ea086-128, Ea009-257, and EaITS-278, covering all the E. arundinaceus chromosomes for high-accuracy identification of putative progeny. Both Ea086-128 and Ea009-257 were successfully applied to identify the authenticity of F1, BC1, BC2, BC3, and BC4 progeny between sugarcane and E. arundinaceus. In addition, EaITS-278 was a 45S rDNA-bearing E. arundinaceus chromosome-specific molecular marker for rapid tracking of the inherited status of this chromosome in a sugarcane background. Three BC3 progeny had apparently lost the 45S rDNA-bearing E. arundinaceus chromosome. We reported herein a highly effective and reliable SSH-based technology for discovery of high-throughput E. arundinaceus-specific sequences bearing high potential as molecular markers. Given its reliability and savings in time and efforts, the method is also suitable for development of species-specific molecular markers for other important wild relatives to accelerate introgression of wild relatives into sugarcane.
Collapse
Affiliation(s)
- Jiayun Wu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Guangdong Sugarcane Genetic Improvement Engineering Center, Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Mingxiao Zhang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiarui Liu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yongji Huang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liangnian Xu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zuhu Deng
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory for Protection and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (Z.D.); (X.Z.)
| | - Xinwang Zhao
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory for Protection and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (Z.D.); (X.Z.)
| |
Collapse
|
4
|
Comparative Analysis of Chloroplast Genome in Saccharum spp. and Related Members of ‘Saccharum Complex’. Int J Mol Sci 2022; 23:ijms23147661. [PMID: 35887005 PMCID: PMC9315705 DOI: 10.3390/ijms23147661] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
High ploids of the sugarcane nuclear genome limit its genomic studies, whereas its chloroplast genome is small and conserved, which is suitable for phylogenetic studies and molecular marker development. Here, we applied whole genome sequencing technology to sequence and assemble chloroplast genomes of eight species of the ‘Saccharum Complex’, and elucidated their sequence variations. In total, 19 accessions were sequenced, and 23 chloroplast genomes were assembled, including 6 species of Saccharum (among them, S. robustum, S. sinense, and S. barberi firstly reported in this study) and 2 sugarcane relative species, Tripidium arundinaceum and Narenga porphyrocoma. The plastid phylogenetic signal demonstrated that S. officinarum and S. robustum shared a common ancestor, and that the cytoplasmic origins of S. sinense and S. barberi were much more ancient than the S. offcinarum/S. robustum linage. Overall, 14 markers were developed, including 9 InDel markers for distinguishing Saccharum from its relative species, 4 dCAPS markers for distinguishing S. officinarum from S. robustum, and 1 dCAPS marker for distinguishing S. sinense and S. barberi from other species. The results obtained from our studies will contribute to the understanding of the classification and plastome evolution of Saccharinae, and the molecular markers developed have demonstrated their highly discriminatory power in Saccharum and relative species.
Collapse
|
5
|
Yang S, Zeng K, Chen K, Wu J, Wang Q, Li X, Deng Z, Huang Y, Huang F, Chen R, Zhang M. Chromosome transmission in BC 4 progenies of intergeneric hybrids between Saccharum spp. and Erianthus arundinaceus (Retz.) Jeswiet. Sci Rep 2019; 9:2528. [PMID: 30792411 PMCID: PMC6385618 DOI: 10.1038/s41598-019-38710-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 01/07/2019] [Indexed: 12/15/2022] Open
Abstract
Intergeneric hybrids between Saccharum spp. and Erianthus arundinaceus and clones derived from these hybrids and backcrosses to Saccharum spp. were used to study the transmission of E. arundinaceus chromosomes by genomic in situ hybridization (GISH). True hybrid progenies were precisely identified using PCR with a primer pair, AGRP52/53. The results showed that AGRP52/53 was an E. arundinaceus-specific primer pair and could be used as molecular marker to assist breeding. EaHN92, a 364 bp E. arundinaceus-specific tandem repeat satellite DNA sequence, was cloned from the E. arundinaceus clone HN92-105 with AGRP52/53, and was localized on sub-telomeric regions of all E. arundinaceus chromosomes. YCE06-61, a BC3 progeny, had 7 E. arundinaceus chromosomes and its progenies had approximately 1-6 E. arundinaceus chromosomes. The number of E. arundinaceus chromosomes in true hybrids appeared as Gaussian distribution in 3 cross combinations. In addition, GISH detected intergeneric chromosome translocation in a few progenies. Hence, screening clones containing approximately 1-2 E. arundinaceus chromosomes without translocation could be used for sorting and sequencing E. arundinaceus chromosomes. This study provides a method for breeders to select true hybrid progenies between Saccharum spp. and E. arundinaceus, which will accelerate this intergeneric hybridization breeding.
