1
|
Kraus Y, Osadchenko B, Kosevich I. Embryonic development of the moon jellyfish Aurelia aurita (Cnidaria, Scyphozoa): another variant on the theme of invagination. PeerJ 2022; 10:e13361. [PMID: 35607447 PMCID: PMC9123889 DOI: 10.7717/peerj.13361] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/08/2022] [Indexed: 01/13/2023] Open
Abstract
Background Aurelia aurita (Scyphozoa, Cnidaria) is an emblematic species of the jellyfish. Currently, it is an emerging model of Evo-Devo for studying evolution and molecular regulation of metazoans' complex life cycle, early development, and cell differentiation. For Aurelia, the genome was sequenced, the molecular cascades involved in the life cycle transitions were characterized, and embryogenesis was studied on the level of gross morphology. As a reliable representative of the class Scyphozoa, Aurelia can be used for comparative analysis of embryonic development within Cnidaria and between Cnidaria and Bilateria. One of the intriguing questions that can be posed is whether the invagination occurring during gastrulation of different cnidarians relies on the same cellular mechanisms. To answer this question, a detailed study of the cellular mechanisms underlying the early development of Aurelia is required. Methods We studied the embryogenesis of A. aurita using the modern methods of light microscopy, immunocytochemistry, confocal laser microscopy, scanning and transmission electron microscopy. Results In this article, we report a comprehensive study of the early development of A. aurita from the White Sea population. We described in detail the embryonic development of A. aurita from early cleavage up to the planula larva. We focused mainly on the cell morphogenetic movements underlying gastrulation. The dynamics of cell shape changes and cell behavior during invagination of the archenteron (future endoderm) were characterized. That allowed comparing the gastrulation by invagination in two cnidarian species-scyphozoan A. aurita and anthozoan Nematostella vectensis. We described the successive stages of blastopore closure and found that segregation of the germ layers in A. aurita is linked to the 'healing' of the blastopore lip. We followed the developmental origin of the planula body parts and characterized the planula cells' ultrastructure. We also found that the planula endoderm consists of three morphologically distinct compartments along the oral-aboral axis. Conclusions Epithelial invagination is a fundamental morphogenetic movement that is believed as highly conserved across metazoans. Our data on the cell shaping and behaviours driving invagination in A. aurita contribute to understanding of morphologically similar morphogenesis in different animals. By comparative analysis, we clearly show that invagination may differ at the cellular level between cnidarian species belonging to different classes (Anthozoa and Scyphozoa). The number of cells involved in invagination, the dynamics of the shape of the archenteron cells, the stage of epithelial-mesenchymal transition that these cells can reach, and the fate of blastopore lip cells may vary greatly between species. These results help to gain insight into the evolution of morphogenesis within the Cnidaria and within Metazoa in general.
Collapse
Affiliation(s)
- Yulia Kraus
- Department of Evolutionary Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Boris Osadchenko
- Department of Invertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Igor Kosevich
- Department of Invertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
2
|
Mostovshchikova PS, Saidov DM, Kosevich IA. Morphological Deviations in Ephyrae after Chemical Induction of Strobilation in Aurelia aurita (Scyphozoa, Cnidaria). Russ J Dev Biol 2022. [DOI: 10.1134/s1062360422020084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Feeding-dependent tentacle development in the sea anemone Nematostella vectensis. Nat Commun 2020; 11:4399. [PMID: 32879319 PMCID: PMC7467937 DOI: 10.1038/s41467-020-18133-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/05/2020] [Indexed: 01/12/2023] Open
Abstract
In cnidarians, axial patterning is not restricted to embryogenesis but continues throughout a prolonged life history filled with unpredictable environmental changes. How this developmental capacity copes with fluctuations of food availability and whether it recapitulates embryonic mechanisms remain poorly understood. Here we utilize the tentacles of the sea anemone Nematostella vectensis as an experimental paradigm for developmental patterning across distinct life history stages. By analyzing over 1000 growing polyps, we find that tentacle progression is stereotyped and occurs in a feeding-dependent manner. Using a combination of genetic, cellular and molecular approaches, we demonstrate that the crosstalk between Target of Rapamycin (TOR) and Fibroblast growth factor receptor b (Fgfrb) signaling in ring muscles defines tentacle primordia in fed polyps. Interestingly, Fgfrb-dependent polarized growth is observed in polyp but not embryonic tentacle primordia. These findings show an unexpected plasticity of tentacle development, and link post-embryonic body patterning with food availability. How the developmental capacity of long-lived animals copes with fluctuations in the food supply is unclear. Here, the authors show using the sea anemone Nematostella vectensis that the crosstalk between Target of Rapamycin and fibroblast growth factor signalling in ring muscles links postembryonic tentacle patterning with food availability.
