1
|
De Nicolò M, Kanatschnig T, Hons M, Wood G, Kiili K, Moeller K, Greipl S, Ninaus M, Kober SE. Engaging learners with games-Insights from functional near-infrared spectroscopy. PLoS One 2023; 18:e0286450. [PMID: 37279251 PMCID: PMC10243642 DOI: 10.1371/journal.pone.0286450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/16/2023] [Indexed: 06/08/2023] Open
Abstract
The use of game elements in learning tasks is thought to facilitate emotional and behavioral responses as well as learner engagement. So far, however, little is known about the underlying neural mechanisms of game-based learning. In the current study, we added game elements to a number line estimation task assessing fraction understanding and compared brain activation patterns to a non-game-based task version. Forty-one participants performed both task versions in counterbalanced order while frontal brain activation patterns were assessed using near-infrared spectroscopy (within-subject, cross-sectional study design). Additionally, heart rate, subjective user experience, and task performance were recorded. Task performance, mood, flow experience, as well as heart rate did not differ between task versions. However, the game-based task-version was rated as more attractive, stimulating and novel compared to the non-game-based task version. Additionally, completing the game-based task version was associated with stronger activation in frontal brain areas generally involved in emotional and reward processing as well as attentional processes. These results provide new neurofunctional evidence substantiating that game elements in learning tasks seem to facilitate learning through emotional and cognitive engagement.
Collapse
Affiliation(s)
| | | | - Manuel Hons
- Institute of Psychology, University of Graz, Graz, Austria
| | - Guilherme Wood
- Institute of Psychology, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Kristian Kiili
- Faculty of Education and Culture, Tampere University, Tampere, Finland
| | - Korbinian Moeller
- Centre for Mathematical Cognition, School of Science, Loughborough University, Loughborough, United Kingdom
- Leibniz-Institut für Wissensmedien, Tübingen, Germany
- LEAD Graduate School & Research Network, University of Tübingen, Tübingen, Germany
| | - Simon Greipl
- Department of Media and Communication, Ludwig Maximilian University of Munich, Munich, Germany
| | - Manuel Ninaus
- Institute of Psychology, University of Graz, Graz, Austria
- LEAD Graduate School & Research Network, University of Tübingen, Tübingen, Germany
| | - Silvia Erika Kober
- Institute of Psychology, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
2
|
Schommartz I, Dix A, Passow S, Li SC. Functional Effects of Bilateral Dorsolateral Prefrontal Cortex Modulation During Sequential Decision-Making: A Functional Near-Infrared Spectroscopy Study With Offline Transcranial Direct Current Stimulation. Front Hum Neurosci 2021; 14:605190. [PMID: 33613203 PMCID: PMC7886709 DOI: 10.3389/fnhum.2020.605190] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/21/2020] [Indexed: 11/13/2022] Open
Abstract
The ability to learn sequential contingencies of actions for predicting future outcomes is indispensable for flexible behavior in many daily decision-making contexts. It remains open whether such ability may be enhanced by transcranial direct current stimulation (tDCS). The present study combined tDCS with functional near-infrared spectroscopy (fNIRS) to investigate potential tDCS-induced effects on sequential decision-making and the neural mechanisms underlying such modulations. Offline tDCS and sham stimulation were applied over the left and right dorsolateral prefrontal cortex (dlPFC) in young male adults (N = 29, mean age = 23.4 years, SD = 3.2) in a double-blind between-subject design using a three-state Markov decision task. The results showed (i) an enhanced dlPFC hemodynamic response during the acquisition of sequential state transitions that is consistent with the findings from a previous functional magnetic resonance imaging (fMRI) study; (ii) a tDCS-induced increase of the hemodynamic response in the dlPFC, but without accompanying performance-enhancing effects at the behavioral level; and (iii) a greater tDCS-induced upregulation of hemodynamic responses in the delayed reward condition that seems to be associated with faster decision speed. Taken together, these findings provide empirical evidence for fNIRS as a suitable method for investigating hemodynamic correlates of sequential decision-making as well as functional brain correlates underlying tDCS-induced modulation. Future research with larger sample sizes for carrying out subgroup analysis is necessary in order to decipher interindividual differences in tDCS-induced effects on sequential decision-making process at the behavioral and brain levels.
