1
|
Lee J, Bao X. Comparative Review on Cancer Pathology from Aberrant Histone Chaperone Activity. Int J Mol Sci 2024; 25:6403. [PMID: 38928110 PMCID: PMC11203986 DOI: 10.3390/ijms25126403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Histone chaperones are integral to chromatin dynamics, facilitating the assembly and disassembly of nucleosomes, thereby playing a crucial role in regulating gene expression and maintaining genomic stability. Moreover, they prevent aberrant histone interactions prior to chromatin assembly. Disruption in histone chaperone function may result in genomic instability, which is implicated in pathogenesis. This review aims to elucidate the role of histone chaperones in cancer pathologies and explore their potential as therapeutic targets. Histone chaperones have been found to be dysregulated in various cancers, with alterations in expression levels, mutations, or aberrant interactions leading to tumorigenesis and cancer progression. In addition, this review intends to highlight the molecular mechanisms of interactions between histone chaperones and oncogenic factors, underscoring their roles in cancer cell survival and proliferation. The dysregulation of histone chaperones is significantly correlated with cancer development, establishing them as active contributors to cancer pathology and viable targets for therapeutic intervention. This review advocates for continued research into histone chaperone-targeted therapies, which hold potential for precision medicine in oncology. Future advancements in understanding chaperone functions and interactions are anticipated to lead to novel cancer treatments, enhancing patient care and outcomes.
Collapse
Affiliation(s)
| | - Xiucong Bao
- School of Biomedical Sciences, Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China;
| |
Collapse
|
2
|
Vajihinejad M, Ataei A, Pashmchi M, Aledavoud A, Zand V, Broomand MA, Mohammadi M, Reshkuiyeh NZ. Coexistence of intrathyroid thymic carcinoma and papillary thyroid carcinoma: a case report and literature review. Front Oncol 2024; 14:1394020. [PMID: 38764579 PMCID: PMC11099278 DOI: 10.3389/fonc.2024.1394020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/23/2024] [Indexed: 05/21/2024] Open
Abstract
Background Intrathyroid thymic carcinoma (ITTC) is a rare neoplasm of the thyroid, which accounts for less than 0.15% of all thyroid malignancies. The coexistence of ITTC and papillary thyroid carcinoma (PTC) is an extremely rare condition reported only in a limited number of cases. Case summary A 26-year-old female presented with a growing neck mass, hoarseness, and dysphagia over four months. Ultrasonography revealed that the entire left lobe and the isthmus of the thyroid were replaced with a hypoechoic mass. Moreover, it revealed two hypoechoic nodules in the right thyroid. The patient underwent a total thyroidectomy and paratracheal lymph node dissection. Histopathological examinations revealed the coexistence of ITTC and PTC in the same thyroid. In immunohistochemical analyses, the ITTC was positive for CD5, P63, CD117, and CK 5/6 and negative for thyroglobulin, calcitonin, and TTF 1. At the same time, PTC was positive for TTF 1 and thyroglobulin and negative for CD5, P63, and CK 5/6. The patient received postoperative radiotherapy and remained well with no evidence of recurrence during one month follow-up. Conclusion Distinguishing ITTC from other thyroid malignancies before the surgery is challenging due to its non-specific presentations. Therefore, the diagnosis relies on postoperative studies, especially immunohistochemistry. The recommended treatment approach to improve survival in ITTC cases is total thyroidectomy combined with cervical lymph node dissection, followed by postoperative radiotherapy. The coexistence of ITTC and PTC may indicate the similarity in the underlying mechanisms of these tumors. However, further investigations are needed to understand this potential correlation.
Collapse
Affiliation(s)
- Maryam Vajihinejad
- Department of Pathology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Ataei
- School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Mohammad Pashmchi
- School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Aledavoud
- School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Zand
- Department of Otolaryngology-Head and Neck Surgery, Otorhinolaryngology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Ali Broomand
- Department of Clinical Oncology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Mohammadi
- School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | |
Collapse
|
3
|
Feng G, Chen C, Luo Y. PRMT1 accelerates cell proliferation, migration, and tumor growth by upregulating ZEB1/H4R3me2as in thyroid carcinoma. Oncol Rep 2023; 50:210. [PMID: 37859611 PMCID: PMC10603553 DOI: 10.3892/or.2023.8647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023] Open
Abstract
Thyroid carcinoma (TC) represents the most prevalent malignancy of the endocrine system. Protein arginine methyltransferase 1 (PRMT1) is a critical member of the protein arginine methyltransferase family in mammals and is involved in multiple biological processes. This study aimed to investigate the function of PRMT1 in TC. In the present study, human TC cell lines (8505C, CAL62, and BCPAP) and a normal human thyroid cell line Nthy‑ori 3‑1 were employed. Small interfering RNA targeting PRMT1 was used to knock down PRMT1 expression in 8505C cells, and PRMT1 overexpression plasmids were transfected into BCPAP cells. Cell viability was assessed using a CCK‑8 and colony formation assays. Apoptosis was measured using flow cytometry and TUNEL assays. Cell migration was assessed using wound healing and Transwell assays. Reverse transcription‑quantitative PCR was used to determine the mRNA expression levels of PRMT1. Western blotting was used to detect the protein expression levels of PRMT1, E‑cadherin, vimentin, H4R3me2as, and zinc‑finger E homeobox‑binding 1 (ZEB1). Notably, PRMT1 expression was elevated in TC (P<0.01). PRMT1 knockdown inhibited TC cell proliferation and migration and concurrently enhanced migration. Furthermore, PRMT1 knockdown suppressed tumor growth and metastasis in a mouse model of TC. PRMT1 downregulation increased E‑cadherin expression and decreased the expression of vimentin, H4R3me2as, and ZEB1 in the TC cells and the mouse model of TC. Conversely, PRMT1 overexpression had the opposite effect on TC malignant characteristics (P<0.05). These findings suggest that PRMT1 knockdown inhibited TC malignancy by downregulating H4R3me2as/ZEB1, thereby highlighting novel therapeutic targets and diagnostic markers for the management of TC.
Collapse
Affiliation(s)
- Guoli Feng
- Department of General Surgery, Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Changju Chen
- Department of Medical, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Yi Luo
- Department of General Surgery, Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
4
|
Cormier F, Housni S, Dumont F, Villard M, Cochand-Priollet B, Mercier-Nomé F, Perlemoine K, Bertherat J, Groussin L. NF-κB signaling activation and roles in thyroid cancers: implication of MAP3K14/NIK. Oncogenesis 2023; 12:55. [PMID: 37973791 PMCID: PMC10654696 DOI: 10.1038/s41389-023-00496-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023] Open
Abstract
Among follicular-derived thyroid cancers (TC), those with aggressive behavior and resistance to current treatments display poor prognosis. NF-κB signaling pathways are involved in tumor progression of various cancers. Here, we finely characterize the NF-κB pathways and their involvement in TC. By using immunoblot and gel shift assays, we demonstrated that both classical and alternative NF-κB pathways are activated in ten TC-derived cell lines, leading to activated RelA/p50 and RelB/p50 NF-κB dimers. By analyzing the RNAseq data of the large papillary thyroid carcinoma (PTC) cohort from The Cancer Genome Atlas (TCGA) project, we identified a tumor progression-related NF-κB signature in BRAFV600E mutated-PTCs. That corroborated with the role of RelA and RelB in cell migration and invasion processes that we demonstrated specifically in BRAFV600E mutated-cell lines, together with their role in the control of expression of genes implicated in invasiveness (MMP1, PLAU, LCN2 and LGALS3). We also identified NF-κB-inducing kinase (NIK) as a novel actor of the constitutive activation of the NF-κB pathways in TC-derived cell lines. Finally, its implication in invasiveness and its overexpression in PTC samples make NIK a potential therapeutic target for advanced TC treatment.
