1
|
Ignatiadis K, Baier D, Barumerli R, Sziller I, Tóth B, Baumgartner R. Cortical signatures of auditory looming bias show cue-specific adaptation between newborns and young adults. COMMUNICATIONS PSYCHOLOGY 2024; 2:56. [PMID: 38859821 PMCID: PMC11163589 DOI: 10.1038/s44271-024-00105-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 05/27/2024] [Indexed: 06/12/2024]
Abstract
Adaptive biases in favor of approaching, or "looming", sounds have been found across ages and species, thereby implicating the potential of their evolutionary origin and universal basis. The human auditory system is well-developed at birth, yet spatial hearing abilities further develop with age. To disentangle the speculated inborn, evolutionary component of the auditory looming bias from its learned counterpart, we collected high-density electroencephalographic data across human adults and newborns. As distance-motion cues we manipulated either the sound's intensity or spectral shape, which is pinna-induced and thus prenatally inaccessible. Through cortical source localisation we demonstrated the emergence of the bias in both age groups at the level of Heschl's gyrus. Adults exhibited the bias in both attentive and inattentive states; yet differences in amplitude and latency appeared based on attention and cue type. Contrary to the adults, in newborns the bias was elicited only through manipulations of intensity and not spectral cues. We conclude that the looming bias comprises innate components while flexibly incorporating the spatial cues acquired through lifelong exposure.
Collapse
Affiliation(s)
| | - Diane Baier
- Acoustics Research Institute, Austrian Academy of Sciences, Vienna, Austria
| | - Roberto Barumerli
- Acoustics Research Institute, Austrian Academy of Sciences, Vienna, Austria
| | - István Sziller
- Division of Obstetrics and Gynaecology, DBC, Szent Imre University Teaching Hospital, Budapest, Hungary
| | - Brigitta Tóth
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Robert Baumgartner
- Acoustics Research Institute, Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
2
|
Primiero CA, Betz-Stablein B, Ascott N, D’Alessandro B, Gaborit S, Fricker P, Goldsteen A, González-Villà S, Lee K, Nazari S, Nguyen H, Ntouskos V, Pahde F, Pataki BE, Quintana J, Puig S, Rezze GG, Garcia R, Soyer HP, Malvehy J. A protocol for annotation of total body photography for machine learning to analyze skin phenotype and lesion classification. Front Med (Lausanne) 2024; 11:1380984. [PMID: 38654834 PMCID: PMC11035726 DOI: 10.3389/fmed.2024.1380984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction Artificial Intelligence (AI) has proven effective in classifying skin cancers using dermoscopy images. In experimental settings, algorithms have outperformed expert dermatologists in classifying melanoma and keratinocyte cancers. However, clinical application is limited when algorithms are presented with 'untrained' or out-of-distribution lesion categories, often misclassifying benign lesions as malignant, or misclassifying malignant lesions as benign. Another limitation often raised is the lack of clinical context (e.g., medical history) used as input for the AI decision process. The increasing use of Total Body Photography (TBP) in clinical examinations presents new opportunities for AI to perform holistic analysis of the whole patient, rather than a single lesion. Currently there is a lack of existing literature or standards for image annotation of TBP, or on preserving patient privacy during the machine learning process. Methods This protocol describes the methods for the acquisition of patient data, including TBP, medical history, and genetic risk factors, to create a comprehensive dataset for machine learning. 500 patients of various risk profiles will be recruited from two clinical sites (Australia and Spain), to undergo temporal total body imaging, complete surveys on sun behaviors and medical history, and provide a DNA sample. This patient-level metadata is applied to image datasets using DICOM labels. Anonymization and masking methods are applied to preserve patient privacy. A two-step annotation process is followed to label skin images for lesion detection and classification using deep learning models. Skin phenotype characteristics are extracted from images, including innate and facultative skin color, nevi distribution, and UV damage. Several algorithms will be developed relating to skin lesion detection, segmentation and classification, 3D mapping, change detection, and risk profiling. Simultaneously, explainable AI (XAI) methods will be incorporated to foster clinician and patient trust. Additionally, a publicly released dataset of anonymized annotated TBP images will be released for an international challenge to advance the development of new algorithms using this type of data. Conclusion The anticipated results from this protocol are validated AI-based tools to provide holistic risk assessment for individual lesions, and risk stratification of patients to assist clinicians in monitoring for skin cancer.