Collapse
Affiliation(s)
- Shan Yang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Kai Zeng
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ke Chen
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jiayun Wu
- Guangdong Provincial Bioengineering Institute, Guangzhou Sugarcane Industry Research Institute, Guangzhou, 510316, China
| | - Qinnan Wang
- Guangdong Provincial Bioengineering Institute, Guangzhou Sugarcane Industry Research Institute, Guangzhou, 510316, China
| | - Xueting Li
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zuhu Deng
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, 530004, China.
| | - Yongji Huang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Fei Huang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Rukai Chen
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Muqing Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, 530004, China
| |
Collapse
|
6
|
Pachakkil B, Terajima Y, Ohmido N, Ebina M, Irei S, Hayashi H, Takagi H. Cytogenetic and agronomic characterization of intergeneric hybrids between Saccharum spp. hybrid and Erianthus arundinaceus. Sci Rep 2019; 9:1748. [PMID: 30742000 PMCID: PMC6370852 DOI: 10.1038/s41598-018-38316-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/21/2018] [Indexed: 11/09/2022] Open
Abstract
In sugarcane (Saccharum spp. hybrid) breeding, introgression of useful genes via intergeneric hybridization is a powerful strategy for improving the crop productivity. Erianthus arundinaceus shows great potential in terms of useful traits; however, little is known about the cytogenetic and agronomic characteristics of intergeneric hybrids between these two species. Here, we examine the cytogenetic and agronomic characteristics, and relationships between the two in intergeneric F1 hybrids between modern sugarcane cultivar and E. arundinaceus identified by amplification of 5S rDNA markers and morphological characteristics. The nuclear DNA content of the hybrids varied from 6.07 to 8.94 pg/2C, with intra-clonal variation in DNA content and 5S rDNA sites. Genomic in situ hybridization revealed 53 to 82 chromosomes in the hybrids, with 53 to 56 derived from sugarcane and 1 to 29 from E. arundinaceus. There were significant positive correlations between the number of E. arundinaceus chromosomes and dry matter yield, millable stalk weight, single stalk weight, and stalk diameter, but not sucrose content, reducing sugar content, sucrose/reducing sugar ratio or fiber content. This detailed information on intergeneric F1 hybrids between modern sugarcane cultivar and E. arundinaceus will contribute to effective utilization of E. arundinaceus in sugarcane breeding.
Collapse
Affiliation(s)
- Babil Pachakkil
- Tropical Agriculture Research Front, Japan International Research Center for Agricultural Sciences, Ishigaki, 907-0002, Japan.,Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Yoshifumi Terajima
- Tropical Agriculture Research Front, Japan International Research Center for Agricultural Sciences, Ishigaki, 907-0002, Japan.