Collapse
|
4
|
Ge M, Liu W, Ma C, Yan Z, Liang H, Xu Z, Mariottini GL, Zhang J, Zhao X, Yang Y, Xiao L. Comparative proteomic analysis of Aurelia coerulea for its locomotion system molecular structure-function inference. J Proteomics 2019; 209:103509. [DOI: 10.1016/j.jprot.2019.103509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/14/2019] [Accepted: 08/29/2019] [Indexed: 01/14/2023]
|
5
|
Gold DA, Lau CLF, Fuong H, Kao G, Hartenstein V, Jacobs DK. Mechanisms of cnidocyte development in the moon jellyfish Aurelia. Evol Dev 2019; 21:72-81. [PMID: 30623570 DOI: 10.1111/ede.12278] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Stinging cells called cnidocytes are a defining trait of the cnidarians (sea anemones, corals, jellyfish, and their relatives). In hydrozoan cnidarians such as Hydra, cnidocytes develop from interstitial stem cells set aside in the ectoderm. It is less clear how cnidocytes develop outside the Hydrozoa, as other cnidarians appear to lack interstitial stem cells. We addressed this question by studying cnidogenesis in the moon jellyfish (Aurelia) through the visualization of minicollagen-a protein associated with cnidocyte development-as well as transmission electron microscopy. We discovered that developing cnidoblasts are rare or absent in feeding structures rich in mature cnidocytes, such as tentacles and lappets. Using transmission electron microscopy, we determined that the progenitors of cnidocytes have traits consistent with epitheliomuscular cells. Our data suggests a dynamic where cnidocytes develop at high concentrations in the epithelium of more proximal regions, and subsequently migrate to more distal regions where they exhibit high usage and turnover. Similar to some anthozoans, cnidocytes in Aurelia do not appear to be generated by interstitial stem cells; instead, epitheliomuscular cells appear to be the progenitor cell type. This observation polarizes the evolution of cnidogenesis, and raises the question of how interstitial stem cells came to regulate cnidogenesis in hydrozoans.
Collapse
Affiliation(s)
- David A Gold
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California.,Department of Earth and Planetary Sciences, University of California, Davis, California
| | - Clive Long Fung Lau
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California
| | - Holly Fuong
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California.,Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, New York.,New York Consortium in Evolutionary Primatology, New York, New York
| | - Gregory Kao
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California
| | - Volker Hartenstein
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California
| | - David K Jacobs
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California
| |
Collapse
|
6
|
Fujiki A, Hou S, Nakamoto A, Kumano G. Branching pattern and morphogenesis of medusa tentacles in the jellyfish Cladonema pacificum (Hydrozoa, Cnidaria). ZOOLOGICAL LETTERS 2019; 5:12. [PMID: 30915232 PMCID: PMC6417081 DOI: 10.1186/s40851-019-0124-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 02/06/2019] [Indexed: 05/15/2023]
Abstract
BACKGROUND Branched structures are found in many natural settings, and the molecular and cellular mechanisms underlying their formation in animal development have extensively studied in recent years. Despite their importance and the accumulated knowledge from studies on several organs of Drosophila and mammals, much remains unknown about branching mechanisms in other animal species. We chose to study the jellyfish species Cladonema pacificum. Unlike many other jellyfish, this species has branched medusa tentacles, and its basal phylogenetic position in animal evolution makes it an ideal organism for studying and understanding branching morphogenesis more broadly. Branched tentacles are unique compared to other well-studied branched structures in that they have two functionally distinct identities: one with adhesive organs for attaching to a substratum, and another with nematocyst clusters for capturing prey. RESULTS We began our analyses on C. pacificum tentacles by observing their branching during growth. We found that tentacle branches form through repeated addition of new branches to the proximal region of the main tentacle while it is elongating. At the site of branch bud formation, we observed apical thickening of the epidermal epithelial layer, possibly caused by extension of the epithelial cells along the apico-basal axis. Interestingly, tentacle branch formation required receptor tyrosine kinase signaling, which is an essential factor for branching morphogenesis in Drosophila and mammals. We also found that new branches form adhesive organs first, and then are transformed into branches with nematocyst clusters as they develop. CONCLUSIONS These results highlight unique features in branch generation in C. pacificum medusa tentacles and illuminate conserved and fundamental mechanisms by which branched structures are created across a variety of animal species.