Collapse
Affiliation(s)
- Clare A. Primiero
- Dermatology Department, Hospital Clinic and Fundació Clínic per la Recerca Biomèdica—IDIBAPS, Barcelona, Spain
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Brisbane, QLD, Australia
| | - Brigid Betz-Stablein
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Brisbane, QLD, Australia
| | | | | | | | - Paul Fricker
- Torus Actions & Belle.ai, Ramonville-Saint-Agne, France
| | | | | | - Katie Lee
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Brisbane, QLD, Australia
| | - Sana Nazari
- Computer Vision and Robotics Group, University of Girona, Girona, Spain
| | - Hang Nguyen
- Torus Actions & Belle.ai, Ramonville-Saint-Agne, France
| | - Valsamis Ntouskos
- Remote Sensing Lab, National Technical University of Athens, Athens, Greece
| | | | - Balázs E. Pataki
- HUN-REN Institute for Computer Science and Control, Budapest, Hungary
| | | | - Susana Puig
- Dermatology Department, Hospital Clinic and Fundació Clínic per la Recerca Biomèdica—IDIBAPS, Barcelona, Spain
- Medicine Department, University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades raras, Instituto de Salud Carlos III, Barcelona, Spain
| | - Gisele G. Rezze
- Dermatology Department, Hospital Clinic and Fundació Clínic per la Recerca Biomèdica—IDIBAPS, Barcelona, Spain
| | - Rafael Garcia
- Computer Vision and Robotics Group, University of Girona, Girona, Spain
| | - H. Peter Soyer
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Brisbane, QLD, Australia
- Dermatology Department, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Josep Malvehy
- Dermatology Department, Hospital Clinic and Fundació Clínic per la Recerca Biomèdica—IDIBAPS, Barcelona, Spain
- Medicine Department, University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades raras, Instituto de Salud Carlos III, Barcelona, Spain
| |
Collapse
|
3
|
Teraoka R, Kuroda N, Kojima R, Teramoto W. Comparison of peripersonal space in front and rear spaces. Exp Brain Res 2024:10.1007/s00221-024-06782-2. [PMID: 38319398 DOI: 10.1007/s00221-024-06782-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/12/2024] [Indexed: 02/07/2024]
Abstract
The space immediately around the body, referred to as the peripersonal space (PPS), plays a crucial role in interactions with external objects and in avoiding unsafe situations. This study aimed to investigate whether the size of the PPS changes depending on direction, with a particular focus on the disparity between the front and rear spaces. A vibrotactile stimulus was presented to measure PPS while a task-irrelevant auditory stimulus (probe) approached the participant. In addition, to evaluate the effect of the probe, a baseline condition was used in which only tactile stimuli were presented. The results showed that the auditory facilitation effect of the tactile stimulus was greater in the rear condition than in the front condition. Conversely, the performance on tasks related to auditory distance perception and sound speed estimation did not differ between the two directions, indicating that the difference in the auditory facilitation effect between directions cannot be explained by these factors. These findings indicate that the strength of audio-tactile integration is greater in the rear space compared to the front space, suggesting that the representation of the PPS differed between the front and rear spaces.
Collapse
Affiliation(s)
- Ryo Teraoka
- Graduate School of Engineering, Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran, Hokkaido, 050-8585, Japan.
- Faculty of Humanities and Social Sciences (Psychology), Kumamoto University, 2-40-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan.
| | - Naoki Kuroda
- Faculty of Humanities and Social Sciences (Psychology), Kumamoto University, 2-40-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Rinka Kojima
- Faculty of Letters, Kumamoto University, 2-40-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Wataru Teramoto
- Faculty of Humanities and Social Sciences (Psychology), Kumamoto University, 2-40-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| |
Collapse
|
4
|
Wu Z, Bao X, Liu L, Li L. Looming Effects on Attentional Modulation of Prepulse Inhibition Paradigm. Front Psychol 2021; 12:740363. [PMID: 34867622 PMCID: PMC8634448 DOI: 10.3389/fpsyg.2021.740363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
In a hazardous environment, it is fundamentally important to successfully evaluate the motion of sounds. Previous studies demonstrated "auditory looming bias" in both macaques and humans, as looming sounds that increased in intensity were processed preferentially by the brain. In this study on rats, we used a prepulse inhibition (PPI) of the acoustic startle response paradigm to investigate whether auditory looming sound with intrinsic warning value could draw attention of the animals and dampen the startle reflex caused by the startling noise. We showed looming sound with a duration of 120 ms enhanced PPI compared with receding sound with the same duration; however, when both sound types were at shorter duration/higher change rate (i.e., 30 ms) or longer duration/lower rate (i.e., more than 160 ms), there was no PPI difference. This indicates that looming sound-induced PPI enhancement was duration dependent. We further showed that isolation rearing impaired the abilities of animals to differentiate looming and receding prepulse stimuli, although it did not abolish their discrimination between looming and stationary prepulse stimuli. This suggests that isolation rearing compromised their assessment of potential threats from approaching objects and receding objects.