| | - Nobuko Ohmido
- Graduate School of Human Development and Environment, Kobe University, Kobe, 657-8501, Japan
| | - Masumi Ebina
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Nasushiobara, 329-2793, Japan
| | - Shin Irei
- Okinawa Prefectural Agricultural Research Center, Itoman, 901-0336, Japan
| | | | - Hiroko Takagi
- Tropical Agriculture Research Front, Japan International Research Center for Agricultural Sciences, Ishigaki, 907-0002, Japan
| |
Collapse
|
7
|
Lloyd Evans D, Joshi SV, Wang J. Whole chloroplast genome and gene locus phylogenies reveal the taxonomic placement and relationship of Tripidium (Panicoideae: Andropogoneae) to sugarcane. BMC Evol Biol 2019; 19:33. [PMID: 30683070 PMCID: PMC6347779 DOI: 10.1186/s12862-019-1356-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 01/03/2019] [Indexed: 11/13/2022] Open
Abstract
Background For over 50 years, attempts have been made to introgress agronomically useful traits from Erianthus sect. Ripidium (Tripidium) species into sugarcane based on both genera being part of the ‘Saccharum Complex’, an interbreeding group of species believed to be involved in the origins of sugarcane. However, recent low copy number gene studies indicate that Tripidium and Saccharum are more divergent than previously thought. The extent of genus Tripidium has not been fully explored and many species that should be included in Tripidium are still classified as Saccharum. Moreover, Tripidium is currently defined as incertae sedis within the Andropogoneae, though it has been suggested that members of this genus are related to the Germainiinae. Results Eight newly-sequenced chloroplasts from potential Tripidium species were combined in a phylogenetic study with 46 members of the Panicoideae, including seven Saccharum accessions, two Miscanthidium and three Miscanthus species. A robust chloroplast phylogeny was generated and comparison with a gene locus phylogeny clearly places a monophyletic Tripidium clade outside the bounds of the Saccharinae. A key to the currently identified Tripidium species is presented. Conclusion For the first time, we have undertaken a large-scale whole plastid study of eight newly assembled Tripidium accessions and a gene locus study of five Tripidium accessions. Our findings show that Tripidium and Saccharum are 8 million years divergent, last sharing a common ancestor 12 million years ago. We demonstrate that four species should be removed from Saccharum/Erianthus and included in genus Tripidium. In a genome context, we show that Tripidium evolved from a common ancestor with and extended Germainiinae clade formed from Germainia, Eriochrysis, Apocopis, Pogonatherum and Imperata. We re-define the ‘Saccharum complex’ to a group of genera that can interbreed in the wild and extend the Saccharinae to include Sarga along with Sorghastrum, Microstegium vimineum and Polytrias (but excluding Sorghum). Monophyly of genus Tripidium is confirmed and the genus is expanded to include Tripidium arundinaceum, Tripidium procerum, Tripidium kanashiroi and Tripidium rufipilum. As a consequence, these species are excluded from genus Saccharum. Moreover, we demonstrate that genus Tripidium is distinct from the Germainiinae. Electronic supplementary material The online version of this article (10.1186/s12862-019-1356-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dyfed Lloyd Evans
- South African Sugarcane Research Institute, 170 Flanders Drive, Private Bag X02, Mount Edgecombe, Durban, 4300, South Africa. .,School of Life Sciences, College of Agriculture, Engineering and Science, University of Kwa-Zulu Natal, Private Bag X54001, Durban, 4000, South Africa. .,BeauSci Ltd., Waterbeach, Cambridge, CB25 9TL, UK.
| | - Shailesh V Joshi
- South African Sugarcane Research Institute, 170 Flanders Drive, Private Bag X02, Mount Edgecombe, Durban, 4300, South Africa.,School of Life Sciences, College of Agriculture, Engineering and Science, University of Kwa-Zulu Natal, Private Bag X54001, Durban, 4000, South Africa
| | - Jianping Wang
- Agronomy Department, University of Florida, Gainesville, FL, USA.,Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China.,Plant Molecular and Biology Program, Genetics Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
8
|
Balakrishnan D, Surapaneni M, Mesapogu S, Neelamraju S. Development and use of chromosome segment substitution lines as a genetic resource for crop improvement. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:1-25. [PMID: 30483819 DOI: 10.1007/s00122-018-3219-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 10/24/2018] [Indexed: 05/27/2023]
Abstract
CSSLs are a complete library of introgression lines with chromosomal segments of usually a distant genotype in an adapted background and are valuable genetic resources for basic and applied research on improvement of complex traits. Chromosome segment substitution lines (CSSLs) are genetic stocks representing the complete genome of any genotype in the background of a cultivar as overlapping segments. Ideally, each CSSL has a single chromosome segment from the donor with a maximum recurrent parent genome recovered in the background. CSSL development program requires population-wide backcross breeding and genome-wide marker-assisted selection followed by selfing. Each line in a CSSL library has a specific marker-defined large donor segment. CSSLs are evaluated for any target phenotype to identify lines significantly different from the parental line. These CSSLs are then used to map quantitative trait loci (QTLs) or causal genes. CSSLs are valuable prebreeding tools for broadening the genetic base of existing cultivars and harnessing the genetic diversity from the wild- and distant-related species. These are resources for genetic map construction, mapping QTLs, genes or gene interactions and their functional analysis for crop improvement. In the last two decades, the utility of CSSLs in identification of novel genomic regions and QTL hot spots influencing a wide range of traits has been well demonstrated in food and commercial crops. This review presents an overview of how CSSLs are developed, their status in major crops and their use in genomic studies and gene discovery.
