1
|
Pacyga DC, Jolly L, Whalen J, Calafat AM, Braun JM, Schantz SL, Strakovsky RS. Exploring diet as a source of plasticizers in pregnancy and implications for maternal second-trimester metabolic health. ENVIRONMENTAL RESEARCH 2024; 263:120198. [PMID: 39427938 DOI: 10.1016/j.envres.2024.120198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND AND OBJECTIVES Diet plays critical roles in modulating maternal metabolic health in pregnancy, but is also a source of metabolic-disrupting phthalates and their replacements. We aimed to evaluate whether the effects of better diet quality on favorable maternal metabolic outcomes could be partially explained by lower exposure to phthalates/replacements. METHODS At 13 weeks gestation, 295 Illinois women (enrolled 2015-2018) completed a three-month food frequency questionnaire that we used to calculate the Alternative Healthy Eating Index (AHEI)-2010 to assess diet quality. We quantified 19 metabolites, reflecting exposure to 10 phthalates/replacements, in a pool of five first-morning urine samples collected monthly across pregnancy. We measured 15 metabolic biomarkers in fasting plasma samples collected at 17 weeks gestation, which we reduced to five uncorrelated principal components (PCs), representing adiposity, lipids, cholesterol, inflammation, and growth. We used linear regression to estimate associations of diet quality with [1] phthalates/replacements and [2] metabolic PCs, as well as [3] associations of phthalates/replacements with metabolic PCs. We estimated the proportion of associations between diet quality and metabolic outcomes explained by phthalates/replacements using a causal mediation framework. RESULTS Overall, every 10-point improvement in AHEI-2010 score was associated with -0.15 (95% CI: -0.27, -0.04) lower adiposity scores, reflecting lower glucose, insulin, C-peptide, leptin, C-reactive protein, but higher adiponectin biomarker levels. Every 10-point increase in diet quality was also associated with 18% (95%CI: 7%, 28%) lower sum of di-2-ethylhexyl terephthalate urinary metabolites (∑DEHTP). Correspondingly, each 18% increase in ∑DEHTP was associated with 0.03 point (95% CI: 0.01, 0.05) higher adiposity PC scores. In mediation analyses, 21% of the inverse relationship between diet quality and adiposity PC scores was explained by lower ∑DEHTP. CONCLUSIONS The favorable impact of diet quality on maternal adiposity biomarkers may be partially attributed to lower metabolite concentrations of DEHTP, a plasticizer allowed to be used in food packaging materials.
Collapse
Affiliation(s)
- Diana C Pacyga
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA; Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Luca Jolly
- Lyman Briggs College, Michigan State University, East Lansing, MI, USA; Honors College, Michigan State University, East Lansing, MI, USA
| | - Jason Whalen
- Michigan Diabetes Research Center Chemistry Laboratory, University of Michigan, Ann Arbor, MI, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, RI, USA
| | - Susan L Schantz
- The Beckman Institute, University of Illinois, Urbana-Champaign, IL, USA; Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, IL, USA
| | - Rita S Strakovsky
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
2
|
Zhao X, Xu A, Lu X, Chen B, Hua Y, Ma Y. Association of phthalates exposure and sex steroid hormones with late-onset preeclampsia: a case-control study. BMC Pregnancy Childbirth 2024; 24:577. [PMID: 39227873 PMCID: PMC11369995 DOI: 10.1186/s12884-024-06793-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND This study aimed to investigate the relationship between phthalates exposure and estrogen and progesterone levels, as well as their role in late-onset preeclampsia. METHODS A total of 60 pregnant women who met the inclusion and exclusion criteria were recruited. Based on the diagnosis of preeclampsia, participants were divided into two groups: normotensive pregnant women (n = 30) and pregnant women with late-onset preeclampsia (n = 30). The major metabolites of phthalates (MMP, MEP, MiBP, MBP, MEHP, MEOHP, MEHHP) and sex steroid hormones (estrogen and progesterone) were quantified in urine samples of the participants. RESULTS No significant differences were observed in the levels of MMP, MEP, MiBP, MBP, MEHP, MEOHP, and MEHHP between women with preeclampsia and normotensive pregnant women (P > 0.05). The urinary estrogen showed a negative correlation with systolic blood pressure (rs= -0.46, P < 0.001) and diastolic blood pressure (rs= -0.47, P < 0.001). Additionally, the urinary estrogen and progesterone levels were lower in women with preeclampsia compared to those in normotensive pregnant women (P < 0.05). After adjusting for confounding factors, we observed a significant association between reduced urinary estrogen levels and an increased risk of preeclampsia (aOR = 0.09, 95%CI = 0.02-0.46). Notably, in our decision tree model, urinary estrogen emerged as the most crucial variable for identifying pregnant women at a high risk of developing preeclampsia. A positive correlation was observed between urinary progesterone and MEHP (rs = 0.36, P < 0.05) in normotensive pregnant women. A negative correlation was observed between urinary estrogen and MEP in pregnant women with preeclampsia (rs= -0.42, P < 0.05). CONCLUSIONS Phthalates exposure was similar in normotensive pregnant women and those with late-onset preeclampsia within the same region. Pregnant women with preeclampsia had lower levels of estrogen and progesterone in their urine, while maternal urinary estrogen was negatively correlated with the risk of preeclampsia and phthalate metabolites (MEP). TRIAL REGISTRATION Registration ID in Clinical Trials: NCT04369313; registration date: 30/04/2020.
