1
|
Zamora-Briseño JA, Améndola-Pimenta M, Ortega-Rosas DA, Pereira-Santana A, Hernández-Velázquez IM, González-Penagos CE, Pérez-Vega JA, Del Río-García M, Árcega-Cabrera F, Rodríguez-Canul R. Gill and liver transcriptomic responses of Achirus lineatus (Neopterygii: Achiridae) exposed to water-accommodated fraction (WAF) of light crude oil reveal an onset of hypoxia-like condition. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:34309-34327. [PMID: 33646544 DOI: 10.1007/s11356-021-12909-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Crude oil is one of the most widespread pollutants released into the marine environment, and native species have provided useful information about the effect of crude oil pollution in marine ecosystems. We consider that the lined sole Achirus lineatus can be a useful monitor of the effect of crude oil in the Gulf of Mexico (GoM) because this flounder species has a wide distribution along the GoM, and its response to oil components is relevant. The objective of this study was to compare the transcriptomic changes in liver and gill of adults lined sole fish (Achirus lineatus) exposed to a sublethal acute concentration of water-accommodated fraction (WAF) of light crude oil for 48 h. RNA-Seq was performed to assess the transcriptional changes in both organs. A total of 1073 differentially expressed genes (DEGs) were detected in gills; 662 (61.69%) were upregulated, and 411 (38.30%) were downregulated whereas in liver, 515 DEGs; 306 (59.42%) were upregulated, and 209 (40.58%) were downregulated. Xenobiotic metabolism and redox metabolism, along with DNA repair mechanisms, were activated. The induction of hypoxia-regulated genes and the generalized regulation of multiple signaling pathways support the hypothesis that WAF exposition causes a hypoxia-like condition.
Collapse
Affiliation(s)
- Jesús Alejandro Zamora-Briseño
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-Unidad Mérida, Km 6 Antigua Carretera a Progreso, CORDEMEX, CP 97310, Mérida, Yucatán, Mexico
| | - Monica Améndola-Pimenta
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-Unidad Mérida, Km 6 Antigua Carretera a Progreso, CORDEMEX, CP 97310, Mérida, Yucatán, Mexico
| | | | - Alejandro Pereira-Santana
- División de Biotecnología Industrial, CONACYT-Centro de Investigación y Asistencia en Tecnología y Diseño del estado de Jalisco, Camino Arenero 1227, El Bajío, C.P. 45019, Zapopan, Jalisco, Mexico
| | - Ioreni Margarita Hernández-Velázquez
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-Unidad Mérida, Km 6 Antigua Carretera a Progreso, CORDEMEX, CP 97310, Mérida, Yucatán, Mexico
| | - Carlos Eduardo González-Penagos
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-Unidad Mérida, Km 6 Antigua Carretera a Progreso, CORDEMEX, CP 97310, Mérida, Yucatán, Mexico
| | - Juan Antonio Pérez-Vega
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-Unidad Mérida, Km 6 Antigua Carretera a Progreso, CORDEMEX, CP 97310, Mérida, Yucatán, Mexico
| | - Marcela Del Río-García
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-Unidad Mérida, Km 6 Antigua Carretera a Progreso, CORDEMEX, CP 97310, Mérida, Yucatán, Mexico
| | - Flor Árcega-Cabrera
- Unidad de Química Sisal, Facultad de Química, Universidad Nacional Autónoma de México, Puerto de Abrigo S/N, 97356, Sisal, Yucatán, Mexico
| | - Rossanna Rodríguez-Canul
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-Unidad Mérida, Km 6 Antigua Carretera a Progreso, CORDEMEX, CP 97310, Mérida, Yucatán, Mexico.
