1
|
Liu H, Lu C, Li P, Jia H, Wang Y, Cheng J, Cheng R, Zhang G. Long non-coding RNA DSCAS regulates cisplatin sensitivity in lung squamous cell carcinoma by competitively binding to miR-646-3p. Heliyon 2023; 9:e16865. [PMID: 37360104 PMCID: PMC10285167 DOI: 10.1016/j.heliyon.2023.e16865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023] Open
Abstract
Background Platinum-based chemotherapy is the main treatment for advanced lung squamous cell carcinoma (LUSC). Eventually, patients with LUSC develop resistance to cisplatin, which affects the prognosis. Hence, the researchers sought to find a lncRNA in LUSC that affects resistance to cisplatin. Methods The lncRNA microarray assay was used to screen the differential expression of lncRNA. qPCR was used to detect lncRNA DSCAS (DSCAS) expression in tissues and cell lines. Lentiviral transfection was used to regulate the expression of DSCAS. CCK-8, colony formation, wound healing, transwell, and flow cytometry assays were used to assess the biological behaviors and sensitivity to cisplatin of LUSC cell. RNA-RNA interaction was tested using the dual luciferase reporting assay, RNA-IP, and RNA-RNA pull-down assay. The downstream pathway of DSCAS was verified by qPCR and Western blotting assays. Results DSCAS was highly expressed in LUSC tissues and cells, and its expression levels were higher in cisplatin-insensitive tissues than in cisplatin-sensitive tissues. Elevation of DSCAS promoted cell proliferation, migration and invasion as well as increased cisplatin resistance of lung cancer cells, while demotion of DSCAS inhibited cell proliferation, migration and invasion as well as decreased the cisplatin resistance of lung cancer cells. DSCAS bound to miR-646-3p to regulate the expression of Bcl-2 and Survivin, which affected the cell apoptosis and sensitivity to cisplatin in LUSC cells. Conclusions DSCAS regulates biological behavior and cisplatin sensitivity in LUSC cells by competitively binding to miR-646-3p to mediate the expression of Survivin and Bcl-2, known as apoptosis-related proteins.
Collapse
Affiliation(s)
- Hongping Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe East Road, Zhengzhou, Henan 450052, PR China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Chunya Lu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe East Road, Zhengzhou, Henan 450052, PR China
| | - Ping Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe East Road, Zhengzhou, Henan 450052, PR China
| | - Hongxia Jia
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe East Road, Zhengzhou, Henan 450052, PR China
| | - Yan Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe East Road, Zhengzhou, Henan 450052, PR China
| | - Jiuling Cheng
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe East Road, Zhengzhou, Henan 450052, PR China
| | - Ruirui Cheng
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe East Road, Zhengzhou, Henan 450052, PR China
| | - Guojun Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe East Road, Zhengzhou, Henan 450052, PR China
| |
Collapse
|
2
|
Jayathirtha M, Neagu AN, Whitham D, Alwine S, Darie CC. Investigation of the effects of overexpression of jumping translocation breakpoint (JTB) protein in MCF7 cells for potential use as a biomarker in breast cancer. Am J Cancer Res 2022; 12:1784-1823. [PMID: 35530281 PMCID: PMC9077082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023] Open
Abstract
Jumping translocation breakpoint (JTB) gene acts as a tumor suppressor or an oncogene in different malignancies, including breast cancer (BC), where it was reported as overexpressed. However, the molecular functions, biological processes and underlying mechanisms through which JTB protein causes increased cell growth, proliferation and invasion is still not fully deciphered. Our goal is to identify the functions of JTB protein by cellular proteomics approaches. MCF7 breast cancer cells were transfected with sense orientation of hJTB cDNA in HA, His and FLAG tagged CMV expression vector to overexpress hJTB and the expression levels were confirmed by Western blotting (WB). Proteins extracted from transfected cells were separated by SDS-PAGE and the in-gel digested peptides were analyzed by nano-liquid chromatography tandem mass spectrometry (nanoLC-MS/MS). By comparing the proteome of cells with upregulated conditions of JTB vs control and identifying the protein dysregulation patterns, we aim to understand the