Collapse
Affiliation(s)
- Françoise Cormier
- Université Paris Cité, INSERM U1016, CNRS UMR8104, Institut Cochin, F-75014, Paris, France.
| | - Selma Housni
- Université Paris Cité, INSERM U1016, CNRS UMR8104, Institut Cochin, F-75014, Paris, France
- Service de Médecine Nucléaire, Assistance Publique-Hopitaux de Paris, Hopital Pitié-Salpêtrière, F-75013, Paris, France
| | - Florent Dumont
- Université Paris Cité, INSERM U1016, CNRS UMR8104, Institut Cochin, F-75014, Paris, France
- UMS IPSIT, Université Paris-Saclay, INSERM, CNRS, F-91400, Orsay, France
| | - Mélodie Villard
- Université Paris Cité, INSERM U1016, CNRS UMR8104, Institut Cochin, F-75014, Paris, France
| | - Béatrix Cochand-Priollet
- Service de Pathologie, Assistance Publique-Hopitaux de Paris, Hopital Cochin, Université Paris Cité, F-75014, Paris, France
| | | | - Karine Perlemoine
- Université Paris Cité, INSERM U1016, CNRS UMR8104, Institut Cochin, F-75014, Paris, France
| | - Jérôme Bertherat
- Université Paris Cité, INSERM U1016, CNRS UMR8104, Institut Cochin, F-75014, Paris, France
- Service d'Endocrinologie, Cochin AP-HP Centre, F-75014, Paris, France
| | - Lionel Groussin
- Université Paris Cité, INSERM U1016, CNRS UMR8104, Institut Cochin, F-75014, Paris, France
- Service d'Endocrinologie, Cochin AP-HP Centre, F-75014, Paris, France
| |
Collapse
|
5
|
Song Y, Wang S. Melatonin synergistically enhances docetaxel induced endoplasmic reticulum stress to promote apoptosis by suppressing NF-κB activation in cervical cancer. Med Oncol 2023; 40:219. [PMID: 37395921 DOI: 10.1007/s12032-023-02087-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/14/2023] [Indexed: 07/04/2023]
Abstract
Cervical cancer is the fourth most common malignancy in women globally. Although chemotherapy significantly improves the survival of cervical cancer patients, the development of drug resistance is inevitable. In the present study, our study showed that melatonin suppressed the proliferation, cell survival, colony formation, and the ability of adhering to fibronectin in cervical cancer cells. Our data suggested that docetaxel insensitivity was caused by NF-κB pathway activation, and followed by reducing endoplasmic reticulum stress and apoptosis. We showed that melatonin functioned as an oncostatic agent via inhibition of NF-κB signaling in cervical cancer cells. Interestingly, melatonin not only reduced the basal and inducible NF-κB pathway activation, but also prevented docetaxel induced NF-κB pathway activation by stabilizing IκBα protein. Importantly, inhibition of NF-κB pathway activation by melatonin abrogated the protective effect of NF-κB activation on docetaxel provoked endoplasmic reticulum stress, and further enhanced endoplasmic reticulum stress and apoptosis to produce synergistic oncostatic effects in cervical cancer cells. In summary, we revealed that melatonin was a novel agent to enhance docetaxel sensitivity by abolishing NF-κB activation and aggravating endoplasmic reticulum stress. Our results might provide a rationale for the clinical application of melatonin to overcome docetaxel resistance in cervical cancer patients.
Collapse
Affiliation(s)
- Yingqiu Song
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430022, China.
| | - Shaobing Wang
- Hubei Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Wuhan, China
| |
Collapse
|
6
|
Klieser E, Neumayer B, Di Fazio P, Mayr C, Neureiter D, Kiesslich T. HDACs as an emerging target in endocrine tumors: a comprehensive review. Expert Rev Endocrinol Metab 2023; 18:143-154. [PMID: 36872882 DOI: 10.1080/17446651.2023.2183840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/20/2023] [Indexed: 02/26/2023]
Abstract
INTRODUCTION The pathogenic role of deregulated histone (de-)acetylation by histone deacetyles (HDACs) has been demonstrated in several human cancers. While some HDAC inhibitors (HDACi) have been approved for individual entities, for endocrine tumors such translation into clinical practice has not yet been achieved. AREAS COVERED Relevant results identified by structured searches in PubMed as well as in reference lists are summarized in a narrative review to discuss the current knowledge of HDAC involvement and their therapeutic relevance in endocrine tumors. For thyroid, neuroendocrine, and adrenal tumors, various oncogenic mechanisms of HDAC deregulation and effects of HDAC inhibitors (HDACi) have been identified in preclinical studies including direct cancer cell toxicity and modification of differentiation status. EXPERT OPINION Based on positive pre-clinical results, the research on HDAC (inhibition) in the various endocrine tumors should be intensified - yet, it needs to be considered that i) HDACs' oncogenic actions might constitute only a part of epigenetic mechanisms driving cancer, ii) individual HDAC has different roles in different endocrine tumor entities, iii) inhibition of HDACs might be especially attractive in combination with conventional or other targeted therapies, and iv) new HDAC-inhibiting drugs with improved specificity or functionally modified HDACi might further improve their efficacy.
Collapse
Affiliation(s)
- Eckhard Klieser
- Institute of Pathology, Paracelsus Medical University/University Hospital Salzburg (SALK), Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Bettina Neumayer
- Institute of Pathology, Paracelsus Medical University/University Hospital Salzburg (SALK), Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Pietro Di Fazio
- Department of Visceral Thoracic and Vascular Surgery, Philipps University Marburg, Marburg, Germany
| | - Christian Mayr
- Center for Physiology, Pathophysiology and Biophysics, Institute of Physiology and Pathophysiology, Paracelsus Medical University, Salzburg, Austria
- Department of Internal Medicine I, Paracelsus Medical University/University Hospital Salzburg (SALK), Salzburg, Austria
| | - Daniel Neureiter
- Institute of Pathology, Paracelsus Medical University/University Hospital Salzburg (SALK), Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Tobias Kiesslich
- Center for Physiology, Pathophysiology and Biophysics, Institute of Physiology and Pathophysiology, Paracelsus Medical University, Salzburg, Austria
- Department of Internal Medicine I, Paracelsus Medical University/University Hospital Salzburg (SALK), Salzburg, Austria
| |
Collapse
|
7
|
Chen C, Shen Z. FN1 Promotes Thyroid Carcinoma Cell Proliferation and Metastasis by Activating the NF-Κb Pathway. Protein Pept Lett 2023; 30:54-64. [PMID: 36278453 DOI: 10.2174/0929866530666221019162943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/16/2022] [Accepted: 08/25/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Thyroid cancer (THCA) is a common endocrine tumor. This study aims to identify the THCA-related key gene Fibronectin 1 (FN1) by bioinformatics methods and explore its function and regulatory mechanism. METHODS Gene Expression Omnibus database (GSE3678, GSE33630, and GSE53157 datasets) was searched for the analysis of differentially expressed genes (DEGs) in THCA tissues v.s. (normal tissues). The enrichment of DEGs was investigated by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways using the DAVID database. Screening the hub gene was performed with the STRING database and Cytoscape software. The expression and survival analyses of these hub genes in THCA were studied with the Gene Expression Profiling Interactive Analysis database. LinkedOmics database was searched for the related signaling pathways regulated by FN1 in THCA. Real-time quantitative reverse transcriptase polymerase chain reaction was adopted to detect the mRNA expression of Fibromodulin, microfibril-associated protein 4, Osteoglycin, and FN1. The cell viability, growth, migration and aggressiveness were examined by Cell counting kit-8, 5-Ethynyl-2 '- deoxyuridine assay, scratch assay, and Transwell assay. The expression levels of NF-κB signaling pathway-related proteins (p-IκB-α, p-IKK-β, NF-κB p65) were detected by Western blot. RESULTS FN1 mRNA was up-regulated in THCA tissues and cell lines (MDA-T85 and MDA-T41). The high expression of FN1 is relevant to larger tumor diameters and lymph node metastasis in sufferers with THCA. Functional experiments showed that overexpression of FN1 in the MDA-T85 cell line promoted growth, migration and aggressiveness; knockdown of FN1 in MDA-T41 cells inhibited these malignant behaviors. In mechanism, FN1 promoted the expression levels of proteins related with NF-κB signaling pathway and activated NF-κB signaling pathway. CONCLUSION FN1 is up-regulated in THCA and facilitates cell growth, migration and invasion by activating the NF-κB signaling pathway. FN1 will be a promising biomarker of THCA and may become a molecular target for THCA treatment.