- Laboratorio de Inmunología y Biología Molecular, CINVESTAV-IPN Unidad Mérida, Antigua carretera a Progreso Km 6., CP 97310, Mérida, Yucatán, Mexico.
| |
Collapse
|
2
|
Zhang X, Zhao S, He Y, Zheng N, Yan X, Wang J. Pipeline for Targeted Meta-Proteomic Analyses to Assess the Diversity of Cattle Rumen Microbial Urease. Front Microbiol 2020; 11:573414. [PMID: 33072036 PMCID: PMC7531017 DOI: 10.3389/fmicb.2020.573414] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/21/2020] [Indexed: 01/01/2023] Open
Abstract
In the rumen of cattle, urease produced by ureolytic bacteria catalyzes the hydrolysis of urea to ammonia, which plays an important role in nitrogen metabolism and animal production. A high diversity of rumen bacterial urease genes was observed in our previous study; however, information on urease protein diversity could not be determined due to technical limitations. Here, we developed a targeted meta-proteomic pipeline to analyze rumen urease protein diversity. Protein extraction (duration of cryomilling in liquid nitrogen), protein digestion state (in-solution or in-gel), and the digestion enzyme used (trypsin or Glu-C/Lys-C) were optimized, and the digested peptides were analyzed by LC-MS/MS. Four minutes was the best duration for cryomilling and yielded the highest urease activity. Trypsin digestion of in-gel proteins outperformed other digestion methods and yielded the greatest number of identifications and superior peptide performance in regards to the digestion efficiency and high-score peptide. The annotation of peptides by PEAKS software revealed diversity among urease proteins, with the predominant proteins being from Prochlorococcus, Helicobacter, and uncultured bacteria. In conclusion, trypsin digestion of in-gel proteins was the optimal method for the meta-proteomic pipeline analyzing rumen microbial ureases. This pipeline provides a guide for targeted meta-proteomic analyses in other ecosystems.
Collapse
Affiliation(s)
- Xiaoyin Zhang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shengguo Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yue He
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nan Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xianghua Yan
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiaqi Wang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
3
|
Bolay P, Muro-Pastor MI, Florencio FJ, Klähn S. The Distinctive Regulation of Cyanobacterial Glutamine Synthetase. Life (Basel) 2018; 8:E52. [PMID: 30373240 PMCID: PMC6316151 DOI: 10.3390/life8040052] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/23/2018] [Accepted: 10/25/2018] [Indexed: 12/02/2022] Open
Abstract
Glutamine synthetase (GS) features prominently in bacterial nitrogen assimilation as it catalyzes the entry of bioavailable nitrogen in form of ammonium into cellular metabolism. The classic example, the comprehensively characterized GS of enterobacteria, is subject to exquisite regulation at multiple levels, among them gene expression regulation to control GS abundance, as well as feedback inhibition and covalent modifications to control enzyme activity. Intriguingly, the GS of the ecologically important clade of cyanobacteria features fundamentally different regulatory systems to those of most prokaryotes. These include the interaction with small proteins, the so-called inactivating factors (IFs) that inhibit GS linearly with their abundance. In addition to this protein interaction-based regulation of GS activity, cyanobacteria use alternative elements to control the synthesis of GS and IFs at the transcriptional level. Moreover, cyanobacteria evolved unique RNA-based regulatory mechanisms such as glutamine riboswitches to tightly tune IF abundance. In this review, we aim to outline the current knowledge on the distinctive features of the cyanobacterial GS encompassing the overall control of its activity, sensing the nitrogen status, transcriptional and post-transcriptional regulation, as well as strain-specific differences.