Collapse
Affiliation(s)
- Xiaomin Zhao
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Department of Obstetrics and Gynecology, Shaoxing Maternity and Child Health Care Hospital, Shaoxing, China
| | - Anjian Xu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Xinyue Lu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Baoyi Chen
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Ying Hua
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| | - Yanyan Ma
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
3
|
Meeker JD, McArthur KL, Adibi JJ, Alshawabkeh AN, Barrett ES, Brubaker SG, Cordero JF, Dabelea D, Dunlop AL, Herbstman JB, Kahn LG, Karr CJ, Mehta-Lee S, O'Connor TG, Sathyanarayana S, Trasande L, Kuiper JR. Urinary concentrations of phthalate metabolites in relation to preeclampsia and other hypertensive disorders of pregnancy in the environmental influences on child health outcomes (ECHO) program. ENVIRONMENT INTERNATIONAL 2024; 187:108678. [PMID: 38696977 PMCID: PMC11829711 DOI: 10.1016/j.envint.2024.108678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/01/2024] [Accepted: 04/17/2024] [Indexed: 05/04/2024]
Abstract
BACKGROUND Phthalate exposure may contribute to hypertensive disorders of pregnancy (HDP), including preeclampsia/eclampsia (PE/E), but epidemiologic studies are lacking. OBJECTIVES To evaluate associations of pregnancy phthalate exposure with development of PE/E and HDP. METHODS Using data from 3,430 participants in eight Environmental influences on Child Health Outcomes (ECHO) Program cohorts (enrolled from 1999 to 2019), we quantified concentrations of 13 phthalate metabolites (8 measured in all cohorts, 13 in a subset of four cohorts) in urine samples collected at least once during pregnancy. We operationalized outcomes as PE/E and composite HDP (PE/E and/or gestational hypertension). After correcting phthalate metabolite concentrations for urinary dilution, we evaluated covariate-adjusted associations of individual phthalates with odds of PE/E or composite HDP via generalized estimating equations, and the phthalate mixture via quantile-based g-computation. We also explored effect measure modification by fetal sex using stratified models. Effect estimates are reported as odds ratios (OR) with 95% confidence intervals (95% CIs). RESULTS In adjusted analyses, a doubling of mono-benzyl phthalate (MBzP) and of mono (3-carboxypropyl) phthalate (MCPP) concentrations was associated with higher odds of PE/E as well as composite HDP, with somewhat larger associations for PE/E. For example, a doubling of MCPP was associated with 1.12 times the odds of PE/E (95%CI 1.00, 1.24) and 1.02 times the odds of composite HDP (95%CI 1.00, 1.05). A quartile increase in the phthalate mixture was associated with 1.27 times the odds of PE/E (95%CI 0.94, 1.70). A doubling of mono-carboxy isononyl phthalate (MCiNP) and of mono-carboxy isooctyl phthalate (MCiOP) concentrations were associated with 1.08 (95%CI 1.00, 1.17) and 1.11 (95%CI 1.03, 1.19) times the odds of PE/E. Effect estimates for PE/E were generally larger among pregnancies carrying female fetuses. DISCUSSION In this study, multiple phthalates were associated with higher odds of PE/E and HDP. Estimates were precise and some were low in magnitude. Interventions to reduce phthalate exposures during pregnancy may help mitigate risk of these conditions.
Collapse
Affiliation(s)
- John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| | - Kristen L McArthur
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Jennifer J Adibi
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
| | | | - Emily S Barrett
- Department of Biostatistics and Epidemiology, Rutgers University School of Public Health, Environmental and Occupational Health Institute, Piscataway, NJ, USA.
| | - Sara G Brubaker
- Division of Maternal-Fetal Medicine, New York University Grossman School of Medicine, New York, NY, USA.
| | - Jose F Cordero
- Department of Epidemiology and Biostatistics, University of Georgia College of Public Health, Athens, GA, USA.
| | - Dana Dabelea
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Anne L Dunlop
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, USA.
| | - Julie B Herbstman
- Department of Environmental Health Sciences, Columbia University, New York, NY, USA.
| | - Linda G Kahn
- Division of Environmental Pediatrics, New York University Grossman School of Medicine, New York, NY, USA.
| | - Catherine J Karr
- Department of Environmental and Occupational Health Sciences, University of Washington School of Public Health, Seattle, WA, USA.
| | - Shilpi Mehta-Lee
- Division of Maternal-Fetal Medicine, New York University Grossman School of Medicine, New York, NY, USA.
| | - Thomas G O'Connor
- Departments of Psychiatry, Neuroscience and Obstetrics and Gynecology, University of Rochester, Rochester, NY, USA.
| | - Sheela Sathyanarayana
- Department of Pediatrics, Department of Environmental and Occupational Health Sciences, Department of Epidemiology University of Washington and Seattle Children's Research Institute, Seattle, WA, USA.
| | | | - Jordan R Kuiper
- Department of Environmental and Occupational Health, The George Washington University, Washington, D.C., USA.
| |
Collapse
|
4
|
Taibl KR, Dunlop AL, Barr DB, Ryan PB, Panuwet P, Corwin EJ, Eatman JA, Tan Y, Liang D, Eick SM. Phthalate exposure increases interferon-γ during pregnancy: The Atlanta African American Maternal-Child Cohort. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170344. [PMID: 38266723 PMCID: PMC10922519 DOI: 10.1016/j.scitotenv.2024.170344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND The immune system undergoes unique adaptations during pregnancy and is particularly sensitive to environmental chemicals, such as phthalates, which are associated with acute and chronic inflammatory medical conditions. However, current knowledge of how phthalate exposures are associated with systemic inflammation in pregnant people is limited by cross-sectional study designs and single chemical models. Our objective was to estimate the association between repeated measures of prenatal phthalate exposures, examined individually and collectively, and a panel of clinical inflammatory biomarkers. METHODS In the Atlanta African American Maternal-Child Cohort, biospecimens were collected at mean 11 and 26 weeks gestation (N = 126). Concentrations of eight urinary phthalate metabolites and five serum inflammatory biomarkers, including CRP, IFN-γ, IL-6, IL-10, and TNF-α, were measured. Linear mixed effect regression and quantile g-computation models were used to estimate the associations for single phthalates and their exposure mixture, respectively. RESULTS Participants who self-reported any use of alcohol, tobacco, or marijuana in the month prior to pregnancy had increased MEP, MBP, MiBP, and CRP, relative to those with no substance use. IFN-γ was elevated in response to MECPP (% change = 17.35, 95 % confidence interval [CI] = 0.32, 32.27), MEHHP (% change = 12.75, 95 % CI = 2.22, 24.36), MEOHP (% change = 11.63, 95 % CI = 1.21, 23.12), and their parent phthalate, ΣDEHP (% change = 15.03, 95 % CI = 0.28, 31.94). The phthalate mixture was also associated with an increase in IFN-γ (% change = 15.03, 95 % CI = 6.18, 24.61). CONCLUSIONS Our findings suggest DEHP metabolites induce systemic inflammation during pregnancy. The pro-inflammatory cytokine IFN-γ may play an important role in the relationship between prenatal phthalate exposures and adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Kaitlin R Taibl
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Anne L Dunlop
- Department of Gynecology and Obstetrics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - P Barry Ryan
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Parinya Panuwet
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | | | - Jasmin A Eatman
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA; School of Medicine, Emory University, Atlanta, GA, USA
| | - Youran Tan
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Donghai Liang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Stephanie M Eick
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| |
Collapse
|
5
|
Jin S, Cui S, Huang X, Li Z, Han Y, Cui T, Su Y, Xiong W, Zhang X. BMI-specific inflammatory response to phthalate exposure in early pregnancy: findings from the TMCHESC study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:123383-123395. [PMID: 37985588 DOI: 10.1007/s11356-023-30922-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023]
Abstract
Studies that have evaluated associations between phthalate metabolites and inflammation have reported inconsistent results among pregnant women, and it is unclear how body mass index (BMI) affects such relationships. Therefore, the present study aimed to examine the association between urinary phthalate metabolite concentrations and the levels of inflammatory biomarkers in the general circulation among 394 pregnant women selected from the Tianjin Maternal and Child Health Education and Service Cohort (TMCHESC) and to determine the role that BMI plays in the relationship. The concentrations of eight inflammatory biomarkers and three phthalate metabolites were measured in serum and urine samples, respectively. Multivariable linear modeling was conducted to examine the association between each phthalate and inflammatory biomarker while controlling for potential confounding factors in BMI-stratified subgroups. Restricted cubic splines were also utilised to explore potential non-linear relationships. In the high-BMI group, positive associations were observed between the levels of mono-n-butyl phthalate (MBP) and interleukin 1 beta (IL-1β) (β = 0.192; 95% CI: 0.033, 0.351), monoethyl phthalate (MEP), and C-reaction protein (CRP) (β = 0.129; 95% CI 0.024, 0.233), and mono-ethylhexyl phthalate (MEHP) and interleukin 6 (IL-6) (β = 0.146; 95% CI 0.016, 0.277). Restricted cubic spline models also revealed non-linear associations between the levels of MBP and interleukins 10 and 17A (IL-10 and IL-17A) and between MEP and interleukin 8 (IL-8) and tumor necrosis factor alpha (TNF-α) in pregnant women. These results suggest that phthalate exposure plays a potential role in promoting inflammation in the high-BMI group. While the precise mechanisms underlying the proinflammatory effects of phthalates are not fully understood, these findings suggest that BMI may play a role.