Collapse
Affiliation(s)
- Divya Balakrishnan
- ICAR- National Professor Project, ICAR- Indian Institute of Rice Research, Hyderabad, India
| | - Malathi Surapaneni
- ICAR- National Professor Project, ICAR- Indian Institute of Rice Research, Hyderabad, India
| | - Sukumar Mesapogu
- ICAR- National Professor Project, ICAR- Indian Institute of Rice Research, Hyderabad, India
| | - Sarla Neelamraju
- ICAR- National Professor Project, ICAR- Indian Institute of Rice Research, Hyderabad, India.
| |
Collapse
|
9
|
Yu F, Huang Y, Luo L, Li X, Wu J, Chen R, Zhang M, Deng Z. An improved suppression subtractive hybridization technique to develop species-specific repetitive sequences from Erianthus arundinaceus (Saccharum complex). BMC PLANT BIOLOGY 2018; 18:269. [PMID: 30400857 PMCID: PMC6220460 DOI: 10.1186/s12870-018-1471-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 10/05/2018] [Indexed: 05/17/2023]
Abstract
BACKGROUND Sugarcane has recently attracted increased attention for its potential as a source of bioethanol and methane. However, a narrow genetic base has limited germplasm enhancement of sugarcane. Erianthus arundinaceus is an important wild genetic resource that has many excellent traits for improving cultivated sugarcane via wide hybridization. Species-specific repetitive sequences are useful for identifying genome components and investigating chromosome inheritance in noblization between sugarcane and E. arundinaceus. Here, suppression subtractive hybridization (SSH) targeting E. arundinaceus-specific repetitive sequences was performed. The five critical components of the SSH reaction system, including enzyme digestion of genomic DNA (gDNA), adapters, digested gDNA concentrations, primer concentrations, and LA Taq polymerase concentrations, were improved using a stepwise optimization method to establish a SSH system suitable for obtaining E. arundinaceus-specific gDNA fragments. RESULTS Specificity of up to 85.42% was confirmed for the SSH method as measured by reverse dot blot (RDB) of an E. arundinaceus subtractive library. Furthermore, various repetitive sequences were obtained from the E. arundinaceus subtractive library via fluorescence in situ hybridization (FISH), including subtelomeric and centromeric regions. EaCEN2-166F/R and EaSUB1-127F/R primers were then designed as species-specific markers to accurately validate E. arundinaceus authenticity. CONCLUSIONS This is the first report that E. arundinaceus-specific repetitive sequences were obtained via an improved SSH method. These results suggested that this novel SSH system could facilitate screening of species-specific repetitive sequences for species identification and provide a basis for development of similar applications for other plant species.