Collapse
Affiliation(s)
- Paul Bolay
- Helmholtz Centre for Environmental Research, Department of Solar Materials, Permoserstrasse 15, D-04318 Leipzig, Germany.
| | - M Isabel Muro-Pastor
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, Américo Vespucio 49, E-41092 Seville, Spain.
| | - Francisco J Florencio
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, Américo Vespucio 49, E-41092 Seville, Spain.
| | - Stephan Klähn
- Helmholtz Centre for Environmental Research, Department of Solar Materials, Permoserstrasse 15, D-04318 Leipzig, Germany.
| |
Collapse
|
4
|
Characterization and improved properties of Glutamine synthetase from Providencia vermicola by site-directed mutagenesis. Sci Rep 2018; 8:15640. [PMID: 30353099 PMCID: PMC6199252 DOI: 10.1038/s41598-018-34022-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 06/19/2018] [Indexed: 11/08/2022] Open
Abstract
In this study, a novel gene for Glutamine synthetase was cloned and characterized for its activities and stabilities from a marine bacterium Providencia vermicola (PveGS). A mutant S54A was generated by site directed mutagenesis, which showed significant increase in the activity and stabilities at a wide range of temperatures. The Km values of PveGS against hydroxylamine, ADP-Na2 and L-Glutamine were 15.7 ± 1.1, (25.2 ± 1.5) × 10-5 and 32.6 ± 1.7 mM, and the kcat were 17.0 ± 0.6, 9.14 ± 0.12 and 30.5 ± 1.0 s-1 respectively. In-silico-analysis revealed that the replacement of Ser at 54th position with Ala increased the catalytic activity of PveGS. Therefore, catalytic efficiency of mutant S54A had increased by 3.1, 0.89 and 2.9-folds towards hydroxylamine, ADP-Na2 and L-Glutamine respectively as compared to wild type. The structure prediction data indicated that the negatively charged pocket becomes enlarged and hydrogen bonding in Ser54 steadily promotes the product release. Interestingly, the residual activity of S54A mutant was increased by 10.7, 3.8 and 3.8 folds at 0, 10 and 50 °C as compared to WT. Structural analysis showed that S54A located on the loop near to the active site improved its flexibility due to the breaking of hydrogen bonds between product and enzyme. This also facilitated the enzyme to increase its cold adaptability as indicated by higher residual activity shown at 0 °C. Thus, replacement of Ala to Ser54 played a pivotal role to enhance the activities and stabilities at a wide range of temperatures.
Collapse
|
5
|
Domínguez-Martín MA, López-Lozano A, Clavería-Gimeno R, Velázquez-Campoy A, Seidel G, Burkovski A, Díez J, García-Fernández JM. Differential NtcA Responsiveness to 2-Oxoglutarate Underlies the Diversity of C/N Balance Regulation in Prochlorococcus. Front Microbiol 2018; 8:2641. [PMID: 29375510 PMCID: PMC5767323 DOI: 10.3389/fmicb.2017.02641] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 12/19/2017] [Indexed: 11/29/2022] Open
Abstract
Previous studies showed differences in the regulatory response to C/N balance in Prochlorococcus with respect to other cyanobacteria, but no information was available about its causes, or the ecological advantages conferred to thrive in oligotrophic environments. We addressed the changes in key enzymes (glutamine synthetase, isocitrate dehydrogenase) and the ntcA gene (the global nitrogen regulator) involved in C/N metabolism and its regulation, in three model Prochlorococcus strains: MED4, SS120, and MIT9313. We observed a remarkable level of diversity in their response to azaserine, a glutamate synthase inhibitor which increases the concentration of the key metabolite 2-oxoglutarate, used to sense the C/N balance by cyanobacteria. Besides, we studied the binding between the global nitrogen regulator (NtcA) and the promoter of the glnA gene in the same Prochlorococcus strains, and its dependence on the 2-oxoglutarate concentration, by using isothermal titration calorimetry, surface plasmon resonance, and electrophoretic mobility shift. Our results show a reduction in the responsiveness of NtcA to 2-oxoglutarate in Prochlorococcus, especially in the MED4 and SS120 strains. This suggests a trend to streamline the regulation of C/N metabolism in late-branching Prochlorococcus strains (MED4 and SS120), in adaptation to the rather stable conditions found in the oligotrophic ocean gyres where this microorganism is most abundant.