Collapse
Affiliation(s)
- Chen Chen
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Zhijun Shen
- Department of Clinical Laboratory, Hubei No.3 People's Hospital of Jianghan University, Wuhan 430033, Hubei, China
| |
Collapse
|
8
|
Iqubal MK, Kaur H, Md S, Alhakamy NA, Iqubal A, Ali J, Baboota S. A technical note on emerging combination approach involved in the onconanotherapeutics. Drug Deliv 2022; 29:3197-3212. [PMID: 36226570 PMCID: PMC9578464 DOI: 10.1080/10717544.2022.2132018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cancer is the second cause of mortality worldwide, and the currently available conventional treatment approach is associated with serious side effects and poor clinical outcomes. Based on the outcome of the exploratory preclinical and clinical studies, it was found that therapeutic response increases multiple folds when anticancer drugs are used in combination. However, the conventional combination of anticancer drugs was associated with various limitations such as increased cost of treatment, systemic toxicity, drug resistance, and reduced pharmacokinetic attributes. Hence, attempts were made to formulate nanocarrier fabricated combinatorial drugs (NFCDs) to effectively manage and treat cancer. This approach offers several advantages, such as improved stability, lower drug exposure, targeted drug delivery, low side effects, and improved clinical outcome. Hence, in this review, first time, we have discussed the recent advancement and various types of nano carrier-based combinatorial drug delivery systems in a different type of cancer and highlighted the personalized combinatorial theranostic medicine as a futuristic anticancer treatment approach.
Collapse
Affiliation(s)
- Mohammad Kashif Iqubal
- Product Development Department, Sentiss Research Centre, Sentiss Pharma Pvt Ltd, Gurugram, India.,Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Harsimran Kaur
- Department of Pharmaceutics, Delhi Pharmaceutical Science and Research University, New Delhi, India
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
9
|
Huang D, Zeng Y, Deng HY, Fu BD, Ke Y, Luo JY, Yu JC, Yu ST. SYTL5 Promotes Papillary Thyroid Carcinoma Progression by Enhancing Activation of the NF-κB Signaling Pathway. Endocrinology 2022; 164:6828016. [PMID: 36378561 DOI: 10.1210/endocr/bqac187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022]
Abstract
The function and mechanism of SYTL5 in papillary thyroid carcinoma (PTC) are still unclear. In this research, we found that SYTL5 was significantly overexpressed in PTC tissues compared with normal thyroid tissues. SYTL5 downregulation significantly weakened the proliferative, migratory, and invasive abilities of PTC cells. In addition, upregulated SYTL5 could promote cancer progression by activating the NF-κB signaling pathway. RAC1b expression is positively associated with SYTL5, and overexpressed RAC1b abrogated the antitumor effect after SYTL5 inhibition. In conclusion, our findings identify the oncogenic role of SYTL5 in PTC by activation of the NF-κB signaling pathway, thus facilitating PTC development and progression.
Collapse
Affiliation(s)
- Da Huang
- Department of Thyroid surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Ying Zeng
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330038, China
| | - Han-Yue Deng
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330038, China
| | - Bi-Dong Fu
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330038, China
| | - Yun Ke
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330038, China
| | - Jing-Yi Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Ji-Chun Yu
- Department of Thyroid surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Shi-Tong Yu
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510150, China
| |
Collapse
|
10
|
Influence of Dehydroxymethylepoxyquinomicin on Radiosensitivity of Thyroid Carcinoma TPC-1 Cells. JOURNAL OF ONCOLOGY 2022; 2022:5026308. [PMID: 36213820 PMCID: PMC9546666 DOI: 10.1155/2022/5026308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022]
Abstract
Objective. To investigate the influence of dehydroxymethylepoxyquinomicin (DHMEQ), an NF-κB inhibitor, on radiosensitivity of thyroid carcinoma (TC) TPC-1 cells. Methods. The isolation of CDl33 positive cells (CD133+ TPC-1) and negative cells (CD133- TPC-1) from TPC-1 cells used immunomagnetic bead sorting. After verification of the toxicity of DHMEQ to cells by MTT and cell cloning assays, the cells were divided into four groups, of which three groups were intervened by DHMEQ, 131I radiation, and DHMEQ +131I radiation, respectively, while the fourth group was used as a control without treatment. Alterations in cell growth, apoptosis, and cell cycle were observed. Results. DHMEQ had certain toxic effects on TPC-1 cells, with an IC50 of 38.57 μg/mL (
). DHMEQ inhibited CD133+ and CD133- TPC-1 proliferation and their clonogenesis after irradiation. DHMEQ + radiation contributed to a growth inhibition rate and an apoptosis rate higher than either or them alone (
), with a more significant effect on CD133- TPC-1 than CD133+ TPC-1 under the same treatment conditions (
). Conclusion. DHEMQ can increase the radiosensitivity of TC cells to 131I, inhibit tumor cell growth, and promote apoptosis. However, its effect is less significant on CD133+ TPC-1 compared with CD133- TPC-1, which may be related to the stem cell-like properties of CD133+ cells. In the future, the application of DHMEQ in TC 131I radiotherapy will effectively improve the clinical effect of patients.
Collapse
|
11
|
Yao JM, Zhao JY, Lv FF, Yang XB, Wang HJ. A Potential Nine-lncRNAs Signature Identification and Nomogram Diagnostic Model Establishment for Papillary Thyroid Cancer. Pathol Oncol Res 2022; 28:1610012. [PMID: 35280112 PMCID: PMC8906208 DOI: 10.3389/pore.2022.1610012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/19/2022] [Indexed: 12/24/2022]
Abstract
The purpose of our current study was to establish a long non-coding RNA(lncRNA) signature and assess its prognostic and diagnostic power in papillary thyroid cancer (PTC). LncRNA expression profiles were obtained from the Cancer Genome Atlas (TCGA). The key module and hub lncRNAs related to PTC were determined by weighted gene co-expression network analysis (WGCNA) and LASSO Cox regression analyses, respectively. Functional enrichment analyses, including Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene set enrichment analysis were implemented to analyze the possible biological processes and signaling pathways of hub lncRNAs. Associations between key lncRNA expressions and tumor-infiltrating immune cells were identified using the TIMER website, and proportions of immune cells in high/low risk score groups were compared. Kaplan-Meier Plotter was used to evaluate the prognostic significance of hub genes in PTC. A diagnostic model was conducted with logistic regression analysis, and its diagnostic performance was assessed by calibration/receiver operating characteristic curves and principal component analysis. A nine-lncRNAs signature (SLC12A5-AS1, LINC02028, KIZ-AS1, LINC02019, LINC01877, LINC01444, LINC01176, LINC01290, and LINC00581) was established in PTC, which has significant diagnostic and prognostic power. Functional enrichment analyses elucidated the regulatory mechanism of the nine-lncRNAs signature in the development of PTC. This signature and expressions of nine hub lncRNAs were correlated with the distributions of tumor infiltrating immune cells. A diagnostic nomogram was also established for PTC. By comparing with the published models with less than or equal to nine lncRNAs, our signature showed a preferable performace for prognosis prediction. In conclusion, our present research established an innovative nine-lncRNAs signature and a six-lncRNAs nomogram that might act as a potential indicator for PTC prognosis and diagnosis, which could be conducive to the PTC treatment.
Collapse
Affiliation(s)
- Jin-Ming Yao
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China.,Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, China.,Shandong Institute of Nephrology, Jinan, China
| | - Jun-Yu Zhao
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China.,Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, China.,Shandong Institute of Nephrology, Jinan, China
| | - Fang-Fang Lv
- Department of Endocrinology and Metabology, The 960th hospital of the PLA Joint Logistics Support Force, Jinan, China
| | - Xue-Bo Yang
- Beijing Splinger Institute of Medicine, Jinan, China
| | - Huan-Jun Wang
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China.,Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, China.,Shandong Institute of Nephrology, Jinan, China
| |
Collapse
|
12
|
Das R, Mehta DK, Dhanawat M. Medicinal Plants in Cancer Treatment: Contribution of Nuclear Factor-Kappa B (NF-kB) Inhibitors. Mini Rev Med Chem 2022; 22:1938-1962. [PMID: 35260052 DOI: 10.2174/1389557522666220307170126] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/23/2021] [Accepted: 12/14/2021] [Indexed: 01/17/2023]
Abstract
Nuclear factor-kappa B (NF-κB) is one of the principal inducible proteins that is a predominant transcription factor known to control the gene expression in mammals and plays a pivotal role in regulating cell signalling in the body under certain physiological and pathological conditions. In cancer cells, such as colon, breast, pancreatic, ovarian, melanoma, and lymphoma, the NF-κB pathway has been reported to be active. In cellular proliferation, promoting angiogenesis, invasion, metastasis of tumour cells and blocking apoptosis, the constitutive activity of NF-κB signalling has been reported. Therefore, immense attention has been given to developing drugs targeting NF-κB signalling pathways to treat many types of tumours. They are a desirable therapeutic target for drugs, and many studies concentrated on recognizing compounds. They may be able to reverse or standstill the growth and spread of tumours that selectively interfere with this pathway. Recently, numerous substances derived from plants have been evaluated as possible inhibitors of the NF-κB pathway. These include various compounds, such as flavonoids, lignans, diterpenes, sesquiterpenes, polyphenols, etc. A study supported by folk medicine demonstrated that plant-derived compounds could suppress NF-κB signalling. Taking this into account, the present review revealed the anticancer potential of naturally occurring compounds which have been verified both by inhibiting the NF-κB signalling and suppressing growth and spread of cancer and highlighting their mechanism of NF-κB inhibition.
