1
|
Urrutia HA, Stundl J, Bronner ME. Tlx3 mediates neuronal differentiation and proper condensation of the developing trigeminal ganglion. Dev Biol 2024; 515:79-91. [PMID: 39019425 PMCID: PMC11317220 DOI: 10.1016/j.ydbio.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/20/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
The trigeminal ganglion, the largest of the vertebrate cranial ganglia, is comprised of sensory neurons that relay sensations of pain, touch, and temperature to the brain. These neurons are derived from two embryonic cell types, the neural crest and ectodermal placodes, whose interactions are critical for proper ganglion formation. While the T-cell leukemia homeobox 3 (Tlx3) gene is known to be expressed in placodally-derived sensory neurons and necessary for their differentiation, little was known about Tlx3 expression and/or function in the neural crest-derived component of the developing trigeminal ganglion. By combining lineage labeling with in situ hybridization in the chick embryo, we show that neural crest-derived cells that contribute to the cranial trigeminal ganglion express Tlx3 at a time point that coincides with the onset of ganglion condensation. Importantly, loss of Tlx3 function in vivo diminishes the overall size and abundance of neurons within the trigeminal ganglion. Conversely, ectopic expression of Tlx3 in migrating cranial neural crest results in their premature neuronal differentiation. Taken together, our results demonstrate a critical role for Tlx3 in neural crest-derived cells during chick trigeminal gangliogenesis.
Collapse
Affiliation(s)
- Hugo A Urrutia
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Jan Stundl
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
2
|
Giraldo E, Bonilla P, Mellado M, Garcia-Manau P, Rodo C, Alastrue A, Lopez E, Moratonas EC, Pellise F, Đorđević S, Vicent MJ, Moreno Manzano V. Transplantation of Human-Fetal-Spinal-Cord-Derived NPCs Primed with a Polyglutamate-Conjugated Rho/Rock Inhibitor in Acute Spinal Cord Injury. Cells 2022; 11:cells11203304. [PMID: 36291170 PMCID: PMC9600863 DOI: 10.3390/cells11203304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/11/2022] [Accepted: 10/19/2022] [Indexed: 12/31/2022] Open
Abstract
Neural precursor cell (NPC) transplantation represents a promising therapy for treating spinal cord injuries (SCIs); however, despite successful results obtained in preclinical models, the clinical translation of this approach remains challenging due, in part, to the lack of consensus on an optimal cell source for human neuronal cells. Depending on the cell source, additional limitations to NPC-based therapies include high tumorigenic potential, alongside poor graft survival and engraftment into host spinal tissue. We previously demonstrated that NPCs derived from rat fetal spinal cords primed with a polyglutamate (PGA)-conjugated form of the Rho/Rock inhibitor fasudil (PGA-SS-FAS) displayed enhanced neuronal differentiation and graft survival when compared to non-primed NPCs. We now conducted a similar study of human-fetal-spinal-cord-derived NPCs (hfNPCs) from legal gestational interruptions at the late gestational stage, at 19-21.6 weeks. In vitro, expanded hfNPCs retained neural features, multipotency, and self-renewal, which supported the development of a cell banking strategy. Before transplantation, we established a simple procedure to prime hfNPCs by overnight incubation with PGA-SS-FAS (at 50 μM FAS equiv.), which improved neuronal differentiation and overcame neurite-like retraction after lysophosphatidic-acid-induced Rho/Rock activation. The transplantation of primed hfNPCs into immune-deficient mice (NU(NCr)-Foxn1nu) immediately after the eighth thoracic segment compression prompted enhanced migration of grafted cells from the dorsal to the ventral spinal cord, increased preservation of GABAergic inhibitory Lbx1-expressing and glutamatergic excitatory Tlx3-expressing somatosensory interneurons, and elevated the numbers of preserved, c-Fos-expressing, activated neurons surrounding the injury epicenter, all in a low percentage. Overall, the priming procedure using PGA-SS-FAS could represent an alternative methodology to improve the capabilities of the hfNPC lines for a translational approach for acute SCI treatment.