function of this protein and its contribution to tumorigenesis. Gene Set Enrichment Analysis (GSEA) algorithm was performed to investigate the biological processes and pathways that are associated with the JTB protein upregulation. The results demonstrated four significantly enriched gene sets from the following significantly upregulated pathways: mitotic spindle assembly, estrogen response late, epithelial-to-mesenchymal transition (EMT) and estrogen response early. JTB protein itself is involved in mitotic spindle pathway by its role in cell division/cytokinesis, and within estrogen response early and late pathways, contributing to discrimination between luminal and mesenchymal breast cancer. Thus, the overexpressed JTB condition was significantly associated with an increased expression of ACTNs, FLNA, FLNB, EZR, MYOF, COL3A1, COL11A1, HSPA1A, HSP90A, WDR, EPPK1, FASN and FOXA1 proteins related to deregulation of cytoskeletal organization and biogenesis, mitotic spindle organization, ECM remodeling, cellular response to estrogen, proliferation, migration, metastasis, increased lipid biogenesis, endocrine therapy resistance, antiapoptosis and discrimination between different breast cancer subtypes. Other upregulated proteins for overexpressed JTB condition are involved in multiple cellular functions and pathways that become dysregulated, such as tumor microenvironment (TME) acidification, the transmembrane transport pathways, glycolytic flux, iron metabolism and oxidative stress, metabolic reprogramming, nucleocytosolic mRNA transport, transcriptional activation, chromatin remodeling, modulation of cell death pathways, stress responsive pathways, and cancer drug resistance. The downregulated proteins for overexpressed JTB condition are involved in adaptive communication between external and internal environment of cells and maintenance between pro-apoptotic and anti-apoptotic signaling pathways, vesicle trafficking and secretion, DNA lesions repair and suppression of genes involved in tumor progression, proteostasis, redox state regulation, biosynthesis of macromolecules, lipolytic pathway, carbohydrate metabolism, dysregulation of ubiquitin-mediated degradation system, cancer cell immune escape, cell-to-cell and cell-to-ECM interactions, and cytoskeletal behaviour. There were no significantly enriched downregulated pathways.
Collapse
Affiliation(s)
- Madhuri Jayathirtha
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of IasiCarol I Bvd. No. 22, Iasi 700505, Romania
| | - Danielle Whitham
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Shelby Alwine
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Costel C Darie
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| |
Collapse
|
3
|
Nurcahyanti ADR, Kusmita L, Wink M. Bixin and fucoxanthin sensitize human lung cancer and cervical cancer cell to cisplatin in vitro. BMC Res Notes 2021; 14:454. [PMID: 34922615 PMCID: PMC8684137 DOI: 10.1186/s13104-021-05866-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/29/2021] [Indexed: 12/16/2022] Open
Abstract
Objective Cisplatin is a conventional anticancer drug that generates reactive oxygen species and causes apoptosis. However, many cancer cells develop alterations in the ATP binding cassette transporter responsible for the uptake and efflux process, which leads to resistance. Many natural products have shown potential to compete with ATP binding cassette transporter and may sensitize resistant cells to cisplatin. Studies have shown pro-oxidant effect of carotenoids that promote apoptosis of cancer cells. Bixin and fucoxanthin are well-known carotenoids with known antioxidant properties, however their bioactivity in lung cancer cells, clinically known to develop resistance due to ATP binding cassette transporter, has been minimally studied. This study is the first to investigate the potential of bixin and fucoxanthin to sensitize human lung cancer cell line, A549 and cervical cancer cell line, HeLa, to cisplatin. Drug combination method developed by Chou and Talalay theorem was employed. Result Employing the best combination ratio, this study shows selective sensitization of cancer cells to cisplatin after bixin and fucoxanthin treatment. Further study on the mechanism of action in specific types of cancer cells is warranted. It may improve cisplatin sensitivity in tumors and rational use of cancer drugs. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13104-021-05866-4.