Collapse
Affiliation(s)
- Shihao Jin
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin, 300070, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Shanshan Cui
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Xiaoqing Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin, 300070, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Zhi Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin, 300070, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Yu Han
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin, 300070, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Tingkai Cui
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin, 300070, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Yuanyuan Su
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin, 300070, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Wenjuan Xiong
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin, 300070, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Xin Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin, 300070, China.
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
6
|
Yang H, Zheng Y, Lai X, Zhao L, Liu L, Liu M, Guo W, Yang L, Fang Q, Zhu K, Dai W, Mei W, Zhu R, Zhang X. Associations of Urinary Phthalate Metabolites with Thyroid Function and the Mediated Role of Cytokines: A Panel Study of Healthy Children. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17808-17817. [PMID: 36760168 DOI: 10.1021/acs.est.2c07656] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Evidence on joint association of a phthalate mixture with thyroid function among children and its underlying mechanism is largely unknown. We aimed to explore the associations of 10 urinary phthalate metabolites (mPAEs), either as individuals or as a mixture, with thyroid function indicators [free thyroxine, free triiodothyronine (FT3), and thyroid-stimulating hormone (TSH)] in 144 children aged 4-12 years with up to 3 repeated visits across 3 seasons. Significant and positive associations were observed for mono-(2-ethylhexyl) phthalate (MEHP), mono-iso-butyl phthalate (MiBP), and mono-n-butyl phthalate (MnBP) with TSH, as well as monobenzyl phthalate (MBzP) with FT3 in dose-response manners. The relationship between MEHP and TSH remained robust in multiple-phthalate models. Bayesian kernel machine regression (BKMR) models revealed overall linear associations of the 10 mPAE mixture with higher TSH and FT3 levels, and MEHP and MBzP were major contributors. Meanwhile, MEHP, MiBP, and MnBP were linked to the elevation of multiple cytokines including CCL 27, CCL3, CXCL1, and IL-16. Among them, IL-16 mediated the relationships of MEHP and MiBP with TSH, and the mediated proportions were 24.16% and 24.27%, respectively. Our findings suggested that mPAEs dominated by MEHP were dose-responsively associated with elevated TSH among healthy children and mediated by IL-16.
Collapse
Affiliation(s)
- Huihua Yang
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuming Zheng
- The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Xuefeng Lai
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lei Zhao
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Linlin Liu
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Miao Liu
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wenting Guo
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Liangle Yang
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qin Fang
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kejing Zhu
- Zhuhai Center for Disease Control and Prevention, Zhuhai 519000, China
| | - Wencan Dai
- Zhuhai Center for Disease Control and Prevention, Zhuhai 519000, China
| | - Wenhua Mei
- Zhuhai Center for Disease Control and Prevention, Zhuhai 519000, China
| | - Rui Zhu
- Department of Traditional Chinese Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
7
|
Yang Y, Wang T, Luo L, He Q, Guo F, Chen Z, Liu Y, Liu X, Xie Y, Shang X, Shen X, Zhou Y, Tian K. Co-Exposure of Polycyclic Aromatic Hydrocarbons and Phthalates with Blood Cell-Based Inflammation in Early Pregnant Women. TOXICS 2023; 11:810. [PMID: 37888661 PMCID: PMC10611080 DOI: 10.3390/toxics11100810] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023]
Abstract
Cumulative evidence has demonstrated that exposure to polycyclic aromatic hydrocarbons (PAHs) or phthalates (PAEs) contributes to a variety of adverse health effects. However, the association of PAHs and PAEs co-exposure with blood cell-based inflammatory indicators during early pregnancy is still unclear. We aimed to investigate the single and mixed associations of exposure to PAHs and PAEs with blood cell-based inflammatory indicators among early pregnant women. A total of 318 early pregnant women were included in this study. General linear regressions were used to estimate the relationships of individual OH-PAHs and mPAEs with blood cell-based inflammatory indicators. The key pollutants were selected by an adapted least absolute shrinkage and selection operator (LASSO) penalized regression model and wasemployed to build the Bayesian kernel machine regression (BKMR) and quantile g-computation (Q-g) models, which can assess the joint association of OH-PAHs and mPAEs with blood cell-based inflammatory indicators. General linear regression indicated that each 1% increase in MOP was associated with a 4.92% (95% CI: 2.12%, 7.68%), 3.25% (95% CI: 0.50%, 6.18%), 5.87% (95% CI: 2.22%, 9.64%), and 6.50% (95% CI: 3.46%, 9.64%) increase in WBC, lymphocytes, neutrophils, and monocytes, respectively. BKMR and Q-g analysis showed that the mixture of OH-PAHs and mPAEs was linked with increased levels of white blood cells (WBC), neutrophils, monocytes, and lymphocytes, and MOP was identified as the dominant contributor. OH-PAHs and mPAEs co-exposure in early pregnancy was associated with elevated blood cell-based inflammatory indicators reactions. More attention should be paid to the inflammation induced by environmental pollution for perinatal women, especially early pregnant women.