Collapse
Affiliation(s)
- Esther Giraldo
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, E-46012 Valencia, Spain
- Department of Biotechnology. Universitat Politècnica de València, E-46022 Valencia, Spain
- UPV-CIPF Joint Research Unit Disease Mechanisms and Nanomedicine, Centro de Investigación Príncipe Felipe, E-46012 Valencia, Spain
| | - Pablo Bonilla
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, E-46012 Valencia, Spain
| | - Mara Mellado
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, E-46012 Valencia, Spain
| | - Pablo Garcia-Manau
- Maternal-Foetal Medicine Unit, Vall d’Hebron Hospital Campus, E-08035 Barcelona, Spain
| | - Carlota Rodo
- Maternal-Foetal Medicine Unit, Vall d’Hebron Hospital Campus, E-08035 Barcelona, Spain
| | - Ana Alastrue
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, E-46012 Valencia, Spain
| | - Eric Lopez
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, E-46012 Valencia, Spain
| | | | - Ferran Pellise
- Spine Surgery Unit, Hospital Universitari Vall d’Hebron, E-08035 Barcelona, Spain
| | - Snežana Đorđević
- Polymer Therapeutics Laboratory, Centro de Investigación Príncipe Felipe, E-46012, Valencia, Spain
| | - María J. Vicent
- Polymer Therapeutics Laboratory, Centro de Investigación Príncipe Felipe, E-46012, Valencia, Spain
| | - Victoria Moreno Manzano
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, E-46012 Valencia, Spain
- Correspondence:
| |
Collapse
|
3
|
Monteiro FA, Miranda RM, Samina MC, Dias AF, Raposo AASF, Oliveira P, Reguenga C, Castro DS, Lima D. Tlx3 Exerts Direct Control in Specifying Excitatory Over Inhibitory Neurons in the Dorsal Spinal Cord. Front Cell Dev Biol 2021; 9:642697. [PMID: 33996801 PMCID: PMC8117147 DOI: 10.3389/fcell.2021.642697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/30/2021] [Indexed: 11/28/2022] Open
Abstract
The spinal cord dorsal horn is a major station for integration and relay of somatosensory information and comprises both excitatory and inhibitory neuronal populations. The homeobox gene Tlx3 acts as a selector gene to control the development of late-born excitatory (dILB) neurons by specifying glutamatergic transmitter fate in dorsal spinal cord. However, since Tlx3 direct transcriptional targets remain largely unknown, it remains to be uncovered how Tlx3 functions to promote excitatory cell fate. Here we combined a genomics approach based on chromatin immunoprecipitation followed by next generation sequencing (ChIP-seq) and expression profiling, with validation experiments in Tlx3 null embryos, to characterize the transcriptional program of Tlx3 in mouse embryonic dorsal spinal cord. We found most dILB neuron specific genes previously identified to be directly activated by Tlx3. Surprisingly, we found Tlx3 also directly represses many genes associated with the alternative inhibitory dILA neuronal fate. In both cases, direct targets include transcription factors and terminal differentiation genes, showing that Tlx3 directly controls cell identity at distinct levels. Our findings provide a molecular frame for the master regulatory role of Tlx3 in developing glutamatergic dILB neurons. In addition, they suggest a novel function for Tlx3 as direct repressor of GABAergic dILA identity, pointing to how generation of the two alternative cell fates being tightly coupled.