Collapse
Affiliation(s)
- Rina Das
- M.M.College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, HR, India
| | - Dinesh Kumar Mehta
- M.M.College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, HR, India
| | - Meenakshi Dhanawat
- M.M.College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, HR, India
| |
Collapse
|
13
|
Expression level of long non-coding RNA colon adenocarcinoma hypermethylated serves as a novel prognostic biomarker in patients with thyroid carcinoma. Biosci Rep 2021; 41:228191. [PMID: 33792624 PMCID: PMC8056003 DOI: 10.1042/bsr20210284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/09/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
The present study attempts to identify the prognostic value and potential mechanism of action of colorectal adenocarcinoma hypermethylated (CAHM) in thyroid carcinoma (THCA) by using the RNA sequencing (RNA-seq) dataset from The Cancer Genome Atlas (TCGA). The functional mechanism of CAHM was explored by using RNA-seq dataset and multiple functional enrichment analysis approaches. Connectivity map (CMap) online analysis tool was also used to predict CAHM targeted drugs. Survival analysis suggests that THCA patients with high CAHM expression have lower risk of death than the low CAHM expression (log-rank P=0.022, adjusted P=0.011, HR = 0.187, 95% confidence interval (CI) = 0.051–0.685). Functional enrichment of CAHM co-expression genes suggests that CAHM may play a role in the following biological processes: DNA repair, cell adhesion, DNA replication, vascular endothelial growth factor receptor, Erb-B2 receptor tyrosine kinase 2, ErbB and thyroid hormone signaling pathways. Functional enrichment of differentially expressed genes (DEGs) between low- and high-CAHM phenotype suggests that different CAHM expression levels may have the following differences in biological processes in THCA: cell adhesion, cell proliferation, extracellular signal-regulated kinase (ERK) 1 (ERK1) and ERK2 cascade, G-protein coupled receptor, chemokine and phosphatidylinositol-3-kinase-Akt signaling pathways. Connectivity map have identified five drugs (levobunolol, NU-1025, quipazine, anisomycin and sulfathiazole) for CAHM targeted therapy in THCA. Gene set enrichment analysis (GSEA) suggest that low CAHM phenotype were notably enriched in p53, nuclear factor κB, Janus kinase-signal transducer and activators of transcription, tumor necrosis factor, epidermal growth factor receptor and other signaling pathways. In the present study, we have identified that CAHM may serve as novel prognostic biomarkers for predicting overall survival (OS) in patients with THCA.
Collapse
|
14
|
Cevik O, Acidereli H, Turut FA, Yildirim S, Acilan C. Cabazitaxel exhibits more favorable molecular changes compared to other taxanes in androgen-independent prostate cancer cells. J Biochem Mol Toxicol 2020; 34:e22542. [PMID: 32578930 DOI: 10.1002/jbt.22542] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/30/2020] [Accepted: 05/15/2020] [Indexed: 12/12/2022]
Abstract
Taxane-based chemotherapy drugs (cabazitaxel, docetaxel, and paclitaxel) are microtubule inhibitors, which are effectively and frequently used to treat metastatic prostate cancer (PCa). Among these, cabazitaxel is offered as a new therapeutic option for patients with metastatic castration-resistant PC as that are resistant to other taxanes. Here, we investigated the cellular and molecular changes in response to cabazitaxel in comparison with docetaxel and paclitaxel in androgen-independent human PCas. The androgen-independent human PCa cell lines, PC3 and DU145, were treated with 1 to 5nM cabazitaxel, docetaxel, or paclitaxel, and assessed for cell viability (MTT assay), colony forming ability and migration (scratch assay). The induction of apoptosis was determined through measurement of mitochondrial membrane potential (JC-1 assay) and caspase-3 activity assay. The protein expression changes (caspase-3, caspase-8, Bax, Bcl-2, β-tubulin, nuclear factor-κB [NF-κB/p50, NF-κB/p65], vascular endothelial growth factor, WNT1-inducible signaling pathway protein-1 [WISP1], transforming growth factor β [TGF-β]) in response to drug treatment were screened via western blotting. Under our experimental conditions, all taxanes significantly reduced WISP1 and TGF-β expressions, suggesting an anti-metastatic/antiangiogenic effect for these drugs. On the other hand, cabazitaxel induced more cell death and inhibited colony formation compared to docetaxel or paclitaxel. The highest fold change in caspase-3 activity and Bax/Bcl-2 ratio was also detected in response to cabazitaxel. Furthermore, the induction of β-tubulin expression was lower in cabazitaxel-treated cells relative to the other taxanes. In summary, cabazitaxel shows molecular changes in favor of killing PCa cells compared to other taxanes, at least for the parameters analyzed herein. The differences with other taxanes may be important while designing other studies or in clinical settings.
Collapse
Affiliation(s)
- Ozge Cevik
- Department of Biochemistry, School of Medicine, Aydın Adnan Menderes University, Efeler, Aydın, Turkey
| | - Hilal Acidereli
- Department of Biochemistry, Faculty of Pharmacy, Cumhuriyet University, Sivas, Turkey
| | - Fatma Aysun Turut
- Department of Biochemistry, Faculty of Pharmacy, Cumhuriyet University, Sivas, Turkey
| | - Sahin Yildirim
- Department of Pharmacology, School of Medicine, Cumhuriyet University, Sivas, Turkey
| | - Ceyda Acilan
- Department of Medical Biology, School of Medicine, Koc University, Istanbul, Turkey
| |
Collapse
|
15
|
Kurmi BD, Patel P, Paliwal R, Paliwal SR. Molecular approaches for targeted drug delivery towards cancer: A concise review with respect to nanotechnology. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101682] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Laetitia G, Sven S, Fabrice J. Combinatorial Therapies in Thyroid Cancer: An Overview of Preclinical and Clinical Progresses. Cells 2020; 9:E830. [PMID: 32235612 PMCID: PMC7226736 DOI: 10.3390/cells9040830] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 12/11/2022] Open
Abstract
Accounting for about 2% of cancers diagnosed worldwide, thyroid cancer has caused about 41,000 deaths in 2018. Despite significant progresses made in recent decades in the treatment of thyroid cancer, many resistances to current monotherapies are observed. In our complete review, we report all treatments that were tested in combination against thyroid cancer. Many preclinical studies investigating the effects of inhibitors of the MAPK and PI3K pathways highlighted the importance of mutations in such signaling pathways and their impacts on the subsequent efficacy of targeted therapies, thus reinforcing the need of more personalized therapeutic strategies. Our review also points out the multiple possibilities of combinatory strategies, particularly using therapies targeting proliferation, survival, angiogenesis, and in combination with conventional treatments such as chemotherapies. In any case, resistances to anticancer therapies always develop through the activation of alternative signaling pathways. Combinatory treatments aim to blockade such mechanisms, which are gradually decrypted, thus offering new perspectives for the future. The preclinical and clinical aspects of our review allow us to have a global opinion of the different therapeutic options currently evaluated in combination and to be aware about new perspectives of treatment of thyroid cancer.