Collapse
Affiliation(s)
- Fan Yu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Yongji Huang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Ling Luo
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Xueting Li
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Jiayun Wu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
- Guangdong Key Laboratory of Sugarcane Improvement and Biorefinery, Guangdong Provincial Bioengineering Institute, Guangzhou, China
| | - Rukai Chen
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Muqing Zhang
- State Key Laboratory for protection and utilization of subtropical agro-bioresources, Guangxi University, Nanning, 530004 China
| | - Zuhu Deng
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
- State Key Laboratory for protection and utilization of subtropical agro-bioresources, Guangxi University, Nanning, 530004 China
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| |
Collapse
|
10
|
Dong G, Shen J, Zhang Q, Wang J, Yu Q, Ming R, Wang K, Zhang J. Development and Applications of Chromosome-Specific Cytogenetic BAC-FISH Probes in S. spontaneum. FRONTIERS IN PLANT SCIENCE 2018; 9:218. [PMID: 29535742 PMCID: PMC5834487 DOI: 10.3389/fpls.2018.00218] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Saccharum spontaneum is a major Saccharum species that contributed to the origin of modern sugarcane cultivars, and due to a high degree of polyploidy is considered to be a plant species with one of the most complex genetics. Fluorescence in situ hybridization (FISH) is a powerful and widely used tool in genome studies. Here, we demonstrated that FISH based on bacterial artificial chromosome (BAC) clones can be used as a specific cytological marker to identify S. spontaneum individual chromosomes and study the relationship between S. spontaneum and other related species. We screened low-copy BACs as probes from the sequences of a high coverage of S. spontaneum BAC library based on BLAST search of the sorghum genome. In total, we isolated 49 positive BAC clones, and identified 27 BAC clones that can give specific signals on the S. spontaneum chromosomes. Of the 27 BAC probes, 18 were confirmed to be able to discriminate the eight basic chromosomes of S. spontaneum. Moreover, BAC-24, BAC-66, BAC-78, BAC-69, BAC-71, BAC-73, and BAC-77 probes were used to construct physical maps of chromosome 1 and chromosome 2 of S. spontaneum, which indicated synteny in Sb01 between S. spontaneum and sorghum. Furthermore, we found that BAC-14 and BAC-19 probes, corresponding to the sorghum chromosomes 2 and 8, respectively, localized to different arms of the same S. spontaneum chromosome, suggesting that there was an inter-chromosomal rearrangement event between S. spontaneum and sorghum. Our study provides the first set of chromosome-specific cytogenetic markers in Saccharum and is critical for future advances in cytogenetics and genome sequencing studies in Saccharum.
Collapse
Affiliation(s)
- Guangrui Dong
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiao Shen
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Qing Zhang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jianping Wang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Agronomy Department, University of Florida, Gainesville, FL, United States
| | - Qingyi Yu
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Ray Ming
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Texas A&M AgriLife Research Center, Department of Plant Pathology and Microbiology, Texas A&M University System, Dallas, TX, United States
| | - Kai Wang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jisen Zhang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Normal University, Fuzhou, China
- *Correspondence: Jisen Zhang,
| |
Collapse
|
11
|
Huang Y, Luo L, Hu X, Yu F, Yang Y, Deng Z, Wu J, Chen R, Zhang M. Characterization, Genomic Organization, Abundance, and Chromosomal Distribution of Ty1-copia Retrotransposons in Erianthus arundinaceus. FRONTIERS IN PLANT SCIENCE 2017; 8:924. [PMID: 28638390 PMCID: PMC5461294 DOI: 10.3389/fpls.2017.00924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/17/2017] [Indexed: 06/16/2023]
Abstract
Erianthus arundinaceus is an important wild species of the genus Saccharum with many valuable traits. However, the composition and structure of its genome are largely unknown, which have hindered its utilization in sugarcane breeding and evolutionary research. Retrotransposons constitute an appreciable fraction of plant genomes and may have played a significant role in the evolution and sequence organization of genomes. In the current study, we investigate the phylogenetic diversity and genomic abundance of Ty1-copia retrotransposons for the first time and inspect their chromosomal distribution patterns in E. arundinaceus. In total, 70 Ty1-copia reverse transcriptase (RT) sequences with significant levels of heterogeneity were obtained. The phylogenetic analysis revealed these Ty1-copia retrotransposons were classified into four distinct evolutionary lineages (Tork/TAR, Tork/Angela, Retrofit/Ale, and Sire/Maximus). Dot-blot analysis showed estimated the total copy number of Ty1-copia retrotransposons to be about 4.5 × 103 in the E. arundinaceus genome, indicating they were a significant component. Fluorescence in situ hybridization revealed that Ty1-copia retrotransposons from the four lineages had strikingly similar patterns of chromosomal enrichment, being exclusively enriched in the subterminal heterochromatic regions of most E. arundinaceus chromosomes. This is the first clear evidence of the presence of Ty1-copia retrotransposons in the subterminal heterochromatin of E. arundinaceus. Altogether, these results promote the understanding of the diversification of Ty1-copia retrotransposons and shed light on their chromosomal distribution patterns in E. arundinaceus.