Collapse
Affiliation(s)
- Yunxiao Yang
- School of Nursing, Zunyi Medical University, Zunyi 563000, China;
- School of Public Health, Zunyi Medical University, Zunyi 563000, China;
| | - Ting Wang
- School of Health Policy and Management, Nanjing Medical University, Nanjing 210000, China;
| | - Lei Luo
- School of Public Health, Zunyi Medical University, Zunyi 563000, China;
| | - Qian He
- Department of Obstetrics and Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China;
| | - Fangfei Guo
- School of Public Health, Guizhou Medical University, Guiyang 550000, China;
| | - Zhongbao Chen
- Renhuai Center for Disease Control and Prevention, Zunyi 563000, China;
| | - Yijun Liu
- School of Public Health, Zunyi Medical University, Zunyi 563000, China;
- Key Laboratory of Maternal & Child Health, Exposure Science of Guizhou Higher Education Institutes, Zunyi 563000, China; (Y.L.); (X.L.); (Y.X.); (X.S.)
| | - Xingyan Liu
- School of Public Health, Zunyi Medical University, Zunyi 563000, China;
- Key Laboratory of Maternal & Child Health, Exposure Science of Guizhou Higher Education Institutes, Zunyi 563000, China; (Y.L.); (X.L.); (Y.X.); (X.S.)
| | - Yan Xie
- School of Public Health, Zunyi Medical University, Zunyi 563000, China;
- Key Laboratory of Maternal & Child Health, Exposure Science of Guizhou Higher Education Institutes, Zunyi 563000, China; (Y.L.); (X.L.); (Y.X.); (X.S.)
| | - Xuejun Shang
- Department of Andrology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing 210002, China;
| | - Xubo Shen
- School of Public Health, Zunyi Medical University, Zunyi 563000, China;
- Key Laboratory of Maternal & Child Health, Exposure Science of Guizhou Higher Education Institutes, Zunyi 563000, China; (Y.L.); (X.L.); (Y.X.); (X.S.)
| | - Yuanzhong Zhou
- School of Public Health, Zunyi Medical University, Zunyi 563000, China;
- Key Laboratory of Maternal & Child Health, Exposure Science of Guizhou Higher Education Institutes, Zunyi 563000, China; (Y.L.); (X.L.); (Y.X.); (X.S.)
| | - Kunming Tian
- School of Public Health, Zunyi Medical University, Zunyi 563000, China;
- Key Laboratory of Maternal & Child Health, Exposure Science of Guizhou Higher Education Institutes, Zunyi 563000, China; (Y.L.); (X.L.); (Y.X.); (X.S.)
| |
Collapse
|
8
|
Maitre L, Jedynak P, Gallego M, Ciaran L, Audouze K, Casas M, Vrijheid M. Integrating -omics approaches into population-based studies of endocrine disrupting chemicals: A scoping review. ENVIRONMENTAL RESEARCH 2023; 228:115788. [PMID: 37004856 DOI: 10.1016/j.envres.2023.115788] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/13/2023] [Accepted: 03/27/2023] [Indexed: 05/16/2023]
Abstract
Health effects of endocrine disrupting chemicals (EDCs) are challenging to detect in the general population. Omics technologies become increasingly common to identify early biological changes before the apparition of clinical symptoms, to explore toxic mechanisms and to increase biological plausibility of epidemiological associations. This scoping review systematically summarises the application of omics in epidemiological studies assessing EDCs-associated biological effects to identify potential gaps and priorities for future research. Ninety-eight human studies (2004-2021) were identified through database searches (PubMed, Scopus) and citation chaining and focused on phthalates (34 studies), phenols (19) and PFASs (17), while PAHs (12) and recently-used pesticides (3) were less studied. The sample sizes ranged from 10 to 12,476 (median = 159), involving non-pregnant adults (38), pregnant women (11), children/adolescents (15) or both latter populations studied together (23). Several studies included occupational workers (10) and/or highly exposed groups (11) focusing on PAHs, PFASs and pesticides, while studies on phenols and phthalates were performed in the general population only. Analysed omics layers included metabolic profiles (30, including 14 targeted analyses), miRNA (13), gene expression (11), DNA methylation (8), microbiome (5) and proteins (3). Twenty-one studies implemented targeted multi-assays focusing on clinical routine blood lipid traits, oxidative stress or hormones. Overall, DNA methylation and gene expression associations with EDCs did not overlap across studies, while some EDC-associated metabolite groups, such as carnitines, nucleotides and amino acids in untargeted metabolomic studies, and oxidative stress markers in targeted studies, were consistent across studies. Studies had common limitations such as small sample sizes, cross-sectional designs and single sampling for exposure biomonitoring. In conclusion, there is a growing body of evidence evaluating the early biological responses to exposure to EDCs. This review points to a need for larger longitudinal studies, wider coverage of exposures and biomarkers, replication studies and standardisation of research methods and reporting.
Collapse
Affiliation(s)
- Léa Maitre
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| | - Paulina Jedynak
- ISGlobal, Barcelona, Spain; University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Marta Gallego
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Laura Ciaran
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Karine Audouze
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 Rue des Saints Pères, Paris, France
| | - Maribel Casas
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
9
|
Fabbri L, Garlantézec R, Audouze K, Bustamante M, Carracedo Á, Chatzi L, Ramón González J, Gražulevičienė R, Keun H, Lau CHE, Sabidó E, Siskos AP, Slama R, Thomsen C, Wright J, Lun Yuan W, Casas M, Vrijheid M, Maitre L. Childhood exposure to non-persistent endocrine disrupting chemicals and multi-omic profiles: A panel study. ENVIRONMENT INTERNATIONAL 2023; 173:107856. [PMID: 36867994 DOI: 10.1016/j.envint.2023.107856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Individuals are exposed to environmental pollutants with endocrine disrupting activity (endocrine disruptors, EDCs) and the early stages of life are particularly susceptible to these exposures. Previous studies have focused on identifying molecular signatures associated with EDCs, but none have used repeated sampling strategy and integrated multiple omics. We aimed to identify multi-omic signatures associated with childhood exposure to non-persistent EDCs. METHODS We used data from the HELIX Child Panel Study, which included 156 children aged 6 to 11. Children were followed for one week, in two time periods. Twenty-two non-persistent EDCs (10 phthalate, 7 phenol, and 5 organophosphate pesticide metabolites) were measured in two weekly pools of 15 urine samples each. Multi-omic profiles (methylome, serum and urinary metabolome, proteome) were measured in blood and in a pool urine samples. We developed visit-specific Gaussian Graphical Models based on pairwise partial correlations. The visit-specific networks were then merged to identify reproducible associations. Independent biological evidence was systematically sought to confirm some of these associations and assess their potential health implications. RESULTS 950 reproducible associations were found among which 23 were direct associations between EDCs and omics. For 9 of them, we were able to find corroborating evidence from previous literature: DEP - serotonin, OXBE - cg27466129, OXBE - dimethylamine, triclosan - leptin, triclosan - serotonin, MBzP - Neu5AC, MEHP - cg20080548, oh-MiNP - kynurenine, oxo-MiNP - 5-oxoproline. We used these associations to explore possible mechanisms between EDCs and health outcomes, and found links to health outcomes for 3 analytes: serotonin and kynurenine in relation to neuro-behavioural development, and leptin in relation to obesity and insulin resistance. CONCLUSIONS This multi-omics network analysis at two time points identified biologically relevant molecular signatures related to non-persistent EDC exposure in childhood, suggesting pathways related to neurological and metabolic outcomes.