Collapse
Affiliation(s)
- Gheysen Laetitia
- Laboratory of Human Anatomy and Experimental Oncology, Faculty of Medicine, Mons University, Avenue du Champ de Mars, 8, B7000 Mons, Belgium; (S.S.); (J.F.)
| | | | | |
Collapse
|
17
|
Zhao S, Zhao Y, Wang Q, Li Z, Ma X, Wu L, Li W, Du M, Ji H, Qin G. LDOC1 is differentially expressed in thyroid cancer and display tumor-suppressive function in papillary thyroid carcinoma. Cell Biol Int 2020; 44:985-997. [PMID: 31889386 DOI: 10.1002/cbin.11295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 12/27/2019] [Indexed: 11/10/2022]
Abstract
The leucine zipper downregulated in cancer 1 (LDOC1) has been proposed as a regulator of transcription and cell signaling. We have previously demonstrated that LDOC1 is differentially expressed in papillary thyroid carcinoma (PTC), this study was designed to characterize LDOC1 expression in thyroid follicle originated cancer tissues and to specifically evaluate its function in thyroid carcinogenesis. LDOC1 expression was performed in human normal thyroid and thyroid cancer. LDOC1 function was characterized, in two PTC cell lines (TPC1 and BCPAP), through the analysis of in vitro cell proliferation, apoptosis, migration, and invasion along with in vivo tumor xenograft growth. Transduced BCPAP cells were stimulated with tumor necrosis factor α, and the levels of nuclear P65, Bax, Bcl-2, c-Myc, and XIAP were assessed. A luciferase reporter assay was used to measure nuclear factor-κB (NF-κB) activity, and the functional connection between LDOC1 effect and NF-κB activity was determined using a specific NF-κB inhibitor. Our results revealed that LDOC1 was translocated from the nucleus to the cytoplasm in human thyroid cancer, and was significantly downregulated in PTC compared with normal thyroid. LDOC1 overexpression in TPC1 resulted in a significant suppression of the malignant phenotype, whereas LDOC1 ablation in BCPAP promoted this phenotype. Additional studies demonstrated that LDOC1 ablation facilitated nuclear P65 expression and NF-κB activity. NF-κB inhibition reversed the effects of LDOC1 ablation on proliferation, apoptosis, migration, and invasion. Our findings confirmed that LDOC1 is a novel therapeutic target in PTC and provides new insight into the role of LDOC1 in PTC progression, through NF-κΒ signaling suppression.
Collapse
Affiliation(s)
- Shuiying Zhao
- Department of Internal Medicine, Division of Endocrinology, The First Affiliated Hospital of Zhengzhou University, 450000, Zhengzhou, China
| | - Yanyan Zhao
- Department of Internal Medicine, Division of Endocrinology, The First Affiliated Hospital of Zhengzhou University, 450000, Zhengzhou, China
| | - Qingzhu Wang
- Department of Internal Medicine, Division of Endocrinology, The First Affiliated Hospital of Zhengzhou University, 450000, Zhengzhou, China
| | - Zhizhen Li
- Department of Internal Medicine, Division of Endocrinology, The First Affiliated Hospital of Zhengzhou University, 450000, Zhengzhou, China
| | - Xiaojun Ma
- Department of Internal Medicine, Division of Endocrinology, The First Affiliated Hospital of Zhengzhou University, 450000, Zhengzhou, China
| | - Lina Wu
- Department of Internal Medicine, Division of Endocrinology, The First Affiliated Hospital of Zhengzhou University, 450000, Zhengzhou, China
| | - Wen Li
- Department of Internal Medicine, Division of Endocrinology, The First Affiliated Hospital of Zhengzhou University, 450000, Zhengzhou, China
| | - Mengmeng Du
- Department of Internal Medicine, Division of Endocrinology, The First Affiliated Hospital of Zhengzhou University, 450000, Zhengzhou, China
| | - Hongfei Ji
- Department of Internal Medicine, Division of Endocrinology, The First Affiliated Hospital of Zhengzhou University, 450000, Zhengzhou, China
| | - Guijun Qin
- Department of Internal Medicine, Division of Endocrinology, The First Affiliated Hospital of Zhengzhou University, 450000, Zhengzhou, China.,Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, 450000, Zhengzhou, China
| |
Collapse
|
18
|
Deng L, Gu X, Zeng T, Xu F, Dong Z, Liu C, Chao H. Identification and characterization of biomarkers and their functions for docetaxel-resistant prostate cancer cells. Oncol Lett 2019; 18:3236-3248. [PMID: 31452801 PMCID: PMC6676406 DOI: 10.3892/ol.2019.10623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 06/13/2019] [Indexed: 12/27/2022] Open
Abstract
Docetaxel treatment is a standard chemotherapy strategy for castration-resistant prostate cancer (CRPC), and patients with CRPC eventually develop resistance to treatment. However, little is understood regarding the underlying mechanism of resistance. The present study aimed to identify the underlying crucial genes and regulatory networks associated with docetaxel resistance in prostate cancer using bioinformatics analyses. For this purpose, one expression profile dataset (GSE33455), which included two docetaxel-sensitive and two docetaxel-resistant cell lines, was downloaded from the Gene Expression Omnibus database, and analyses of differential gene expression and function enrichment were performed. A protein-protein interaction (PPI) network was constructed, and the associated hub genes were investigated using the Search Tool for the Retrieval of Interacting Genes/Proteins and Cytoscape software. A total of 756 differentially expression genes (DEGs) were identified, including 509 downregulated and 247 upregulated genes. Enrichment analysis revealed that the DEGs were associated with the interferon-γ-mediated signaling pathway, protein binding, bicellular tight junctions and cancer pathways. Two modules were screened from the PPI network, and the corresponding genes were identified to be largely enriched in the interferon-γ-mediated signaling pathway and the negative regulators of the DExD/H-Box helicase 58/interferon induced with helicase C domain 1 signaling pathway, and enriched in cell-cell adhesion and the Rap1 signaling pathway. Among the ten hub genes, epidermal growth factor receptor, spleen tyrosine kinase (SYK), intracellular adhesion molecule 1 (ICAM1), interleukin (IL)6, CXC motif chemokine ligand 8 (CXCL8), cyclin dependent kinase 1 and CD44 molecule (CD44) were significantly differentially expressed in prostate cancer tissues compared with healthy tissues based on The Cancer Genome Atlas data. The Gene Expression Profiling Interactive Analysis database revealed that ICAM1 was positively associated with IL6 and CXCL8, and epidermal growth factor receptor was positively associated with CD44 and SYK. Additionally, ten hub genes, which were identified to be associated with the drug resistance of docetaxel in prostatic carcinoma in the present study, were predominantly associated with tumor progression and metastasis. Reverse transcription-quantitative PCR analysis performed on docetaxel-sensitive and docetaxel-resistant prostate cancer cell lines demonstrated that certain hub genes, including CDK1, 2′-5′-oligoadenylate synthetase 3, CXCL8 and CDH1, were highly expressed in the docetaxel-resistant cell lines, which confirmed the bioinformatics results. In conclusion, the present study identified a number of important genes that are associated with the molecular mechanism of docetaxel resistance by integrated bioinformatical analysis, and these genes and regulatory networks may assist with identifying potential gene therapy targets for CRPC. Further functional analyses are required to validate the current findings.
Collapse
Affiliation(s)
- Leihong Deng
- Medical Department of The Graduate School, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiaopeng Gu
- Department of Orthopedics, Zhoushan Guhechuan Hospital, Zhoushan, Zhejang 316000, P.R. China
| | - Tao Zeng
- Department of Urology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Fanghua Xu
- Pathology Department, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhifeng Dong
- Medical Department of The Graduate School, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Chao Liu
- Medical Department of The Graduate School, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Haichao Chao
- Laboratory of Clinical Medicine, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
19
|
Telomerase and Telomeres Biology in Thyroid Cancer. Int J Mol Sci 2019; 20:ijms20122887. [PMID: 31200515 PMCID: PMC6627113 DOI: 10.3390/ijms20122887] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/03/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023] Open
Abstract
Telomere and telomerase regulation contributes to the onset and evolution of several tumors, including highly aggressive thyroid cancers (TCs). TCs are the most common endocrine malignancies and are generally characterized by a high rate of curability. However, a small but significant percentage develops distant metastasis or progresses into undifferentiated forms associated with bad prognosis and for which poor therapeutic options are available. Mutations in telomerase reverse transcriptase (TERT) promoter are among the most credited prognostic marker of aggressiveness in TCs. Indeed, their frequency progressively increases passing from indolent lesions to aggressive and anaplastic forms. TERT promoter mutations create binding sites for transcription factors, increasing TERT expression and telomerase activity. Furthermore, aggressiveness of TCs is associated with TERT locus amplification. These data encourage investigating telomerase regulating pathways as relevant drivers of TC development and progression to foster the identification of new therapeutics targets. Here, we summarize the current knowledge about telomere regulation and TCs, exploring both canonical and less conventional pathways. We discuss the possible role of telomere homeostasis in mediating response to cancer therapies and the possibility of using epigenetic drugs to re-evaluate the use of telomerase inhibitors. Combined treatments could be of support to currently used therapies still presenting weaknesses.