Collapse
Affiliation(s)
- Yongji Huang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Ling Luo
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Xuguang Hu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Fan Yu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Yongqing Yang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Zuhu Deng
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry UniversityFuzhou, China
- Guangxi Collaborative Innovation Center of Sugar Industries, Guangxi UniversityNanning, China
| | - Jiayun Wu
- Guangdong Key Laboratory of Sugarcane Improvement and BiorefineryGuangzhou, China
- Guangdong Provincial Bioengineering Institute, Guangzhou Sugarcane Industry Research InstituteGuangzhou, China
| | - Rukai Chen
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Muqing Zhang
- Guangxi Collaborative Innovation Center of Sugar Industries, Guangxi UniversityNanning, China
| |
Collapse
|
12
|
Liu WL, Shih HC, Weng IS, Ko YZ, Tsai CC, Chou CH, Chiang YC. Characterization of Genomic Inheritance of Intergeneric Hybrids between Ascocenda and Phalaenopsis Cultivars by GISH, PCR-RFLP and RFLP. PLoS One 2016; 11:e0153512. [PMID: 27055268 PMCID: PMC4824505 DOI: 10.1371/journal.pone.0153512] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 03/30/2016] [Indexed: 11/18/2022] Open
Abstract
Background The intergeneric hybrids between Ascocenda John De Biase ‘Blue’ and Phalaenopsis Chih Shang's Stripes have been generated to introduce the blue color into the Phalaenopsis germplasm in prior study. In order to confirm the inheritance in hybrid progenies, genomic in situ hybridization (GISH) and restriction fragment length polymorphism (RFLP) analysis were conducted to confirm the intergeneric hybridization status. Methods/Results GISH analysis showed the presence of both maternal and paternal chromosomes in the cells of the putative hybrids indicating that the putative hybrid seedlings were intergeneric hybrids of the two parents. Furthermore, twenty-seven putative hybrids were randomly selected for DNA analysis, and the external transcribed spacer (ETS) regions of nrDNA were analyzed using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and RFLP analyses to identify the putative hybrids. RFLP analysis showed that the examined seedlings were intergeneric hybrids of the two parents. However, PCR-RFLP analysis showed bias to maternal genotype. Conclusions Both GISH and RFLP analyses are effective detection technology to identify the intergeneric hybridization status of putative hybrids. Furthermore, the use of PCR-RFLP analysis to identify the inheritance of putative hybrids should be carefully evaluated.
Collapse
Affiliation(s)
- Wen-Lin Liu
- Kaohsiung District Agricultural Research and Extension Station, Pingtung 900, Taiwan
| | - Huei-Chuan Shih
- Department of Nursing, Meiho University, Pingtung 912, Taiwan
| | - I-Szu Weng
- Kaohsiung District Agricultural Research and Extension Station, Pingtung 900, Taiwan
| | - Ya-Zhu Ko
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Chi-Chu Tsai
- Kaohsiung District Agricultural Research and Extension Station, Pingtung 900, Taiwan
- National Pingtung University of Science and Technology, Pingtung 912, Taiwan
- * E-mail: (CCT); (CHC); (YCC)
| | - Chang-Hung Chou
- Research Center for Biodiversity, China Medical University, Taichung 404, Taiwan
- * E-mail: (CCT); (CHC); (YCC)
| | - Yu-Chung Chiang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Department of Biomedical Science and Environment Biology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- * E-mail: (CCT); (CHC); (YCC)
| |
Collapse
|