Collapse
Affiliation(s)
- Lorenzo Fabbri
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Ronan Garlantézec
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail), UMR_S 1085, Rennes, France
| | - Karine Audouze
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 rue des Saints Pères, Paris, France
| | - Mariona Bustamante
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; CIBER Epidemiologa y Salud Pública (CIBERESP), Madrid, Spain
| | - Ángel Carracedo
- Medicine Genomics Group, Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), University of Santiago de Compostela, CEGEN-PRB3, Santiago de Compostela, Spain; Galician Foundation of Genomic Medicine, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
| | - Leda Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Juan Ramón González
- ISGlobal, Barcelona, Spain; CIBER Epidemiologa y Salud Pública (CIBERESP), Madrid, Spain; Department of Mathematics, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | - Hector Keun
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery and Cancer & Division of Systems Medicine, Department of Metabolism, Digestion & Reproduction, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Chung-Ho E Lau
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK; Division of Systems Medicine, Department of Metabolism, Digestion & Reproduction, Imperial College, South Kensington, London, UK
| | - Eduard Sabidó
- Universitat Pompeu Fabra (UPF), Barcelona, Spain; Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Alexandros P Siskos
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery and Cancer & Division of Systems Medicine, Department of Metabolism, Digestion & Reproduction, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Rémy Slama
- Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Inserm, CNRS, Université Grenoble Alpes, Grenoble, France
| | - Cathrine Thomsen
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Wen Lun Yuan
- Université de Paris, Centre for Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Paris, France; Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| | - Maribel Casas
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiologa y Salud Pública (CIBERESP), Madrid, Spain
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiologa y Salud Pública (CIBERESP), Madrid, Spain
| | - Léa Maitre
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiologa y Salud Pública (CIBERESP), Madrid, Spain.
| |
Collapse
|
10
|
Zang L, Lv H, Du J, Pan Y, Lin Y, Dai J. Association of phthalate exposure with low birth weight in couples conceiving naturally or via assisted reproductive technology in a prospective birth cohort. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158852. [PMID: 36122707 DOI: 10.1016/j.scitotenv.2022.158852] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Few studies have investigated the adverse effects of preconception phthalate (PAE) exposure on birth weight in couples receiving assisted reproductive technology (ART) compared to naturally conceived newborns. OBJECTIVES We examined the association between parental preconception/prenatal urinary phthalate exposure and low birth weight (LBW) risk in couples who conceived using ART or naturally. METHODS From the Jiangsu Birth Cohort Study (China), we recruited 544 couples who conceived after infertility treatment and 940 couples who conceived naturally and gave birth to a singleton infant between November 2014 and December 2019. Seventeen metabolites of phthalate and three metabolites of phthalate alternatives were analyzed in parental spot urine samples. Clinical data were collected from medical records. We used generalized linear models, elastic net regression, Bayesian kernel machine regression, and quantile-based g-computation to examine the individual and joint effects of parental phthalate exposure on birth weight and LBW risk ratios (RR). RESULTS The relationship between parental phthalate exposure and birth weight was consistent between ART and natural conception. Maternal exposure to mono-ethyl phthalate and mono-carboxyisooctyl phthalate was associated with an increased risk of LBW in ART-conceived infants (RR = 1.27; 95 % confidence interval (CI): 1.03, 1.56; and RR = 1.31; 95 % CI: 1.03, 1.67, respectively). In contrast, in the spontaneously conceived infants, higher paternal prenatal concentrations of mono-benzyl phthalate and mono-carboxyisononyl phthalate were associated with a 40 % and 53 % increase in LBW risk, respectively. Exposure to PAE mixtures was associated with LBW in ART-conceived infants, with the effects primarily driven by di-ethyl phthalate, benzylbutyl phthalate, and di-isononyl phthalate metabolites. Sex-specific LBW was observed, with females appearing to be more susceptible than males. CONCLUSIONS Maternal preconception and paternal prenatal exposure to phthalates were associated with increased risk of LBW in infants. Compared with natural conception, ART-conceived fetuses were more sensitive to PAE mixtures, which requires further attention.
Collapse
Affiliation(s)
- Lu Zang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong Lv
- State Keey Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215006, China
| | - Jiangbo Du
- State Keey Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yitao Pan
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; State Keey Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yuan Lin
- State Keey Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215006, China.
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; State Keey Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
11
|
Huo Y, Wan Y, Qian X, Mahai G, Wang A, He Z, Xu S, Xia W. Variability, determinants, and associations with oxidative stress biomarkers of pentachlorophenol among Chinese pregnant women: A longitudinal study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158843. [PMID: 36122716 DOI: 10.1016/j.scitotenv.2022.158843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/26/2022] [Accepted: 09/14/2022] [Indexed: 06/15/2023]
Abstract
Pentachlorophenol (PCP) is ubiquitous and moderately persistent in the environment, and it is an identified human carcinogen. Previous animal experiments indicate that toxic mechanisms of PCP include oxidative stress. However, no epidemiological study has reported the association between PCP exposure and oxidative stress; such association in pregnant women, a vulnerable population, is of particular interest. This study aimed to characterize PCP concentrations in 2304 urine samples from 768 pregnant women, explore its determinants, and evaluate the associations between PCP exposure and three oxidative stress biomarkers across three trimesters. The median concentrations of PCP (100% detected) in the first, second, and third trimester were 0.61, 0.59, and 0.48 ng/mL, respectively, with a significant decrease trend. The intraclass correlation coefficient of specific gravity (SG)-adjusted PCP was 0.26, indicating high variability for PCP across the three trimesters. PCP concentrations were significantly higher in older, pre-pregnancy overweight, multiparous, high-income, and employed women during pregnancy. Urinary PCP was markedly lower in samples collected during spring compared to other seasons. Linear mixed effect models for repeated measures revealed that ln-transformed SG-adjusted PCP was significantly associated with increased 8-hydroxy-2'-deoxyguanosine (8-OHdG; percent change [%Δ] caused by each interquartile range increase of PCP: 46.2, 95% confidence interval [CI]: 40.2, 52.5) and 8-hydroxyguanosine (8-OHG;%Δ [95% CI]: 44.8 [40.1, 49.8]), but the positive association with 4-hydroxy2-nonenal-mercapturic acid (HNE-MA) was not significant. PCP was also positively associated with increased 8-OHdG and 8-OHG in each trimester using general linear models, and its associations with HNE-MA were only significant at T1 (%Δ [95% CI]: 19.1 [1.05, 40.3]) and T2 (%Δ [95% CI]: 12.6 [0.32, 26.3]). Our findings provide valuable information about PCP exposure characteristics during pregnancy and the potential effects of PCP exposure on oxidative stress in pregnant women.