Collapse
|
20
|
Mortezaee K, Najafi M, Farhood B, Ahmadi A, Shabeeb D, Musa AE. NF‐κB targeting for overcoming tumor resistance and normal tissues toxicity. J Cell Physiol 2019; 234:17187-17204. [DOI: 10.1002/jcp.28504] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/22/2019] [Accepted: 03/05/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy School of Medicine, Kurdistan University of Medical Sciences Sanandaj Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department School of Paramedical Sciences, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Bagher Farhood
- Departments of Medical Physics and Radiology Faculty of Paramedical Sciences, Kashan University of Medical Sciences Kashan Iran
| | - Amirhossein Ahmadi
- Pharmaceutical Sciences Research Center Faculty of Pharmacy, Mazandaran University of Medical Sciences Sari Iran
| | - Dheyauldeen Shabeeb
- Department of Physiology College of Medicine, University of Misan Misan Iraq
| | - Ahmed E. Musa
- Department of Medical Physics Tehran University of Medical Sciences (International Campus) Tehran Iran
| |
Collapse
|
21
|
Valvo V, Nucera C. Coding Molecular Determinants of Thyroid Cancer Development and Progression. Endocrinol Metab Clin North Am 2019; 48:37-59. [PMID: 30717910 PMCID: PMC6366338 DOI: 10.1016/j.ecl.2018.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Thyroid cancer is the most common endocrine malignancy. Its incidence and mortality rates have increased for patients with advanced-stage papillary thyroid cancer. The characterization of the molecular pathways essential in thyroid cancer initiation and progression has made huge progress, underlining the role of intracellular signaling to promote clonal evolution, dedifferentiation, metastasis, and drug resistance. The discovery of genetic alterations that include mutations (BRAF, hTERT), translocations, deletions (eg, 9p), and copy-number gain (eg, 1q) has provided new biological insights with clinical applications. Understanding how molecular pathways interplay is one of the key strategies to develop new therapeutic treatments and improve prognosis.
Collapse
Affiliation(s)
- Veronica Valvo
- Laboratory of Human Thyroid Cancers Preclinical and Translational Research, Division of Experimental Pathology, Department of Pathology, Cancer Research Institute (CRI), Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, 99 Brookline Avenue, Boston, MA 02215, USA; Department of Pathology, Center for Vascular Biology Research (CVBR), Beth Israel Deaconess Medical Center, Harvard Medical School, 99 Brookline Avenue, Boston, MA 02215, USA
| | - Carmelo Nucera
- Laboratory of Human Thyroid Cancers Preclinical and Translational Research, Division of Experimental Pathology, Department of Pathology, Cancer Research Institute (CRI), Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, 99 Brookline Avenue, Boston, MA 02215, USA; Department of Pathology, Center for Vascular Biology Research (CVBR), Beth Israel Deaconess Medical Center, Harvard Medical School, 99 Brookline Avenue, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA.
| |
Collapse
|
22
|
Saini S, Maker AV, Burman KD, Prabhakar BS. Molecular aberrations and signaling cascades implicated in the pathogenesis of anaplastic thyroid cancer. Biochim Biophys Acta Rev Cancer 2018; 1872:188262. [PMID: 30605717 DOI: 10.1016/j.bbcan.2018.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 01/16/2023]
Abstract
Anaplastic Thyroid Cancer (ATC) accounts for >40% thyroid cancer-related deaths and has a dismal prognosis. In the past decade, significant efforts have been made towards understanding the pathogenesis of this disease and developing novel therapeutics. Unfortunately, effective treatment is still lacking and a more thorough understanding of ATC pathogenesis may provide new opportunities to improve ATC therapeutics. This review provides insights into ATC clinical presentation and pathology, and the putative role of genetic aberrations and alterations in molecular signaling pathways in ATC pathogenesis. We reviewed prevalent mutations, chromosomal abnormalities and fusions, epigenetic alterations and dysregulations in ATC, and highlighted several signaling cascades which appeared to be integral to ATC pathogenesis. Moreover, these features offer insights into de-differentiated, aggressive and drug-resistant phenotype of ATC, and thus may help in exploring potential new molecular targets for developing novel therapeutics.
Collapse
Affiliation(s)
- Shikha Saini
- Department of Microbiology and Immunology, University of Illinois-College of Medicine, Chicago, IL, United States
| | - Ajay V Maker
- Department of Surgery, Division of Surgical Oncology, University of Illinois-College of Medicine, Chicago, IL, United States
| | - Kenneth D Burman
- Medstar Washington Hospital Medical Center, Washington, DC, United States
| | - Bellur S Prabhakar
- Department of Microbiology and Immunology, University of Illinois-College of Medicine, Chicago, IL, United States; Jesse Brown VA Medical Center, Chicago, IL, United States.
| |
Collapse
|
23
|
Celano M, Mio C, Sponziello M, Verrienti A, Bulotta S, Durante C, Damante G, Russo D. Targeting post-translational histone modifications for the treatment of non-medullary thyroid cancer. Mol Cell Endocrinol 2018; 469:38-47. [PMID: 28579118 DOI: 10.1016/j.mce.2017.05.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/25/2017] [Accepted: 05/30/2017] [Indexed: 02/07/2023]
Abstract
Genomic and epigenetic alterations are now being exploited as molecular targets in cancer treatment. Abnormalities involving the post-translational modification of histones have been demonstrated in thyroid cancer, and they are regarded as promising molecular targets for novel drug treatment of tumors that are resistant to conventional therapies. After a brief overview of the histone modifications most commonly associated with human malignancies, we will review recently published preclinical and clinical findings regarding the use of histone-activity modulators in thyroid cancers. Particular attention will be focused on their use as re-differentiating or anti-proliferating agents, the differential effects observed when they are used alone and in combination with other targeted drugs, and current prospects for their use in the treatment of thyroid cancer.
Collapse
Affiliation(s)
- Marilena Celano
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, 88100 Catanzaro, Italy
| | - Catia Mio
- Department of Medical Area, University of Udine, 33100 Udine, Italy
| | - Marialuisa Sponziello
- Department of Internal Medicine and Medical Specialties, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Antonella Verrienti
- Department of Internal Medicine and Medical Specialties, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Stefania Bulotta
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, 88100 Catanzaro, Italy
| | - Cosimo Durante
- Department of Internal Medicine and Medical Specialties, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Giuseppe Damante
- Department of Medical Area, University of Udine, 33100 Udine, Italy
| | - Diego Russo
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, 88100 Catanzaro, Italy.
| |
Collapse
|
24
|
Pippione AC, Sainas S, Federico A, Lupino E, Piccinini M, Kubbutat M, Contreras JM, Morice C, Barge A, Ducime A, Boschi D, Al-Karadaghi S, Lolli ML. N-Acetyl-3-aminopyrazoles block the non-canonical NF-kB cascade by selectively inhibiting NIK. MEDCHEMCOMM 2018; 9:963-968. [PMID: 30108985 PMCID: PMC6071728 DOI: 10.1039/c8md00068a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/07/2018] [Indexed: 01/13/2023]
Abstract
NF-κB-inducing kinase (NIK), an oncogenic drug target that is associated with various cancers, is a central signalling component of the non-canonical pathway. A blind screening process, which established that amino pyrazole related scaffolds have an effect on IKKbeta, led to a hit-to-lead optimization process that identified the aminopyrazole 3a as a low μM selective NIK inhibitor. Compound 3a effectively inhibited the NIK-dependent activation of the NF-κB pathway in tumour cells, confirming its selective inhibitory profile.