Collapse
Affiliation(s)
- Agustina Dwi Retno Nurcahyanti
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Pluit Raya 2, Jakarta, 14440, Indonesia.
| | - Lia Kusmita
- Department of Pharmacy, STIFAR Yayasan Pharmasi Semarang, Letjend Sarwo Edhie Wibowo KM 1, Plamongansari Pucanggading, Semarang, Indonesia
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| |
Collapse
|
4
|
Sharma P, Singh N, Sharma S. ATP binding cassette transporters and cancer: revisiting their controversial role. Pharmacogenomics 2021; 22:1211-1235. [PMID: 34783261 DOI: 10.2217/pgs-2021-0116] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The expression of ATP-binding cassette transporter (ABC transporters) has been reported in various tissues such as the lung, liver, kidney, brain and intestine. These proteins account for the efflux of different compounds and metabolites across the membrane, thus decreasing the concentration of the toxic compounds. ABC transporter genes play a vital role in the development of multidrug resistance, which is the main obstacle that hinders the success of chemotherapy. Preclinical and clinical trials have investigated the probability of overcoming drug-associated resistance and substantial toxicities. The focus has been put on several strategies to overcome multidrug resistance. These strategies include the development of modulators that can modulate ABC transporters. This knowledge can be translated for clinical oncology treatment in the future.
Collapse
Affiliation(s)
- Parul Sharma
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India
| | - Navneet Singh
- Department of Pulmonary medicine, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Siddharth Sharma
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India
| |
Collapse
|
5
|
Wang JQ, Wu ZX, Yang Y, Teng QX, Li YD, Lei ZN, Jani KA, Kaushal N, Chen ZS. ATP-binding cassette (ABC) transporters in cancer: A review of recent updates. J Evid Based Med 2021; 14:232-256. [PMID: 34388310 DOI: 10.1111/jebm.12434] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023]
Abstract
The ATP-binding cassette (ABC) transporter superfamily is one of the largest membrane protein families existing in wide spectrum of organisms from prokaryotes to human. ABC transporters are also known as efflux pumps because they mediate the cross-membrane transportation of various endo- and xenobiotic molecules energized by ATP hydrolysis. Therefore, ABC transporters have been considered closely to multidrug resistance (MDR) in cancer, where the efflux of structurally distinct chemotherapeutic drugs causes reduced itherapeutic efficacy. Besides, ABC transporters also play other critical biological roles in cancer such as signal transduction. During the past decades, extensive efforts have been made in understanding the structure-function relationship, transportation profile of ABC transporters, as well as the possibility to overcome MDR via targeting these transporters. In this review, we discuss the most recent knowledge regarding ABC transporters and cancer drug resistance in order to provide insights for the development of more effective therapies.
Collapse
Affiliation(s)
- Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Yuqi Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Yi-Dong Li
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Zi-Ning Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
- School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Khushboo A Jani
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Neeraj Kaushal
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| |
Collapse
|
6
|
Kryczka J, Kryczka J, Czarnecka-Chrebelska KH, Brzeziańska-Lasota E. Molecular Mechanisms of Chemoresistance Induced by Cisplatin in NSCLC Cancer Therapy. Int J Mol Sci 2021; 22:8885. [PMID: 34445588 PMCID: PMC8396273 DOI: 10.3390/ijms22168885] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer cells utilise several mechanisms to increase their survival and progression as well as their resistance to anticancer therapy: deregulation of growth regulatory pathways by acquiring grow factor independence, immune system suppression, reducing the expression of antigens activating T lymphocyte cells (mimicry), induction of anti-apoptotic signals to counter the action of drugs, activation of several DNA repair mechanisms and driving the active efflux of drugs from the cell cytoplasm, and epigenetic regulation by microRNAs (miRNAs). Because it is commonly diagnosed late, lung cancer remains a major malignancy with a low five-year survival rate; when diagnosed, the cancer is often highly advanced, and the cancer cells may have acquired drug resistance. This review summarises the main mechanisms involved in cisplatin resistance and interactions between cisplatin-resistant cancer cells and the tumour microenvironment. It also analyses changes in the gene expression profile of cisplatin sensitive vs. cisplatin-resistant non-small cell lung cancer (NSCLC) cellular model using the GSE108214 Gene Expression Omnibus database. It describes a protein-protein interaction network that indicates highly dysregulated TP53, MDM2, and CDKN1A genes as they encode the top networking proteins that may be involved in cisplatin tolerance, these all being upregulated in cisplatin-resistant cells. Furthermore, it illustrates the multifactorial nature of cisplatin resistance by examining the diversity of dysregulated pathways present in cisplatin-resistant NSCLC cells based on KEGG pathway analysis.