Collapse
Affiliation(s)
- Zhemeng Wu
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | | | | | - Liang Li
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| |
Collapse
|
5
|
Ignatiadis K, Baier D, Tóth B, Baumgartner R. Neural Mechanisms Underlying the Auditory Looming Bias. AUDITORY PERCEPTION & COGNITION 2021; 4:60-73. [PMID: 35494218 PMCID: PMC7612677 DOI: 10.1080/25742442.2021.1977582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Our auditory system constantly keeps track of our environment, informing us about our surroundings and warning us of potential threats. The auditory looming bias is an early perceptual phenomenon, reflecting higher alertness of listeners to approaching auditory objects, rather than to receding ones. Experimentally, this sensation has been elicited by using both intensity-varying stimuli, as well as spectrally varying stimuli with constant intensity. Following the intensity-based approach, recent research delving into the cortical mechanisms underlying the looming bias argues for top-down signaling from the prefrontal cortex to the auditory cortex in order to prioritize approaching over receding sonic motion. We here test the generalizability of that finding to spectrally induced looms by re-analyzing previously published data. Our results indicate the promoted top-down projection but at time points slightly preceding the motion onset and thus considered to reflect a bias driven by anticipation. At time points following the motion onset, our findings show a bottom-up bias along the dorsal auditory pathway directed toward the prefrontal cortex.
Collapse
Affiliation(s)
| | - Diane Baier
- Acoustics Research Institute, Austrian Academy of Sciences, Vienna, Austria
| | - Brigitta Tóth
- Center for Natural Sciences, Institute of Cognitive Neuroscience and Psychology, Budapest, Hungary
- Faculty of Education and Psychology, Eötvös Loránd University, Budapest, Hungary
| | - Robert Baumgartner
- Acoustics Research Institute, Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
6
|
Glatz C, Chuang LL. The time course of auditory looming cues in redirecting visuo-spatial attention. Sci Rep 2019; 9:743. [PMID: 30679468 PMCID: PMC6345893 DOI: 10.1038/s41598-018-36033-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 11/14/2018] [Indexed: 11/09/2022] Open
Abstract
By orienting attention, auditory cues can improve the discrimination of spatially congruent visual targets. Looming sounds that increase in intensity are processed preferentially by the brain. Thus, we investigated whether auditory looming cues can orient visuo-spatial attention more effectively than static and receding sounds. Specifically, different auditory cues could redirect attention away from a continuous central visuo-motor tracking task to peripheral visual targets that appeared occasionally. To investigate the time course of crossmodal cuing, Experiment 1 presented visual targets at different time-points across a 500 ms auditory cue's presentation. No benefits were found for simultaneous audio-visual cue-target presentation. The largest crossmodal benefit occurred at early cue-target asynchrony onsets (i.e., CTOA = 250 ms), regardless of auditory cue type, which diminished at CTOA = 500 ms for static and receding cues. However, auditory looming cues showed a late crossmodal cuing benefit at CTOA = 500 ms. Experiment 2 showed that this late auditory looming cue benefit was independent of the cue's intensity when the visual target appeared. Thus, we conclude that the late crossmodal benefit throughout an auditory looming cue's presentation is due to its increasing intensity profile. The neural basis for this benefit and its ecological implications are discussed.
Collapse
Affiliation(s)
- Christiane Glatz
- Max Planck Institute for Biological Cybernetics, Department Human Perception, Cognition, and Action, Tübingen, 72076, Germany.,Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, 72074, Germany
| | - Lewis L Chuang
- Max Planck Institute for Biological Cybernetics, Department Human Perception, Cognition, and Action, Tübingen, 72076, Germany. .,Institute for Informatics, Ludwig-Maximilian-Universiät, Munich, 80337, Germany.