Collapse
Affiliation(s)
- Agnese C Pippione
- Department of Science and Drug Technology , University of Torino , via Pietro Giuria 9 , 10125 Torino , Italy .
| | - Stefano Sainas
- Department of Science and Drug Technology , University of Torino , via Pietro Giuria 9 , 10125 Torino , Italy .
| | - Antonella Federico
- Department of Science and Drug Technology , University of Torino , via Pietro Giuria 9 , 10125 Torino , Italy .
| | - Elisa Lupino
- Department of Oncology , University of Torino , via Michelangelo 27/B , 10126 Torino , Italy
| | - Marco Piccinini
- Department of Oncology , University of Torino , via Michelangelo 27/B , 10126 Torino , Italy
| | | | - Jean-Marie Contreras
- Prestwick Chemical , 220 Boulevard Gonthier d'Andernach , 67400 Illkirch , France
| | - Christophe Morice
- Prestwick Chemical , 220 Boulevard Gonthier d'Andernach , 67400 Illkirch , France
| | - Alessandro Barge
- Department of Science and Drug Technology , University of Torino , via Pietro Giuria 9 , 10125 Torino , Italy .
| | - Alex Ducime
- Department of Science and Drug Technology , University of Torino , via Pietro Giuria 9 , 10125 Torino , Italy .
| | - Donatella Boschi
- Department of Science and Drug Technology , University of Torino , via Pietro Giuria 9 , 10125 Torino , Italy .
| | | | - Marco L Lolli
- Department of Science and Drug Technology , University of Torino , via Pietro Giuria 9 , 10125 Torino , Italy .
| |
Collapse
|
25
|
Chen F, Yin S, Zhu J, Jia L, Zhang H, Yang C, Liu C, Deng Z. Effects of nuclear factor‑κB on the uptake of 131iodine and apoptosis of thyroid carcinoma cells. Mol Med Rep 2018; 17:4959-4964. [PMID: 29393421 PMCID: PMC5865955 DOI: 10.3892/mmr.2018.8481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 12/04/2017] [Indexed: 01/21/2023] Open
Abstract
Thyroid carcinoma is primarily treated by surgery combined with radioactive 131iodine (131I) treatment; however, certain patients exhibit resistance to 131I treatment. Previous research indicated that nuclear factor-κB (NF-κB) was associated with resistance to 131I in cancer cells. The present study aimed to investigate the effects of NF-κB on 131I uptake and apoptosis in thyroid carcinoma cells. TPC-1 and BCPAP cell lines were employed as research models in the present study, and the expression of NF-κB was inhibited by RNA interference (RNAi). The ability of TPC-1 and BCPAP cells to uptake 131I was measured and the cell viability was detected by an MTT assay. Finally, the expression of the apoptosis-associated proteins X-linked inhibitor of apoptosis (XIAP), cellular inhibitor of apoptosis protein 1 (cIAP1) and caspase-3 in TCP-1 and BCPAP cells was determined by western blotting. Western blotting results demonstrated that the expression levels of NF-κB in TPC-1 and BCPAP cells were successfully downregulated by RNAi (P<0.05), while analysis of 131I uptake revealed no significant alterations in the 131I uptake ability of cells following RNAi (P>0.05). MTT experiments demonstrated that the inhibition of NF-κB expression in combination with radiation (131I treatment) led to a marked reduction in cell viability (P<0.05). Furthermore, western blot analysis revealed that the inhibition of NF-κB expression downregulated the expression levels of XIAP and cIAP1 (P<0.05), while the expression levels of caspase-3 were upregulated, indicating that the observed reduction in cell viability following NF-κB inhibition may be due to an increased level of apoptosis. Although NF-κB inhibition did not affect the 131I uptake of thyroid cancer cells, this inhibition may increase the apoptotic effects of radioactive 131I.
Collapse
Affiliation(s)
- Fukun Chen
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| | - Shuting Yin
- Third Ward of The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Jialun Zhu
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| | - Li Jia
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| | - Huaping Zhang
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| | - Chuanzhou Yang
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| | - Chao Liu
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| | - Zhiyong Deng
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| |
Collapse
|
26
|
Fanian M, Bahmani M, Mozafari M, Naderi S, Alizadeh Zareie M, Okhovat MA, Saberzadeh J, Dehshahri A, Takhshid MA. The Synergistic Effects of Celecoxib and Sodium Valproate on Apoptosis and Invasiveness Behavior of Papillary Thyroid Cancer Cell Line In-vitro. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2018; 17:1008-1017. [PMID: 30127823 PMCID: PMC6094417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Metastasis to lymph nodes and distant organs is the main challenge in the treatment of papillary thyroid cancer. In the current investigation, we aimed to evaluate the synergistic effects of celecoxib (CX) and sodium valproate (VPA) against cell survival, invasiveness properties, and expression of metalloproteinase-2 and -9 (MMP-2 and MMP-9) in papillary thyroid cancer cell line, B-CPAP cells. The effect of CX and VPA on B-CPAP cells viability and apoptosis were investigated using MTT assay and annexin V/7-AAD flowcytometry, respectively. The effects of the drugs on invasiveness properties of B-CPAP cells and expression of MMP-2 and MMP-9 were evaluated using transwell assay and real time PCR, respectively. MTT assay showed that CX and VPA decreased viability of B-CPAP cells dose dependently (IC50 32.4µM and 6.8 mM, respectively). Combination of CX (5 μM) and VPA (2.5 and 5 mM) increased apoptosis, and reduced cell migration and invasion of B-CPAP cell, synergistically. Real time PCR results showed that both CX (5 µM) and VPA (2.5 and 5 mM) reduced MMP-2 expression (P < 0.05) but had no significant effects on the expression of MMP-9. Our findings suggest that CX and VPA synergistically increase apoptosis and suppress migration and invasion of B-CPAP cells through inhibition of MMP-2 expression.
Collapse
Affiliation(s)
- Maryam Fanian
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Maedeh Bahmani
- Department of Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mojdeh Mozafari
- Department of Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Samaneh Naderi
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Marzieh Alizadeh Zareie
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammad Ali Okhovat
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Jamileh Saberzadeh
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ali Dehshahri
- Department of Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammad Ali Takhshid
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran. ,Corresponding author: E-mail:
| |
Collapse
|
27
|
Khajeh Alizadeh Attar M, Anwar MA, Eskian M, Keshavarz-Fathi M, Choi S, Rezaei N. Basic understanding and therapeutic approaches to target toll-like receptors in cancerous microenvironment and metastasis. Med Res Rev 2017; 38:1469-1484. [PMID: 29283184 DOI: 10.1002/med.21480] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 11/24/2017] [Accepted: 12/02/2017] [Indexed: 12/11/2022]
Abstract
Toll-like receptors (TLRs) are transmembrane components that sense danger signals, like damage- and pathogen-associated molecular pattern molecules, as receptors, and maintain homeostasis in tissues. They are mainly involved in immune system activation through a variety of mediators, which either carry out (1) elimination of pathogenic threats and redressing homeostatic imbalances or (2) contribution to the initiation and worsening of pathological conditions, including cancers. Under physiological conditions, TLRs coordinate the innate and adaptive immunity, and inhibit autoimmune disorders. In pathological conditions, such as cancer, they can present both tumor and receptor-specific roles. Although the roles of individual TLRs in various cancers have been described, the effects of targeting TLRs to treat cancer and prevent metastasis are still controversial. A growing body of literature has suggested contribution of both activators and inhibitors of TLR signaling pathway for cancer treatment, dependent on several context-specific factors. In short, TLRs can play dual roles with contradictory outcomes in neoplastic conditions. This hampers the development of TLR-based therapeutic interventions. A better understanding of the interwoven TLR pathways in cancerous microenvironment is necessary to design TLR-based therapies. In this review, we consider the molecular mechanisms of TLRs signaling and their involvement in tumor progression. Therapeutic modalities targeting TLRs for cancer treatment are discussed as well.
Collapse
Affiliation(s)
- Mojtaba Khajeh Alizadeh Attar
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Muhammad Ayaz Anwar
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Mahsa Eskian
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahsa Keshavarz-Fathi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Sheffield, United Kingdom
| |
Collapse
|
28
|
Vancurova I, Uddin MM, Zou Y, Vancura A. Combination Therapies Targeting HDAC and IKK in Solid Tumors. Trends Pharmacol Sci 2017; 39:295-306. [PMID: 29233541 DOI: 10.1016/j.tips.2017.11.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/21/2017] [Accepted: 11/27/2017] [Indexed: 12/18/2022]
Abstract
The rationale for developing histone deacetylase (HDAC) inhibitors (HDACi) as anticancer agents was based on their ability to induce apoptosis and cell cycle arrest in cancer cells. However, while HDACi have been remarkably effective in the treatment of hematological malignancies, clinical studies with HDACi as single agents in solid cancers have been disappointing. Recent studies have shown that, in addition to inducing apoptosis in cancer cells, class I HDACi induce IκB kinase (IKK)-dependent expression of proinflammatory chemokines, such as interleukin-8 (IL8; CXCL8), resulting in the increased proliferation of tumor cells, and limiting the effectiveness of HDACi in solid tumors. Here, we discuss the mechanisms responsible for HDACi-induced CXCL8 expression, and opportunities for combination therapies targeting HDACs and IKK in solid tumors.