Collapse
Affiliation(s)
- Jolanta Kryczka
- Department of Biomedicine and Genetics, Medical University of Lodz, 92-213 Lodz, Poland; (K.H.C.-C.); (E.B.-L.)
| | - Jakub Kryczka
- Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland;
| | | | - Ewa Brzeziańska-Lasota
- Department of Biomedicine and Genetics, Medical University of Lodz, 92-213 Lodz, Poland; (K.H.C.-C.); (E.B.-L.)
| |
Collapse
|
7
|
Mammalian ABCG-transporters, sterols and lipids: To bind perchance to transport? Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158860. [PMID: 33309976 DOI: 10.1016/j.bbalip.2020.158860] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/15/2020] [Accepted: 12/08/2020] [Indexed: 02/08/2023]
Abstract
Members of the ATP binding cassette (ABC) transporter family perform a critical function in maintaining lipid homeostasis in cells as well as the transport of drugs. In this review, we provide an update on the ABCG-transporter subfamily member proteins, which include the homodimers ABCG1, ABCG2 and ABCG4 as well as the heterodimeric complex formed between ABCG5 and ABCG8. This review focusses on progress made in this field of research with respect to their function in health and disease and the recognised transporter substrates. We also provide an update on post-translational regulation, including by transporter substrates, and well as the involvement of microRNA as regulators of transporter expression and activity. In addition, we describe progress made in identifying structural elements that have been recognised as important for transport activity. We furthermore discuss the role of lipids such as cholesterol on the transport function of ABCG2, traditionally thought of as a drug transporter, and provide a model of potential cholesterol binding sites for ABCG2.
Collapse
|
8
|
Abstract
Cholesterol homeostasis and trafficking are critical to the maintenance of the asymmetric plasma membrane of eukaryotic cells. Disruption or dysfunction of cholesterol trafficking leads to numerous human diseases. ATP-binding cassette (ABC) transporters play several critical roles in this process, and mutations in these sterol transporters lead to disorders such as Tangier disease and sitosterolemia. Biochemical and structural information on ABC sterol transporters is beginning to emerge, with published structures of ABCA1 and ABCG5/G8; these two proteins function in the reverse cholesterol transport pathway and mediate the efflux of cholesterol and xenosterols to high-density lipoprotein and bile salt micelles, respectively. Although both of these transporters belong to the ABC family and mediate the efflux of a sterol substrate, they have many distinct differences. Here, we summarize the current understanding of sterol transport driven by ABC transporters, with an emphasis on these two extensively characterized transporters.
Collapse
Affiliation(s)
- Ashlee M Plummer
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| | - Alan T Culbertson
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| | - Maofu Liao
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| |
Collapse
|
9
|
Fernández LP, Gómez de Cedrón M, Ramírez de Molina A. Alterations of Lipid Metabolism in Cancer: Implications in Prognosis and Treatment. Front Oncol 2020; 10:577420. [PMID: 33194695 PMCID: PMC7655926 DOI: 10.3389/fonc.2020.577420] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/14/2020] [Indexed: 01/06/2023] Open
Abstract
Cancer remains the second leading cause of mortality worldwide. In the course of this multistage and multifactorial disease, a set of alterations takes place, with genetic and environmental factors modulating tumorigenesis and disease progression. Metabolic alterations of tumors are well-recognized and are considered as one of the hallmarks of cancer. Cancer cells adapt their metabolic competences in order to efficiently supply their novel demands of energy to sustain cell proliferation and metastasis. At present, there is a growing interest in understanding the metabolic switch that occurs during tumorigenesis. Together with the Warburg effect and the increased glutaminolysis, lipid metabolism has emerged as essential for tumor development and progression. Indeed, several investigations have demonstrated the consequences of lipid metabolism alterations in cell migration, invasion, and angiogenesis, three basic steps occurring during metastasis. In addition, obesity and associated metabolic alterations have been shown to augment the risk of cancer and to worsen its prognosis. Consequently, an extensive collection of tumorigenic steps has been shown to be modulated by lipid metabolism, not only affecting the growth of primary tumors, but also mediating progression and metastasis. Besides, key enzymes involved in lipid-metabolic pathways have been associated with cancer survival and have been proposed as prognosis biomarkers of cancer. In this review, we will analyze the impact of obesity and related tumor microenviroment alterations as modifiable risk factors in cancer, focusing on the lipid alterations co-occurring during tumorigenesis. The value of precision technologies and its application to target lipid metabolism in cancer will also be discussed. The degree to which lipid alterations, together with current therapies and intake of specific dietary components, affect risk of cancer is now under investigation, and innovative therapeutic or preventive applications must be explored.