Collapse
Affiliation(s)
- Akiyo Fujiki
- Asamushi Research Center for Marine Biology, Graduate School of Life Sciences, Tohoku University, 9 Sakamoto, Asamushi, Aomori, 039-3501 Japan
| | - Shiting Hou
- Asamushi Research Center for Marine Biology, Graduate School of Life Sciences, Tohoku University, 9 Sakamoto, Asamushi, Aomori, 039-3501 Japan
| | - Ayaki Nakamoto
- Asamushi Research Center for Marine Biology, Graduate School of Life Sciences, Tohoku University, 9 Sakamoto, Asamushi, Aomori, 039-3501 Japan
| | - Gaku Kumano
- Asamushi Research Center for Marine Biology, Graduate School of Life Sciences, Tohoku University, 9 Sakamoto, Asamushi, Aomori, 039-3501 Japan
| |
Collapse
|
7
|
Gold DA, Katsuki T, Li Y, Yan X, Regulski M, Ibberson D, Holstein T, Steele RE, Jacobs DK, Greenspan RJ. The genome of the jellyfish Aurelia and the evolution of animal complexity. Nat Ecol Evol 2018; 3:96-104. [PMID: 30510179 DOI: 10.1038/s41559-018-0719-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 10/12/2018] [Indexed: 11/09/2022]
Abstract
We present the genome of the moon jellyfish Aurelia, a genome from a cnidarian with a medusa life stage. Our analyses suggest that gene gain and loss in Aurelia is comparable to what has been found in its morphologically simpler relatives-the anthozoan corals and sea anemones. RNA sequencing analysis does not support the hypothesis that taxonomically restricted (orphan) genes play an oversized role in the development of the medusa stage. Instead, genes broadly conserved across animals and eukaryotes play comparable roles throughout the life cycle. All life stages of Aurelia are significantly enriched in the expression of genes that are hypothesized to interact in protein networks found in bilaterian animals. Collectively, our results suggest that increased life cycle complexity in Aurelia does not correlate with an increased number of genes. This leads to two possible evolutionary scenarios: either medusozoans evolved their complex medusa life stage (with concomitant shifts into new ecological niches) primarily by re-working genetic pathways already present in the last common ancestor of cnidarians, or the earliest cnidarians had a medusa life stage, which was subsequently lost in the anthozoans. While we favour the earlier hypothesis, the latter is consistent with growing evidence that many of the earliest animals were more physically complex than previously hypothesized.
Collapse
Affiliation(s)
- David A Gold
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA. .,Department of Earth and Planetary Sciences, University of California Davis, Davis, CA, USA.
| | - Takeo Katsuki
- Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, CA, USA.