Collapse
Affiliation(s)
- Iryna Schommartz
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
- Department of Developmental Psychology, Institute of Psychology, Goethe University Frankfurt, Frankfurt, Germany
| | - Annika Dix
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
- Centre for Tactile Internet With Human-in-the-Loop, Technische Universität Dresden, Dresden, Germany
| | - Susanne Passow
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Shu-Chen Li
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
- Centre for Tactile Internet With Human-in-the-Loop, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
3
|
Singh AK, Wang YK, King JT, Lin CT. Extended Interaction With a BCI Video Game Changes Resting-State Brain Activity. IEEE Trans Cogn Dev Syst 2020. [DOI: 10.1109/tcds.2020.2985102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
4
|
Kober SE, Wood G, Kiili K, Moeller K, Ninaus M. Game-based learning environments affect frontal brain activity. PLoS One 2020; 15:e0242573. [PMID: 33211780 PMCID: PMC7676717 DOI: 10.1371/journal.pone.0242573] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/04/2020] [Indexed: 01/08/2023] Open
Abstract
Inclusion of game elements in learning environments to increase motivation and learning outcome is becoming increasingly popular. However, underlying mechanisms of game-based learning have not been studied sufficiently yet. In the present study, we investigated effects of game-based learning environments on a neurofunctional level. In particular, 59 healthy adults completed a game-based version (including game elements such as a narrative and virtual incentives) as well as a non-game-based version of a number line estimation task, to improve fractional knowledge, while their brain activity was monitored using near-infrared spectroscopy. Behavioral performance was comparable across the two versions, although there was a tendency that less errors were made in the game-based version. However, subjective user experience differed significantly between versions. Participants rated the game-based version as more attractive, novel, and stimulating but less efficient than the non-game-based version. Additionally, positive affect was reported to be higher while engaging in the game-based as compared to the non-game-based task version. Corroborating these user reports, we identified increased brain activation in areas associated with emotion and reward processing while playing the game-based version, which might be driven by rewarding elements of the game-based version. Moreover, frontal areas associated with attention were also more activated in the game-based version of the task. Hence, we observed converging evidence on a user experience and neurofunctional level indicating that the game-based version was more rewarding as well as emotionally and attentionally engaging. These results underscore the potential of game-based learning environments to promote more efficient learning by means of attention and reward up-tuning.
Collapse
Affiliation(s)
- Silvia Erika Kober
- Institute of Psychology, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- * E-mail:
| | - Guilherme Wood
- Institute of Psychology, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Kristian Kiili
- Faculty of Education and Culture, Tampere University, Tampere, Finland
| | - Korbinian Moeller
- Centre for Mathematical Cognition, School of Science, Loughborough University, Loughborough, United Kingdom
- Leibniz-Institut für Wissensmedien, Tübingen, Germany
- LEAD Graduate School & Research Network, Eberhard-Karls University Tübingen, Tübingen, Germany
| | - Manuel Ninaus
- Centre for Mathematical Cognition, School of Science, Loughborough University, Loughborough, United Kingdom
- Leibniz-Institut für Wissensmedien, Tübingen, Germany
| |
Collapse
|
5
|
Ghosh L, Konar A, Rakshit P, Nagar AK. Hemodynamic Analysis for Cognitive Load Assessment and Classification in Motor Learning Tasks Using Type-2 Fuzzy Sets. IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE 2019. [DOI: 10.1109/tetci.2018.2868323] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Gong D, Li Y, Yan Y, Yao Y, Gao Y, Liu T, Ma W, Yao D. The high-working load states induced by action real-time strategy gaming: An EEG power spectrum and network study. Neuropsychologia 2019; 131:42-52. [PMID: 31100346 DOI: 10.1016/j.neuropsychologia.2019.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 01/19/2023]
Abstract
Action Real-time Strategy Gaming (ARSG) is a cognitively demanding task that requires attention, sensorimotor skills, high-level team coordination, and strategy-making abilities. Thus, ARSG can offer important, new insights into learning-related neural plasticity. However, little research has examined how the brain allocates cognitive resources in ARSG. By analyzing power spectrums and electroencephalograph (EEG) functional connectivity (FC) networks, this study compared multiple conditions (resting, movie watching, ARSG, and Life simulation gaming - LSG) in two experiments. Consistent with previous research, we found that brain waves appeared to be de-assimilated after activation. Furthermore, results showed that ARSG was associated with higher activation and workload as indicated by θ-waves, and required higher attention as reflected by β-waves. Furthermore, as participants began ARSG, the allocation of cognitive resource gradually prioritized the frontal area, which controls attention, decision-making, monitoring, and mnemonic processing, while participants also showed an enhanced ability to process information under the ARSG condition as indicated by network characteristics. These electrophysiological changes observed in ARSG were not found under LSG. Thus, this study applied both power spectrum and EEG FC networks analyses to ARSG research, revealing characteristics of brain waves in typical areas and how the brain gradually changes from low-working load states to high-working load states based on real-time EEG recordings.
Collapse
Affiliation(s)
- Diankun Gong
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yi Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuening Yan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yutong Yao
- Faculty of Natural Science, University of Stirling, Stirling, UK
| | - Yu Gao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Tiejun Liu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Weiyi Ma
- School of Human Environmental Sciences, University of Arkansas, Fayetteville, AR, 72701, USA.