Collapse
Affiliation(s)
- Filipe A Monteiro
- Unidade de Biologia Experimental, Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Porto, Portugal.,Pain Research Group, Instituto de Biologia Molecular e Celular, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Rafael M Miranda
- Unidade de Biologia Experimental, Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Porto, Portugal.,Pain Research Group, Instituto de Biologia Molecular e Celular, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Marta C Samina
- Unidade de Biologia Experimental, Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Porto, Portugal.,Pain Research Group, Instituto de Biologia Molecular e Celular, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Ana F Dias
- Pain Research Group, Instituto de Biologia Molecular e Celular, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Alexandre A S F Raposo
- Molecular Neurobiology Group, Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Patrícia Oliveira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Diagnostics, Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Carlos Reguenga
- Unidade de Biologia Experimental, Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Porto, Portugal.,Pain Research Group, Instituto de Biologia Molecular e Celular, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Diogo S Castro
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Molecular Neurobiology Group, Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Stem Cells & Neurogenesis Group, Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Deolinda Lima
- Unidade de Biologia Experimental, Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Porto, Portugal.,Pain Research Group, Instituto de Biologia Molecular e Celular, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
4
|
Glutamatergic Neurons Differentiated from Embryonic Stem Cells: An Investigation of Differentiation and Associated Diseases. Int J Mol Sci 2021; 22:ijms22094592. [PMID: 33925600 PMCID: PMC8123877 DOI: 10.3390/ijms22094592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/10/2021] [Accepted: 04/25/2021] [Indexed: 12/03/2022] Open
Abstract
Neurons that have been derived from various types of stem cells have recently undergone significant study due to their potential for use in various aspects of biomedicine. In particular, glutamatergic neurons differentiated from embryonic stem cells (ESCs) potentially have many applications in both basic research and regenerative medicine. This review summarized the literatures published thus far and focused on two areas related to these applications. Firstly, these neurons can be used to investigate neuronal signal transduction during differentiation and this means that the genes/proteins/markers involved in this process can be identified. In this way, the dynamic spatial and temporal changes associated with neuronal morphology can be investigated relatively easily. Such an in vitro system can also be used to study how neurons during neurogenesis integrate into normal tissue. At the same time, the integration, regulation and functions of extracellular matrix secretion, various molecular interactions, various ion channels, the neuronal microenvironment, etc., can be easily traced. Secondly, the disease-related aspects of ESC-derived glutamatergic neurons can also be studied and then applied therapeutically. In the future, greater efforts are needed to explore how ESC-differentiated glutamatergic neurons can be used as a neuronal model for the study of Alzheimer’s disease (AD) mechanistically, to identify possible therapeutic strategies for treating AD, including tissue replacement, and to screen for drugs that can be used to treat AD patients. With all of the modern technology that is available, translational medicine should begin to benefit patients soon.
Collapse
|
5
|
Consalez GG, Goldowitz D, Casoni F, Hawkes R. Origins, Development, and Compartmentation of the Granule Cells of the Cerebellum. Front Neural Circuits 2021; 14:611841. [PMID: 33519389 PMCID: PMC7843939 DOI: 10.3389/fncir.2020.611841] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/17/2020] [Indexed: 12/21/2022] Open
Abstract
Granule cells (GCs) are the most numerous cell type in the cerebellum and indeed, in the brain: at least 99% of all cerebellar neurons are granule cells. In this review article, we first consider the formation of the upper rhombic lip, from which all granule cell precursors arise, and the way by which the upper rhombic lip generates the external granular layer, a secondary germinal epithelium that serves to amplify the upper rhombic lip precursors. Next, we review the mechanisms by which postmitotic granule cells are generated in the external granular layer and migrate radially to settle in the granular layer. In addition, we review the evidence that far from being a homogeneous population, granule cells come in multiple phenotypes with distinct topographical distributions and consider ways in which the heterogeneity of granule cells might arise during development.
Collapse
Affiliation(s)
- G Giacomo Consalez
- Division of Neuroscience, San Raffaele Scientific Institute, San Raffaele University, Milan, Italy
| | - Daniel Goldowitz
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Filippo Casoni
- Division of Neuroscience, San Raffaele Scientific Institute, San Raffaele University, Milan, Italy
| | - Richard Hawkes
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
6
|
Optogenetic Activation of Dopamine Receptor D1 and D2 Neurons in Anterior Cingulate Cortex Differentially Modulates Trigeminal Neuropathic Pain. Mol Neurobiol 2020; 57:4060-4068. [PMID: 32654077 PMCID: PMC7484249 DOI: 10.1007/s12035-020-02020-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 07/08/2020] [Indexed: 01/01/2023]
Abstract
Background: Anterior cingulate cortex (ACC) is a critical brain center for chronic pain processing. Dopamine signaling in the brain has been demonstrated to contribute to descending pain modulation. However, the role of ACC dopamine receptors in chronic neuropathic pain remains unclear. Objective: In this study, we investigated the effect of optogenetic activation of ACC dopamine receptors D1- and D2-expressing neurons on trigeminal neuropathic pain. Methods: Chronic constriction injury of infraorbital nerve (CCI-ION) was carried out to induce trigeminal neuropathic pain in mice. We conducted optogenetic stimulation to specifically activate D1- and D2-expressing neurons in the ACC. Western blotting and immunofluorescence staining were used to examine ACC D1 and D2 expression and localization. The von Frey and real-time place preference tests were performed to measure evoked mechanical pain and nonreflexive emotional pain behaviors, respectively. Results: We observed that dopamine receptors D1 and D2 in the ACC are primarily expressed in excitatory neurons and that the D2 receptor is differentially regulated in the early and late phases of trigeminal neuropathic pain. Optogenetic activation of D1-expressing neurons in the ACC markedly exacerbates CCI-ION-induced trigeminal neuropathic pain in both early and late phases, but optogenetic activation of D2-expressing neurons in the ACC robustly ameliorates such pain in its late phase. Conclusion: Our results suggest that dopamine receptors D1 and D2 in the ACC play different roles in the modulation of trigeminal neuropathic pain.