Collapse
Affiliation(s)
- Lara P Fernández
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, Campus of International Excellence (CEI) University Autonomous of Madrid (UAM) + CSIC, Madrid, Spain
| | - Marta Gómez de Cedrón
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, Campus of International Excellence (CEI) University Autonomous of Madrid (UAM) + CSIC, Madrid, Spain
| | - Ana Ramírez de Molina
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, Campus of International Excellence (CEI) University Autonomous of Madrid (UAM) + CSIC, Madrid, Spain
| |
Collapse
|
10
|
Mallappa S, Neeli PK, Karnewar S, Kotamraju S. Doxorubicin induces prostate cancer drug resistance by upregulation of ABCG4 through GSH depletion and CREB activation: Relevance of statins in chemosensitization. Mol Carcinog 2019; 58:1118-1133. [DOI: 10.1002/mc.22996] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/02/2019] [Accepted: 02/11/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Sreevidya Mallappa
- Centre for Chemical Biology; CSIR-Indian Institute of Chemical Technology; Hyderabad India
- Academy of Scientific and Innovative Research, Training and Development Complex; Chennai India
| | - Praveen K. Neeli
- Centre for Chemical Biology; CSIR-Indian Institute of Chemical Technology; Hyderabad India
- Academy of Scientific and Innovative Research, Training and Development Complex; Chennai India
| | - Santosh Karnewar
- Centre for Chemical Biology; CSIR-Indian Institute of Chemical Technology; Hyderabad India
- Academy of Scientific and Innovative Research, Training and Development Complex; Chennai India
| | - Srigiridhar Kotamraju
- Centre for Chemical Biology; CSIR-Indian Institute of Chemical Technology; Hyderabad India
- Academy of Scientific and Innovative Research, Training and Development Complex; Chennai India
| |
Collapse
|
11
|
Abstract
The transport of specific molecules across lipid membranes is an essential function of all living organisms. The processes are usually mediated by specific transporters. One of the largest transporter families is the ATP-binding cassette (ABC) family. More than 40 ABC transporters have been identified in human, which are divided into 7 subfamilies (ABCA to ABCG) based on their gene structure, amino acid sequence, domain organization, and phylogenetic analysis. Of them, at least 11 ABC transporters including P-glycoprotein (P-GP/ABCB1), multidrug resistance-associated proteins (MRPs/ABCCs), and breast cancer resistance protein (BCRP/ABCG2) are involved in multidrug resistance (MDR) development. These ABC transporters are expressed in various tissues such as the liver, intestine, kidney, and brain, playing important roles in absorption, distribution, and excretion of drugs. Some ABC transporters are also involved in diverse cellular processes such as maintenance of osmotic homeostasis, antigen processing, cell division, immunity, cholesterol, and lipid trafficking. Several human diseases such as cystic fibrosis, sitosterolemia, Tangier disease, intrahepatic cholestasis, and retinal degeneration are associated with mutations in corresponding transporters. This chapter will describe function and expression of several ABC transporters (such as P-GP, BCRP, and MRPs), their substrates and inhibitors, as well as their clinical significance.