| |
Collapse
|
7
|
Asymmetries in behavioral and neural responses to spectral cues demonstrate the generality of auditory looming bias. Proc Natl Acad Sci U S A 2017; 114:9743-9748. [PMID: 28827336 DOI: 10.1073/pnas.1703247114] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Studies of auditory looming bias have shown that sources increasing in intensity are more salient than sources decreasing in intensity. Researchers have argued that listeners are more sensitive to approaching sounds compared with receding sounds, reflecting an evolutionary pressure. However, these studies only manipulated overall sound intensity; therefore, it is unclear whether looming bias is truly a perceptual bias for changes in source distance, or only in sound intensity. Here we demonstrate both behavioral and neural correlates of looming bias without manipulating overall sound intensity. In natural environments, the pinnae induce spectral cues that give rise to a sense of externalization; when spectral cues are unnatural, sounds are perceived as closer to the listener. We manipulated the contrast of individually tailored spectral cues to create sounds of similar intensity but different naturalness. We confirmed that sounds were perceived as approaching when spectral contrast decreased, and perceived as receding when spectral contrast increased. We measured behavior and electroencephalography while listeners judged motion direction. Behavioral responses showed a looming bias in that responses were more consistent for sounds perceived as approaching than for sounds perceived as receding. In a control experiment, looming bias disappeared when spectral contrast changes were discontinuous, suggesting that perceived motion in distance and not distance itself was driving the bias. Neurally, looming bias was reflected in an asymmetry of late event-related potentials associated with motion evaluation. Hence, both our behavioral and neural findings support a generalization of the auditory looming bias, representing a perceptual preference for approaching auditory objects.
Collapse
|
8
|
Whole-Brain Neural Dynamics of Probabilistic Reward Prediction. J Neurosci 2017; 37:3789-3798. [PMID: 28270567 PMCID: PMC5394896 DOI: 10.1523/jneurosci.2943-16.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 01/31/2017] [Accepted: 02/02/2017] [Indexed: 11/25/2022] Open
Abstract
Predicting future reward is paramount to performing an optimal action. Although a number of brain areas are known to encode such predictions, a detailed account of how the associated representations evolve over time is lacking. Here, we address this question using human magnetoencephalography (MEG) and multivariate analyses of instantaneous activity in reconstructed sources. We overtrained participants on a simple instrumental reward learning task where geometric cues predicted a distribution of possible rewards, from which a sample was revealed 2000 ms later. We show that predicted mean reward (i.e., expected value), and predicted reward variability (i.e., economic risk), are encoded distinctly. Early on, representations of mean reward are seen in parietal and visual areas, and later in frontal regions with orbitofrontal cortex emerging last. Strikingly, an encoding of reward variability emerges simultaneously in parietal/sensory and frontal sources and later than mean reward encoding. An orbitofrontal variability encoding emerged around the same time as that seen for mean reward. Crucially, cross-prediction showed that mean reward and variability representations are distinct and also revealed that instantaneous representations become more stable over time. Across sources, the best fitting metric for variability signals was coefficient of variation (rather than SD or variance), but distinct best metrics were seen for individual brain regions. Our data demonstrate how a dynamic encoding of probabilistic reward prediction unfolds in the brain both in time and space. SIGNIFICANCE STATEMENT Predicting future reward is paramount to optimal behavior. To gain insight into the underlying neural computations, we investigate how reward representations in the brain arise over time. Using magnetoencephalography, we show that a representation of predicted mean reward emerges early in parietal/sensory regions and later in frontal cortex. In contrast, predicted reward variability representations appear in most regions at the same time, and slightly later than for mean reward. For both features, representations dynamically change >1000 ms before stabilizing. The best metric for encoding variability is coefficient of variation, with heterogeneity in this encoding seen between brain areas. The results provide novel insights into the emergence of predictive reward representations.
Collapse
|
9
|
Neuhoff JG. Looming sounds are perceived as faster than receding sounds. COGNITIVE RESEARCH-PRINCIPLES AND IMPLICATIONS 2016; 1:15. [PMID: 28180166 PMCID: PMC5256440 DOI: 10.1186/s41235-016-0017-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/23/2016] [Indexed: 11/17/2022]
Abstract
Each year thousands of people are killed by looming motor vehicles. Throughout our evolutionary history looming objects have posed a threat to survival and perceptual systems have evolved unique solutions to confront these environmental challenges. Vision provides an accurate representation of time-to-contact with a looming object and usually allows us to interact successfully with the object if required. However, audition functions as a warning system and yields an anticipatory representation of arrival time, indicating that the object has arrived when it is still some distance away. The bias provides a temporal margin of safety that allows more time to initiate defensive actions. In two studies this bias was shown to influence the perception of the speed of looming and receding sound sources. Listeners heard looming and receding sound sources and judged how fast they were moving. Listeners perceived the speed of looming sounds as faster than that of equivalent receding sounds. Listeners also showed better discrimination of the speed of looming sounds than receding sounds. Finally, close sounds were perceived as faster than distant sounds. The results suggest a prioritization of the perception of the speed of looming and receding sounds that mirrors the level of threat posed by moving objects in the environment.
Collapse
Affiliation(s)
- John G Neuhoff
- Department of Psychology, The College of Wooster, Wooster, OH 44691 USA
| |
Collapse
|