| | - Yang Li
- Department of Computer Science, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Xifeng Yan
- Department of Computer Science, University of California Santa Barbara, Santa Barbara, CA, USA
| | | | - David Ibberson
- Deep Sequencing Core Facility, Cell Networks, Heidelberg University, Heidelberg, Germany
| | - Thomas Holstein
- Department of Molecular Evolution and Genomics, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Robert E Steele
- Department of Biological Chemistry and Developmental Biology Center, University of California Irvine, Irvine, CA, USA
| | - David K Jacobs
- Department of Ecology and Evolution, University of California Los Angeles, Los Angeles, CA, USA
| | - Ralph J Greenspan
- Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, CA, USA. .,Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA. .,Department of Cognitive Science, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
8
|
Helm RR. Evolution and development of scyphozoan jellyfish. Biol Rev Camb Philos Soc 2018; 93:1228-1250. [DOI: 10.1111/brv.12393] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/08/2017] [Accepted: 12/18/2017] [Indexed: 12/01/2022]
Affiliation(s)
- Rebecca R. Helm
- Woods Hole Oceanographic Institution – Biology, Mailstop 33, 45 Water Street Woods Hole MA 01543 U.S.A
| |
Collapse
|
9
|
Leclère L, Röttinger E. Diversity of Cnidarian Muscles: Function, Anatomy, Development and Regeneration. Front Cell Dev Biol 2017; 4:157. [PMID: 28168188 PMCID: PMC5253434 DOI: 10.3389/fcell.2016.00157] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 12/30/2016] [Indexed: 12/12/2022] Open
Abstract
The ability to perform muscle contractions is one of the most important and distinctive features of eumetazoans. As the sister group to bilaterians, cnidarians (sea anemones, corals, jellyfish, and hydroids) hold an informative phylogenetic position for understanding muscle evolution. Here, we review current knowledge on muscle function, diversity, development, regeneration and evolution in cnidarians. Cnidarian muscles are involved in various activities, such as feeding, escape, locomotion and defense, in close association with the nervous system. This variety is reflected in the large diversity of muscle organizations found in Cnidaria. Smooth epithelial muscle is thought to be the most common type, and is inferred to be the ancestral muscle type for Cnidaria, while striated muscle fibers and non-epithelial myocytes would have been convergently acquired within Cnidaria. Current knowledge of cnidarian muscle development and its regeneration is limited. While orthologs of myogenic regulatory factors such as MyoD have yet to be found in cnidarian genomes, striated muscle formation potentially involves well-conserved myogenic genes, such as twist and mef2. Although satellite cells have yet to be identified in cnidarians, muscle plasticity (e.g., de- and re-differentiation, fiber repolarization) in a regenerative context and its potential role during regeneration has started to be addressed in a few cnidarian systems. The development of novel tools to study those organisms has created new opportunities to investigate in depth the development and regeneration of cnidarian muscle cells and how they contribute to the regenerative process.
Collapse
Affiliation(s)
- Lucas Leclère
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV) Villefranche-sur-mer, France
| | - Eric Röttinger
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging (IRCAN) Nice, France
| |
Collapse
|
10
|
Cell tracking supports secondary gastrulation in the moon jellyfish Aurelia. Dev Genes Evol 2016; 226:383-387. [PMID: 27535146 DOI: 10.1007/s00427-016-0559-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 08/09/2016] [Indexed: 10/21/2022]
Abstract
The moon jellyfish Aurelia exhibits a dramatic reorganization of tissue during its metamorphosis from planula larva to polyp. There are currently two competing hypotheses regarding the fate of embryonic germ layers during this metamorphosis. In one scenario, the original endoderm undergoes apoptosis and is replaced by a secondary endoderm derived from ectodermal cells. In the second scenario, both ectoderm and endoderm remain intact through development. In this study, we performed a pulse-chase experiment to trace the fate of larval ectodermal cells. We observed that prior to metamorphosis, ectodermal cells that proliferated early in larval development concentrate at the future oral end of the polyp. During metamorphosis, these cells migrate into the endoderm, extending all the way to the aboral portion of the gut. We therefore reject the hypothesis that larval endoderm remains intact during metamorphosis and provide additional support for the "secondary gastrulation" hypothesis. Aurelia appears to offer the first and only described case where a cnidarian derives its endoderm twice during normal development, adding to a growing body of evidence that germ layers can be dramatically reorganized in cnidarian life cycles.
Collapse
|
11
|
Gold DA, Runnegar B, Gehling JG, Jacobs DK. Ancestral state reconstruction of ontogeny supports a bilaterian affinity for
Dickinsonia. Evol Dev 2015; 17:315-24. [DOI: 10.1111/ede.12168] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- David A. Gold
- Department of EarthAtmosphericand Planetary SciencesMassachusetts Institute of Technology77 Massachusetts AvenueCambridgeMA 02139USA
| | - Bruce Runnegar
- Department of EarthPlanetaryand Space SciencesUniversity of CaliforniaLos AngelesCA 90095‐1567USA
| | - James G. Gehling
- South Australia Museum and the Sprigg Geobiology CentreUniversity of Adelaide, North TerraceAdelaideSouth Australia 5000Australia
| | - David K. Jacobs
- Department of EarthPlanetaryand Space SciencesUniversity of CaliforniaLos AngelesCA 90095‐1567USA
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaLos AngelesCA 90095USA
| |
Collapse
|