Collapse
Affiliation(s)
- Yitao Huo
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Yanjian Wan
- Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei 430015, PR China.
| | - Xi Qian
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Gaga Mahai
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Aizhen Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Zhenyu He
- Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei 430015, PR China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| |
Collapse
|
12
|
Lee CW, Cathey AL, Watkins DJ, Rosario-Pabón ZY, Vélez-Vega CM, Alshawabkeh AN, Cordero JF, Meeker JD. Associations of urinary phthalate metabolites and inflammatory biomarkers among pregnant women in Puerto Rico. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158773. [PMID: 36113809 PMCID: PMC10323976 DOI: 10.1016/j.scitotenv.2022.158773] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/31/2022] [Accepted: 09/10/2022] [Indexed: 06/11/2023]
Abstract
Phthalates are ubiquitous environmental exposures that may be implicated in inflammatory processes, as demonstrated by previous in vivo and in vitro studies. Few human studies have substantiated these observations. This study sought to examine whether maternal phthalate exposures impact inflammatory processes, as measured by circulating inflammatory biomarkers, in the PROTECT cohort in northern Puerto Rico. Inflammatory biomarkers included matrix metalloproteinases 1, 2, and 9 (MMPs), C-reactive protein (CRP), vascular cell adhesion molecule-1 (VCAM), and intercellular cell adhesion molecule-1 (ICAM). Biomarkers were measured in maternal serum samples collected during pregnancy. 19 phthalate metabolites were assessed in urinary samples collected at three study visits across pregnancy. Phthalates with <50 % of measurements above the limit of detection were excluded from analysis. We utilized linear mixed effect models to estimate associations between interquartile range increases in phthalate metabolite concentrations and percent changes in inflammatory biomarkers. Our results revealed significant associations between mono-n-butyl phthalate (MBP) and higher MMP1 by 7.86 % (95 % CI: 0.49, 15.76) and between mono oxononyl phthalate (MONP) and higher MMP2 by 8.30 % (95 % CI: 2.22, 14.75). We observed negative or null associations between phthalate metabolites and MMP2, MMP9, ICAM, VCAM, and CRP. Many results were significantly modified by fetal sex, particularly those between di-2-ethylhexyl phthalate (DEHP) metabolites and MMP1 (p-interaction: MEHHP = 0.01, MEOHP = 0.04, MECPP = 0.01) and MMP2 (p-interaction: MEHHP = 0.03, MEOHP = 0.01, MECPP = 0.01), for which associations were positive among only women carrying female fetuses. MMPs have been previously associated with preeclampsia and hypertensive pregnancy disorders as mediators of artery remodeling. Hence, our findings suggest a potential role for phthalates in mediating the maternal inflammatory response, as well as significant sexual dimorphism in these relationships, which has implications for several adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Christine W Lee
- Department of Environmental Health Sciences, University of Michigan School of Public Health,Ann Arbor, MI, USA
| | - Amber L Cathey
- Department of Environmental Health Sciences, University of Michigan School of Public Health,Ann Arbor, MI, USA
| | - Deborah J Watkins
- Department of Environmental Health Sciences, University of Michigan School of Public Health,Ann Arbor, MI, USA
| | | | - Carmen M Vélez-Vega
- Graduate School of Public Health, University of Puerto Rico, San Juan, PR, USA
| | | | - José F Cordero
- College of Public Health, University of Georgia, Athens, GA, USA
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health,Ann Arbor, MI, USA..
| |
Collapse
|
13
|
Eisner A, Gao Y, Collier F, Drummond K, Thomson S, Burgner D, Vuillermin P, Tang ML, Mueller J, Symeonides C, Saffery R, Ponsonby AL. Cord blood immune profile: Associations with higher prenatal plastic chemical levels. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120332. [PMID: 36195195 DOI: 10.1016/j.envpol.2022.120332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Prenatal exposure to plastic chemicals has been associated with alterations to early-life immune function in children. However, previous studies have generally been small and focused on limited repertoires of immune indices. In a large population-based pre-birth cohort (n = 1074), third-trimester measurements of eight phthalate metabolites and three analogues of bisphenols were used to estimate prenatal exposure to phthalate and bisphenol compounds. In cord blood, immune cell populations were measured by flow cytometry and an extensive panel of cytokines and chemokines were measured by multiplex immunoassay. We used these cord blood analytes to estimate "early life" immune profiles. The full study sample comprises data from 774 infants with prenatal plastic metabolite measurements and any cord blood immune data. Multiple linear regression analysis was used to evaluate whether prenatal phthalate and bisphenol exposure was prospectively associated with cord blood immune cell populations and cytokine and chemokine levels. Generally, inverse associations were observed between prenatal phthalate exposure and cord blood immune indices. Higher exposure to di-n-butyl phthalate was associated with lower cord blood levels of platelet-derived growth factor (PDGF) and interferon gamma-induced protein 10 (IP-10); higher exposure to the sum of dibutyl phthalates was associated with lower cord blood levels of IP-10; and higher exposure to benzyl butyl phthalate was associated with lower cord blood levels of interleukin 1 beta (IL-1β). There was less evidence of associations between bisphenols and cord blood immune indices. These results extend previous work examining prenatal plastic chemical exposure and early-life immune development and highlight the importance of further examination of potential associations with health-related outcomes.
Collapse
Affiliation(s)
- Alex Eisner
- Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
| | - Yuan Gao
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Victoria, Australia; Child Health Research Unit, Barwon Health, Geelong, Victoria, Australia
| | - Fiona Collier
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Victoria, Australia; Child Health Research Unit, Barwon Health, Geelong, Victoria, Australia
| | - Katherine Drummond
- Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
| | - Sarah Thomson
- Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
| | - David Burgner
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Peter Vuillermin
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Victoria, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Mimi Lk Tang
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Melbourne, Victoria, Australia; Melbourne University, Melbourne, Victoria, Australia; Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Jochen Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Queensland, Australia
| | - Christos Symeonides
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Melbourne, Victoria, Australia; The Minderoo Foundation, Perth, Western Australia, Australia; Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Anne-Louise Ponsonby
- Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia.
| |
Collapse
|
14
|
Maternal blood metal concentrations are associated with C-reactive protein and cell adhesion molecules among pregnant women in Puerto Rico. Environ Epidemiol 2022; 6:e214. [PMID: 35975168 PMCID: PMC9374188 DOI: 10.1097/ee9.0000000000000214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/20/2022] [Indexed: 01/08/2023] Open
Abstract
Studies have revealed a link between aberrant levels of maternal C-reactive protein (CRP) and cell adhesion molecules (CAMs) with adverse birth outcomes. Some epidemiologic studies have indicated that long-term metal exposures can modulate the levels of CRP and CAMs, but the associations between prenatal metal exposures and the levels of CRP and CAMs have yet to be studied more extensively. In this study, we assessed associations between maternal blood metal levels and CRP/CAMs among 617 pregnant women in the Puerto Rico PROTECT birth cohort.