Collapse
Affiliation(s)
- Xiaodong Liu
- China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
12
|
Xiao J, Liu A, Lu X, Chen X, Li W, He S, He B, Chen Q. Prognostic significance of TCF21 mRNA expression in patients with lung adenocarcinoma. Sci Rep 2017; 7:2027. [PMID: 28515486 PMCID: PMC5435710 DOI: 10.1038/s41598-017-02290-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/10/2017] [Indexed: 12/16/2022] Open
Abstract
Several prognostic indicators have shown inconsistencies in patients of different genders with lung adenocarcinoma, indicating that these variations may be due to the different genetic background of males and females with lung adenocarcinoma. In this study, we first used the Gene-Cloud of Biotechnology Information (GCBI) bioinformatics platform to identify differentially expressed genes (DEGs) that eliminated gender differences between lung adenocarcinoma and normal lung tissues. Then, we screened out that transcription factor 21 (TCF21) is a hub gene among these DEGs by creating a gene co-expression network on the GCBI platform. Furthermore, we used the comprehensive survival analysis platforms Kaplan-Meier plotter and PrognoScan to assess the prognostic value of TCF21 expression in lung adenocarcinoma patients. Finally, we concluded that decreased mRNA expression of TCF21 is a predictor for poor prognosis in patients with lung adenocarcinoma.
Collapse
Affiliation(s)
- Jian Xiao
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, China
| | - Aibin Liu
- Department of Geriatrics, Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoxiao Lu
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, China
| | - Xi Chen
- Department of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, China
| | - Wei Li
- Department of Geriatrics, Clinical Laboratory, Xiangya Hospital of Central South University, Changsha, China
| | - Shuya He
- Department of Biochemistry & Biology, University of South China, Hengyang, China
| | - Bixiu He
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, China
| | - Qiong Chen
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
13
|
Liu T, Li WM, Wang WP, Sun Y, Ni YF, Xing H, Xia JH, Wang XJ, Zhang ZP, Li XF. Inhibiting CREPT reduces the proliferation and migration of non-small cell lung cancer cells by down-regulating cell cycle related protein. Am J Transl Res 2016; 8:2097-2113. [PMID: 27347318 PMCID: PMC4891423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/29/2016] [Indexed: 06/06/2023]
Abstract
It has been reported that CREPT acts as a highly expressed oncogene in a variety of tumors, affecting cyclin D1 signal pathways. However, the distribution and clinical significance of CREPT in NSCLC remains poorly understood. Our study focused on the role of CREPT on the regulation ofnon-small cell lung cancer (NSCLC). We found that CREPT mRNA and protein expression was significantly increased in NSCLC compared with adjacent lung tissues and was increased in various NSCLC cell lines compared with the normal human bronchial epithelial (HBE) cell line. siRNA-induced knockingdown of CREPT significantly inhibited the proliferation and migration of NSCLC cell lines by arresting cell cycle in S phase. Moreover, CREPT knocking down affected the expression of cell cycle proteins including c-mycand CDC25A. Finally, we found there were obvious correlations between CREPT with c-myc expression in histological type, differentiation, and pTNM stages of NSCLC (P<0.05, rs>0.3). Immunohistofluorescence studies demonstrated a co-localization phenomenon when CREPT and c-myc were expressed. Thus, we propose that CREPT may promote NSCLC cell growth and migration through the c-myc and CDC25A signaling molecules.
Collapse
Affiliation(s)
- Tao Liu
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University Xi'an 710038, China
| | - Wei-Miao Li
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University Xi'an 710038, China
| | - Wu-Ping Wang
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University Xi'an 710038, China
| | - Ying Sun
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University Xi'an 710038, China
| | - Yun-Feng Ni
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University Xi'an 710038, China
| | - Hao Xing
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University Xi'an 710038, China
| | - Jing-Hua Xia
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University Xi'an 710038, China
| | - Xue-Jiao Wang
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University Xi'an 710038, China
| | - Zhi-Pei Zhang
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University Xi'an 710038, China
| | - Xiao-Fei Li
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University Xi'an 710038, China
| |
Collapse
|