Collapse
Affiliation(s)
- María A Domínguez-Martín
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Córdoba, Spain
| | - Antonio López-Lozano
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Córdoba, Spain
| | - Rafael Clavería-Gimeno
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Units BIFI-IQFR-CSIC and GBsC-BIFI-CSIC, Universidad de Zaragoza, Zaragoza, Spain.,Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain.,Instituto Aragonés de Ciencias de la Salud, Zaragoza, Spain
| | - Adrián Velázquez-Campoy
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Units BIFI-IQFR-CSIC and GBsC-BIFI-CSIC, Universidad de Zaragoza, Zaragoza, Spain.,Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain.,Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas, Barcelona, Spain.,Fundación ARAID, Gobierno de Aragón, Zaragoza, Spain
| | - Gerald Seidel
- Professur für Mikrobiologie, Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas Burkovski
- Professur für Mikrobiologie, Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jesús Díez
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Córdoba, Spain
| | - José M García-Fernández
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
6
|
Domínguez-Martín MA, López-Lozano A, Rangel-Zúñiga OA, Díez J, García-Fernández JM. Distinct features of C/N balance regulation in Prochlorococcus sp. strain MIT9313. FEMS Microbiol Lett 2017; 365:4757061. [DOI: 10.1093/femsle/fnx278] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/17/2017] [Indexed: 11/13/2022] Open
|
7
|
Gulyás Z, Simon-Sarkadi L, Badics E, Novák A, Mednyánszky Z, Szalai G, Galiba G, Kocsy G. Redox regulation of free amino acid levels in Arabidopsis thaliana. PHYSIOLOGIA PLANTARUM 2017; 159:264-276. [PMID: 27605256 DOI: 10.1111/ppl.12510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/18/2016] [Accepted: 08/20/2016] [Indexed: 06/06/2023]
Abstract
Abiotic stresses induce oxidative stress, which modifies the level of several metabolites including amino acids. The redox control of free amino acid profile was monitored in wild-type and ascorbate or glutathione deficient mutant Arabidopsis thaliana plants before and after hydroponic treatment with various redox agents. Both mutations and treatments modified the size and redox state of the ascorbate (AsA) and/or glutathione (GSH) pools. The total free amino acid content was increased by AsA, GSH and H2 O2 in all three genotypes and a very large (threefold) increase was observed in the GSH-deficient pad2-1 mutant after GSH treatment compared with the untreated wild-type plants. Addition of GSH reduced the ratio of amino acids belonging to the glutamate family on a large scale and increased the relative amount of non-proteinogenic amino acids. The latter change was because of the large increase in the content of alpha-aminoadipate, an inhibitor of glutamatic acid (Glu) transport. Most of the treatments increased the proline (Pro) content, which effect was due to the activation of genes involved in Pro synthesis. Although all studied redox compounds influenced the amount of free amino acids and a mostly positive, very close (r > 0.9) correlation exists between these parameters, a special regulatory role of GSH could be presumed due to its more powerful effect. This may originate from the thiol/disulphide conversion or (de)glutathionylation of enzymes participating in the amino acid metabolism.
Collapse
Affiliation(s)
- Zsolt Gulyás
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, H-2462, Hungary
| | - Livia Simon-Sarkadi
- Department of Food Chemistry and Nutrition, Szent István University, Budapest, H-1118, Hungary
| | - Eszter Badics
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, H-2462, Hungary
| | - Aliz Novák
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, H-2462, Hungary
| | - Zsuzsanna Mednyánszky
- Department of Food Chemistry and Nutrition, Szent István University, Budapest, H-1118, Hungary
| | - Gabriella Szalai
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, H-2462, Hungary
| | - Gábor Galiba
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, H-2462, Hungary
- Festetics Doctoral School, Georgikon Faculty, University of Pannonia, Keszthely, H-8360, Hungary
| | - Gábor Kocsy
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, H-2462, Hungary
| |
Collapse
|