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
7
|
Moss M, Smith E, Milner M, McCready J. Acute ingestion of rosemary water: Evidence of cognitive and cerebrovascular effects in healthy adults. J Psychopharmacol 2018; 32:1319-1329. [PMID: 30318972 DOI: 10.1177/0269881118798339] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND The use of herbal extracts and supplements to enhance health and wellbeing is increasing in western society. AIMS This study investigated the impact of the acute ingestion of a commercially available water containing an extract and hydrolat of rosemary ( Rosmarinus officinalis L. syn. Salvia rosmarinus Schleid.). Aspects of cognitive functioning, mood and cerebrovascular response measured by near-infrared spectroscopy provided the dependent variables. METHODS Eighty healthy adults were randomly allocated to consume either 250 mL of rosemary water or plain mineral water. They then completed a series of computerised cognitive tasks, followed by subjective measures of alertness and fatigue. Near-infrared spectroscopy monitored levels of total, oxygenated and deoxygenated haemoglobin at baseline and throughout the cognitive testing procedure. RESULTS Analysis of the data revealed a number of statistically significant, small, beneficial effects of rosemary water on cognition, consistent with those found previously for the inhalation of the aroma of rosemary essential oil. Of particular interest here are the cerebrovascular effects noted for deoxygenated haemoglobin levels during cognitive task performance that were significantly higher in the rosemary water condition. This represents a novel finding in this area, and may indicate a facilitation of oxygen extraction at times of cognitive demand. CONCLUSION Taken together the data suggest potential beneficial properties of acute consumption of rosemary water. The findings are discussed in terms of putative metabolic and cholinergic mechanisms.
Collapse
Affiliation(s)
- Mark Moss
- Department of Psychology, Northumbria University, Newcastle upon Tyne, UK
| | - Ellen Smith
- Department of Psychology, Northumbria University, Newcastle upon Tyne, UK
| | - Matthew Milner
- Department of Psychology, Northumbria University, Newcastle upon Tyne, UK
| | - Jemma McCready
- Department of Psychology, Northumbria University, Newcastle upon Tyne, UK
| |
Collapse
|
8
|
Stevens D, Halaki M, Chow CM, O'Dwyer N. The effects of multi-stage exercise with and without concurrent cognitive performance on cardiorespiratory and cerebral haemodynamic responses. Eur J Appl Physiol 2018; 118:2121-2132. [PMID: 30014452 DOI: 10.1007/s00421-018-3942-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 07/10/2018] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Studies of cerebral haemodynamics have shown changes with increased exercise intensity, but the patterns have been highly variable and reliable associations with cognitive performance have not been identified. The aim of this study was to examine whether exercise-induced changes in oxygenated haemoglobin (O2Hb) led to changes in concomitant cognitive performance. METHODS This study examined cardiorespiratory and cerebral haemodynamics during multi-stage exercise from rest to exhaustion, with (Ex + C) and without (Ex) concurrent cognitive performance (Go/No-go task). RESULTS The presence of the cognitive task affected both cardiorespiratory and cerebral haemodynamics. The patterns in the cerebral haemodynamics during Ex and Ex + C diverged above the respiratory compensation threshold (RCT), but differences were significant only at 100% [Formula: see text], displaying increased deoxygenated haemoglobin (HHb), decreased difference between oxygenated and deoxygenated haemoglobin (HbDiff), and decreased cerebral oxygenation (COx) during Ex + C. More complex haemodynamic trends against intensity during Ex + C suggested that the presence of a cognitive task increases cerebral metabolic demand at high exercise intensities. The levels of O2Hb, HHb, HbDiff and total haemoglobin increased most steeply at intensities around the RCT during both Ex and Ex + C, but these changes were not accompanied by improved cognitive performance. CONCLUSION The primary hypothesis, that cognitive performance would match changes in O2Hb, was not supported. Small variations in reaction time and response accuracy across exercise intensities were not significant, suggesting that cognitive performance is unaffected by intense short-duration exercise. Our results add further evidence that exercise-induced changes in cerebral haemodynamics do not affect cognitive performance.
Collapse
Affiliation(s)
- David Stevens
- Discipline of Exercise and Sport Science, Faculty of Health Sciences, The University of Sydney, Sydney, NSW, Australia. .,Adelaide Institute for Sleep Health - A Flinders Centre for Research Excellence, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia.
| | - Mark Halaki
- Discipline of Exercise and Sport Science, Faculty of Health Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Chin Moi Chow
- Discipline of Exercise and Sport Science, Faculty of Health Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Nicholas O'Dwyer
- Discipline of Exercise and Sport Science, Faculty of Health Sciences, The University of Sydney, Sydney, NSW, Australia.,School of Exercise Science, Sport and Health, Faculty of Science, Charles Sturt University, Bathurst, NSW, Australia
| |
Collapse
|
9
|
|