Collapse
|
15
|
Zhang L, Ruan Z, Jing J, Yang Y, Li Z, Zhang S, Yang J, Ai S, Luo N, Peng Y, Fang P, Lin H, Zou Y. High-Temperature Soup Foods in Plastic Packaging Are Associated with Phthalate Body Burden and Expression of Inflammatory mRNAs: A Dietary Intervention Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8416-8427. [PMID: 35584204 DOI: 10.1021/acs.est.1c08522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Plastic packaging material is widely used to package high-temperature soup food in China, but this combination might lead to increased exposure to phthalates. The health effects and potential biological mechanisms have not been well studied. This study aimed to examine urinary phthalate metabolites and the expression of inflammatory cytokines in the blood before, during, and after a "plastic-packaged high-temperature soup food" dietary intervention in healthy adults. The results showed that compared with those in the preintervention period, urinary creatinine-adjusted levels of monomethyl phthalate (MMP), mono-n-butyl phthalate (MBP), mono-isobutyl phthalate (MIBP), and total phthalate metabolites in the intervention period were significantly higher, with increases of 71.6, 41.8, 38.8, and 29.8% for MMP, MBP, MIBP, and the total phthalate metabolites, respectively. After intervention, the mean levels of IL-1β, IL-4, and TNF-α mRNA increased by 19.0, 21.5, and 25.0%, respectively, while IL-6 and IFN-γ mRNA decreased by 24.2 and 32.9%, respectively, when compared with the preintervention period. We also observed that several phthalates were associated with the mRNA or protein expression of IL-8, TNF-α, and IL-10. Therefore, consumption of plastic-packaged high-temperature soup food was linked to increased phthalate exposure and might result in significant changes in mRNA expression of several inflammatory cytokines.
Collapse
Affiliation(s)
- Li'e Zhang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China
| | - Zengliang Ruan
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing 210096, China
| | - Jiajun Jing
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China
| | - Yin Yang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhiying Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Shiyu Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jie Yang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China
| | - Siqi Ai
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Na Luo
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Yang Peng
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China
| | - Peiyu Fang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yunfeng Zou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
16
|
Liu Z, Lu Y, Zhong K, Wang C, Xu X. The associations between endocrine disrupting chemicals and markers of inflammation and immune responses: A systematic review and meta-analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113382. [PMID: 35276610 DOI: 10.1016/j.ecoenv.2022.113382] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Exposure to endocrine disrupting chemicals (EDCs) may lead to dysregulated inflammatory responses, however, the detailed relationship between different EDCs and inflammation remains unclear. A systematic review and meta-analysis was conducted to evaluate the associations between four types of EDCs (bisphenol A (BPA), phthalates (PAEs), organochlorine pesticides (OCPs), and polychlorinated biphenyls (PCBs)) and markers of inflammation and immune responses in humans. Three databases were searched, and 36 studies with a total of 22055 participants were included. The associations between EDCs and 26 inflammation-related acute phase proteins and cytokines were analyzed. The results demonstrated that exposure to BPA was positively associated with circulating levels of C-reactive protein (CRP) and interleukin (IL)-6. Exposure to PAEs was associated with elevated levels of CRP, IL-6 and IL-10. Subgroup analysis found that three PAE metabolites mono-benzyl phthalate (MBzP), mono-isobutyl phthalate (MiBP), and mono-n-butyl phthalate (MnBP) were directly associated with a higher level of CRP, and two other PAE metabolites mono-carboxyisononyl phthalate (MCNP) and mono-3-carboxypropyl phthalate (MCPP) were positively associated with IL-6. The positive associations between PAEs and CRP, IL-6 and IL-10 were significant in the high-molecular-weight phthalate (HMWP) exposure group, not the low-molecular-weight phthalate (LMWP) exposure group. Exposure to OCPs was positively associated with CRP, IL-1β, IL-2, and IL-10. No significant association was found between PCBs and inflammatory markers. These findings demonstrate that exposure to EDCs is closely linked to dysregulated inflammatory responses. More studies should be conducted in the future to get a comprehensive view of the associations between different EDCs and inflammation, and investigations on the underlying mechanisms are needed.
Collapse
Affiliation(s)
- Zhiqin Liu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Yao Lu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Kunxia Zhong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Chenchen Wang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Xi Xu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China.
| |
Collapse
|
17
|
Phthalate Exposure and Biomarkers of Oxidation of Nucleic Acids: Results on Couples Attending a Fertility Center. TOXICS 2022; 10:toxics10020061. [PMID: 35202248 PMCID: PMC8876283 DOI: 10.3390/toxics10020061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 11/17/2022]
Abstract
Phthalates are substances used as plasticizing agents and solvents that can increase the risk of infertility and that appear to induce oxidative stress. The aim of the study was to show the possible relationship between urinary concentrations of phthalates metabolites, namely MEP, MBzP, MnBP, MEHP, MEHHP, and MnOP and biomarkers of nucleic acids oxidation, methylation, or protein nitroxidation. The oxidative stress biomarkers measured in human urine were 8-oxo-7,8-dihydroguanine, 8-oxo-7,8-dihydroguanosine, 8-oxo-7,8-dihydro-2′-deoxyguanosine, 3-nitrotyrosine, and 5-methylcytidine. Two hundred and seventy-four couples were enrolled, undergoing an assisted reproduction technology (ART) treatment, urine samples were analyzed in HPLC/MS-MS, and then two sub-groups with urinary concentration > 90th or <10th percentile were identified, reducing the sample size to 112 subjects. The levels of oxidative stress biomarkers were measured in both groups, reduced to 52 men and 60 women. A statistically significantly difference for 8-oxoGuo and 3-NO2Tyr between men and women, with higher levels in men, was found. The levels of oxidative stress biomarkers were directly correlated with some phthalate concentrations in both sexes.
Collapse
|
18
|
The association between maternal urinary phthalate metabolites concentrations and pregnancy induced hypertension: Results from the EDEN Mother-Child Cohort. J Gynecol Obstet Hum Reprod 2021; 50:102216. [PMID: 34482002 DOI: 10.1016/j.jogoh.2021.102216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Studies have suggested that exposure to endocrine disruptors such as phthalates that are widely used in our daily life (food wrapping, cosmetics, toys, medical devices, polyvinyl chloride flooring, and building materials) might be related to raised blood pressure and increased risk of cardiovascular diseases. Phthalates might induce a pro-inflammatory response and increased oxidative stress and may be a cause of pregnancy induced hypertension. METHODS We evaluated the association between maternal exposure to phthalates during pregnancy and pregnancy induced hypertension. 604 pregnant women were included and eleven phthalate metabolites were quantified in spot maternal urine samples collected between the 23rd and 28th week of gestation in a French EDEN mother-child cohort. The associations were assessed by applying multiple logistic regression analysis. RESULTS Twenty nine (4,8%) mothers developed pregnancy induced hypertension. Two low molecular weight phthalate metabolites: Monoethyl phthalate (MEP) and Mono-n‑butyl phthalate (MBP) were positively associated with pregnancy induced hypertension in crude (Odds Ratio: 1.43, 95% Confidence Interval: 1.04-1.96, p-value = 0.02 and 1.48, 1.10-2.01, p-value =0.01) and in adjusted (1.47, 1.01-2.14, p-value = 0.04 and 1.66, 1.11-2.47, p-value = 0.01) models respectively. CONCLUSION Our data suggest that prenatal exposure to some phthalates, including MEP and MBP, might play a role in pregnancy induced hypertension.