Collapse
|
7
|
Niche-induced extramedullary hematopoiesis in the spleen is regulated by the transcription factor Tlx1. Sci Rep 2018; 8:8308. [PMID: 29844356 PMCID: PMC5974313 DOI: 10.1038/s41598-018-26693-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 05/18/2018] [Indexed: 12/12/2022] Open
Abstract
Extramedullary hematopoiesis (EMH) in postnatal life is a pathological process in which the differentiation of hematopoietic stem/progenitor cells (HSPCs) occurs outside the bone marrow (BM) to respond to hematopoietic emergencies. The spleen is a major site for EMH; however, the cellular and molecular nature of the stromal cell components supporting HSPC maintenance, the niche for EMH in the spleen remain poorly understood compared to the growing understanding of the BM niche at the steady-state as well as in emergency hematopoiesis. In the present study, we demonstrate that mesenchymal progenitor-like cells expressing Tlx1, an essential transcription factor for spleen organogenesis, and selectively localized in the perifollicular region of the red pulp of the spleen, are a major source of HSPC niche factors. Consistently, overexpression of Tlx1 in situ induces EMH, which is associated with mobilization of HSPC into the circulation and their recruitment into the spleen where they proliferate and differentiate. The alterations in the splenic microenvironment induced by Tlx1 overexpression in situ phenocopy lipopolysaccharide (LPS)-induced EMH, and the conditional loss of Tlx1 abolished LPS-induced splenic EMH. These findings indicate that activation of Tlx1 expression in the postnatal splenic mesenchymal cells is critical for the development of splenic EMH.
Collapse
|
8
|
The histone demethylase LSD1 regulates inner ear progenitor differentiation through interactions with Pax2 and the NuRD repressor complex. PLoS One 2018; 13:e0191689. [PMID: 29370269 PMCID: PMC5784988 DOI: 10.1371/journal.pone.0191689] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/09/2018] [Indexed: 01/07/2023] Open
Abstract
The histone demethylase LSD1 plays a pivotal role in cellular differentiation, particularly in silencing lineage-specific genes. However, little is known about how LSD1 regulates neurosensory differentiation in the inner ear. Here we show that LSD1 interacts directly with the transcription factor Pax2 to form the NuRD co-repressor complex at the Pax2 target gene loci in a mouse otic neuronal progenitor cell line (VOT-N33). VOT-N33 cells expressing a Pax2-response element reporter were GFP-negative when untreated, but became GFP positive after forced differentiation or treatment with a potent LSD inhibitor. Pharmacological inhibition of LSD1 activity resulted in the enrichment of mono- and di-methylation of H3K4, upregulation of sensory neuronal genes and an increase in the number of sensory neurons in mouse inner ear organoids. Together, these results identify the LSD1/NuRD complex as a previously unrecognized modulator for Pax2-mediated neuronal differentiation in the inner ear.
Collapse
|
9
|
Merienne K, Boutillier AL. [Epigenetic regulations and cerebral plasticity: towards new therapeutic options in neurodegenerative diseases?]. Biol Aujourdhui 2016; 210:297-309. [PMID: 28327286 DOI: 10.1051/jbio/2017002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Indexed: 11/15/2022]
Abstract
Although revealed in the 1950's, epigenetics is still a fast-growing field. Its delineations continuously evolve and become clarified. In particular, "neuroepigenetics", a notion that encompasses epigenetic regulations associated with neuronal processes, appears very promising. Indeed, the challenge to be undertaken in this sub-field is double. On the one hand, it should bring molecular comprehension of specific neuronal processes, some of them falling within the long term regulations, such as learning and memory. On the other hand, it could bring therapeutic options for brain diseases, e.g. neurodegenerative diseases such as Alzheimer's or Huntington's diseases.
Collapse
|