Collapse
Affiliation(s)
- Ivana Vancurova
- Department of Biological Sciences, St John's University, New York, NY 11439, USA.
| | - Mohammad M Uddin
- Department of Biological Sciences, St John's University, New York, NY 11439, USA
| | - Yue Zou
- Department of Biological Sciences, St John's University, New York, NY 11439, USA
| | - Ales Vancura
- Department of Biological Sciences, St John's University, New York, NY 11439, USA
| |
Collapse
|
29
|
Abstract
BACKGROUND The genetic diversity of cancer and the dynamic interactions between heterogeneous tumor cells, the stroma and immune cells present daunting challenges to the development of effective cancer therapies. Although cancer biology is more understood than ever, this has not translated into therapies that overcome drug resistance, cancer recurrence and metastasis. The future development of effective therapies will require more understanding of the dynamics of homeostatic dysregulation that drives cancer growth and progression. RESULTS Cancer dynamics are explored using a model involving genes mediating the regulatory interactions between the signaling and metabolic pathways. The exploration is informed by a proposed genetic dysregulation measure of cellular processes. The analysis of the interaction dynamics between cancer cells, cancer associated fibroblasts, and tumor associate macrophages suggests that the mutual dependence of these cells promotes cancer growth and proliferation. In particular, MTOR and AMPK are hypothesized to be concurrently activated in cancer cells by amino acids recycled from the stroma. This leads to a proliferative growth supported by an upregulated glycolysis and a tricarboxylic acid cycle driven by glutamine sourced from the stroma. In other words, while genetic aberrations ignite carcinogenesis and lead to the dysregulation of key cellular processes, it is postulated that the dysregulation of metabolism locks cancer cells in a state of mutual dependence with the tumor microenvironment and deepens the tumor's inflammation and immunosuppressive state which perpetuates as a result the growth and proliferation dynamics of cancer. CONCLUSIONS Cancer therapies should aim for a progressive disruption of the dynamics of interactions between cancer cells and the tumor microenvironment by targeting metabolic dysregulation and inflammation to partially restore tissue homeostasis and turn on the immune cancer kill switch. One potentially effective cancer therapeutic strategy is to induce the reduction of lactate and steer the tumor microenvironment to a state of reduced inflammation so as to enable an effective intervention of the immune system. The translation of this therapeutic approach into treatment regimens would however require more understanding of the adaptive complexity of cancer resulting from the interactions of cancer cells with the tumor microenvironment and the immune system.
Collapse
Affiliation(s)
- Youcef Derbal
- Ted Rogers School of Information Technology Management, Ryerson University, Toronto, Canada.
| |
Collapse
|
30
|
Pippione AC, Federico A, Ducime A, Sainas S, Boschi D, Barge A, Lupino E, Piccinini M, Kubbutat M, Contreras JM, Morice C, Al-Karadaghi S, Lolli ML. 4-Hydroxy- N-[3,5-bis(trifluoromethyl)phenyl]-1,2,5-thiadiazole-3-carboxamide: a novel inhibitor of the canonical NF-κB cascade. MEDCHEMCOMM 2017; 8:1850-1855. [PMID: 30108896 DOI: 10.1039/c7md00278e] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/22/2017] [Indexed: 12/21/2022]
Abstract
The NF-κB signaling pathway is a validated oncological target. Here, we applied scaffold hopping to IMD-0354, a presumed IKKβ inhibitor, and identified 4-hydroxy-N-[3,5-bis(trifluoromethyl)phenyl]-1,2,5-thiadiazole-3-carboxamide (4) as a nM-inhibitor of the NF-κB pathway. However, both 4 and IMD-0354, being potent inhibitors of the canonical NF-κB pathway, were found to be inactive in human IKKβ enzyme assays.
Collapse
Affiliation(s)
- Agnese C Pippione
- Department of Science and Drug Technology , University of Torino , via Pietro Giuria 9 , 10125 Torino , Italy
| | - Antonella Federico
- Department of Science and Drug Technology , University of Torino , via Pietro Giuria 9 , 10125 Torino , Italy
| | - Alex Ducime
- Department of Science and Drug Technology , University of Torino , via Pietro Giuria 9 , 10125 Torino , Italy
| | - Stefano Sainas
- Department of Science and Drug Technology , University of Torino , via Pietro Giuria 9 , 10125 Torino , Italy
| | - Donatella Boschi
- Department of Science and Drug Technology , University of Torino , via Pietro Giuria 9 , 10125 Torino , Italy
| | - Alessandro Barge
- Department of Science and Drug Technology , University of Torino , via Pietro Giuria 9 , 10125 Torino , Italy
| | - Elisa Lupino
- Department of Oncology , University of Torino , via Michelangelo 27/B , 10126 Torino , Italy
| | - Marco Piccinini
- Department of Oncology , University of Torino , via Michelangelo 27/B , 10126 Torino , Italy
| | | | - Jean-Marie Contreras
- Prestwick Chemical , 220 Boulevard Gonthier d'Andernach , 67400 Illkirch , France
| | - Christophe Morice
- Prestwick Chemical , 220 Boulevard Gonthier d'Andernach , 67400 Illkirch , France
| | - Salam Al-Karadaghi
- SARomics Biostructures and Department of Biochemistry & Structural Biology , Lund University , Lund , Sweden
| | - Marco L Lolli
- Department of Science and Drug Technology , University of Torino , via Pietro Giuria 9 , 10125 Torino , Italy
| |
Collapse
|
31
|
Synergistic Activity for Natural and Synthetic Inhibitors of Angiogenesis Induced by Murine Sarcoma L-1 and Human Kidney Cancer Cells. CLINICAL RESEARCH AND PRACTICE 2017; 1020:91-104. [DOI: 10.1007/5584_2017_17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
32
|
Shi Z, Hu Z, Chen D, Huang J, Fan J, Zhou S, Wang X, Hu J, Huang F. MicroRNA-200a mediates nasopharyngeal carcinoma cell proliferation through the activation of nuclear factor-κB. Mol Med Rep 2015; 13:1732-8. [PMID: 26718506 DOI: 10.3892/mmr.2015.4738] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 08/07/2015] [Indexed: 11/05/2022] Open
Abstract
In nasopharyngeal carcinoma (NPC), the nuclear factor-κB (NF-κB) signaling pathway is highly active. The constitutive activation of NF-κB prompts malignant cell proliferation, and microRNAs are considered an important mediator in regulating the NF-κB signaling pathway. The current study investigated the effect of microRNA-200a (miR-200a) on NF-κB activation. Reverse transcription-quantitative polymerase chain reaction was used to quantify the relative level of miR-200a in NPC tissue samples and CNE2 cells. An MTT assay was used to investigate the effect of miR-200a on cell proliferation. To investigate the activation of NF-κB, western blotting was used to measure the protein levels of NF-κB and its downstream targets. To identify the target genes of miR-200a, a luciferase reporter assay was used. The current study demonstrated that miR-200a was upregulated in NPC tissue samples and cell lines. Overexpression of miR-200a resulted in the proliferation of CNE2 cells. Western blot analysis indicated that the protein levels of p65 increased when CNE2 cells were transfected with miR-200a mimics. Additionally, the downstream targets of miR-200a were upregulated, including vascular cell adhesion molecule, intercellular adhesion molecule and monocyte chemoattractant protein-1. The luciferase assay indicated that IκBα was the target gene of miR-200a. In conclusion, miR-200a was demonstrated to enhance NPC cell proliferation by activating the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Zhuliang Shi
- Department of Ear, Nose and Throat, People's Liberation Army 113th Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Zhiqiang Hu
- Department of Ear, Nose and Throat, People's Liberation Army 113th Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Delu Chen
- Department of Ear, Nose and Throat, People's Liberation Army 113th Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Jie Huang
- Department of Ear, Nose and Throat, People's Liberation Army 113th Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Jie Fan
- Department of Ear, Nose and Throat, People's Liberation Army 113th Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Subo Zhou
- Department of Ear, Nose and Throat, People's Liberation Army 113th Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Xin Wang
- Department of Ear, Nose and Throat, People's Liberation Army 113th Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Jiandao Hu
- Department of Ear, Nose and Throat, Yinzhou Hospital Affiliated to The Medical School of Ningbo University, Ningbo, Zhejiang 315000, P.R. China
| | - Fei Huang
- Department of Stomatology, People's Liberation Army Navy General Hospital, Beijing 100048, P.R. China
| |
Collapse
|