Collapse
|
19
|
Cathey AL, Eaton JL, Ashrap P, Watkins DJ, Rosario ZY, Vélez Vega C, Alshawabkeh AN, Cordero JF, Mukherjee B, Meeker JD. Individual and joint effects of phthalate metabolites on biomarkers of oxidative stress among pregnant women in Puerto Rico. ENVIRONMENT INTERNATIONAL 2021; 154:106565. [PMID: 33882432 PMCID: PMC9923976 DOI: 10.1016/j.envint.2021.106565] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/15/2021] [Accepted: 04/06/2021] [Indexed: 05/15/2023]
Abstract
Exposures to phthalate compounds have been linked to adverse birth outcomes, potentially through oxidative stress mechanisms. We explored associations between mixtures of biomarkers of phthalate and phthalate replacement metabolites and oxidative stress using lipid peroxidation biomarker 8-iso-prostaglandin-F2α (8-iso-PGF2α). As 8-iso-PGF2α can be generated via both chemical (nonenzymatic) and enzymatic lipid peroxidation pathways, we calculated the ratio of 8-iso-PGF2α/prostaglandin F2α in an attempt to distinguish the potential contributions of the two pathways. Urinary biomarker measurements were taken from 775 pregnant women in the Puerto Rico Testsite for Exploring Contamination Threats (PROTECT) longitudinal birth cohort at up to three time points during gestation (16-20, 20-24, and 24-28 weeks gestation). Adaptive elastic net with pairwise linear interaction terms (adENET-I) was used to determine individual phthalate metabolites and phthalate interactions that were predictive of lipid oxidative stress biomarkers, and to subsequently create environmental risk scores (ERS) to represent weighted sums of phthalate exposure for each individual at each study visit. Repeated ERS were then used in linear mixed effects models to test for associations between biomarkers of phthalate mixtures and biomarkers of oxidative stress. We also used Bayesian kernel machine regression (BKMR) to explore nonlinearity and interactions between phthalate metabolites within the mixture. An increase from the first to fourth quartile of phthalate ERS derived from adENET-I was associated with a 96.7% increase (95% CI: 74.0, 122) in the hypothesized chemical fraction of 8-iso-PGF2α and a 268% increase (95% CI: 139, 465) in the hypothesized enzymatic fraction of 8-iso-PGF2α. BKMR analyses also suggested strong linear associations between the phthalate mixture and biomarkers of lipid oxidative stress. Various phthalates displayed nonlinear relationships with both chemical and enzymatic fractions of 8-iso-PGF2α, and we observed some evidence of interactions between metabolites in the mixture. In conclusion, exposure to phthalate mixtures was strongly associated with linear increases in biomarkers of lipid oxidative stress, and differences observed between hypothesized chemical and enzymatic lipid peroxidation outcomes highlight the need to critically assess pathways of 8-iso-PGF2α generation in relation to environmental exposures.
Collapse
Affiliation(s)
- Amber L Cathey
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Jarrod L Eaton
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Pahriya Ashrap
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Deborah J Watkins
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Zaira Y Rosario
- Graduate School of Public Health, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, USA
| | - Carmen Vélez Vega
- Graduate School of Public Health, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, USA
| | | | - José F Cordero
- College of Public Health, University of Georgia, Athens, GA, USA
| | - Bhramar Mukherjee
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| |
Collapse
|
20
|
Tsai CK, Cheng HH, Hsu TY, Wang JY, Hung CH, Tsai CC, Lai YJ, Lin YJ, Huang HC, Chan JYH, Tain YL, Chen CC, Tsai TA, Yu HR. Prenatal Exposure to Di-Ethyl Phthalate (DEP) Is Related to Increasing Neonatal IgE Levels and the Altering of the Immune Polarization of Helper-T Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18126364. [PMID: 34208324 PMCID: PMC8296186 DOI: 10.3390/ijerph18126364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 11/20/2022]
Abstract
Introduction: Phthalates are substances that are added to plastic products to increase their plasticity. These substances are released easily into the environment and can act as endocrine disruptors. Epidemiological studies in children have showed inconsistent findings regarding the relationship between prenatal or postnatal exposure to phthalates and the risk of allergic disease. Our hypothesis is that prenatal exposure to phthalates may contribute to the development of allergies in children. Material and methods: The objective of this study was to determine the associations between urinary phthalate metabolite concentrations in pregnant women, maternal atopic diathesis, maternal lifestyle, and cord blood IgE. Pregnant mothers and paired newborns (n = 101) were enrolled from an antenatal clinic. The epidemiologic data and the clinical information were collected using standard questionnaires and medical records. The maternal blood and urine samples were collected at 24–28 weeks gestation, and cord blood IgE, IL-12p70, IL-4, and IL-10 levels were determined from the newborns at birth. The link between phthalates and maternal IgE was also assessed. To investigate the effects of phthalates on neonatal immunity, cord blood mononuclear cells (MNCs) were used for cytokine induction in another in vitro experiment. Results: We found that maternal urine monoethyl phthalate (MEP) (a metabolite of di-ethyl phthalate (DEP)) concentrations are positively correlated with the cord blood IgE of the corresponding newborns. The cord blood IL-12p70 levels of mothers with higher maternal urine MEP groups (high DEP exposure) were lower than mothers with low DEP exposure. In vitro experiments demonstrated that DEP could enhance IL-4 production of cord blood MNCs rather than adult MNCs. Conclusion: Prenatal DEP exposure is related to neonatal IgE level and alternation of cytokines relevant to Th1/Th2 polarization. This suggests the existence of a link between prenatal exposure to specific plasticizers and the future development of allergies.
Collapse
Affiliation(s)
- Chang-Ku Tsai
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (C.-K.T.); (H.-C.H.); (Y.-L.T.); (C.-C.C.); (T.-A.T.)
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Hsin-Hsin Cheng
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital-Kaohsiung Medical Centre, Kaohsiung 83301, Taiwan; (H.-H.C.); (T.-Y.H.); (C.-C.T.); (Y.-J.L.); (Y.-J.L.)
| | - Te-Yao Hsu
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital-Kaohsiung Medical Centre, Kaohsiung 83301, Taiwan; (H.-H.C.); (T.-Y.H.); (C.-C.T.); (Y.-J.L.); (Y.-J.L.)
| | - Jiu-Yao Wang
- Department of Pediatrics, College of Medicine, National Cheng Kung University, Tainan City 704302, Taiwan;
| | - Chih-Hsing Hung
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
| | - Ching-Chang Tsai
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital-Kaohsiung Medical Centre, Kaohsiung 83301, Taiwan; (H.-H.C.); (T.-Y.H.); (C.-C.T.); (Y.-J.L.); (Y.-J.L.)
| | - Yun-Ju Lai
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital-Kaohsiung Medical Centre, Kaohsiung 83301, Taiwan; (H.-H.C.); (T.-Y.H.); (C.-C.T.); (Y.-J.L.); (Y.-J.L.)
| | - Yu-Ju Lin
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital-Kaohsiung Medical Centre, Kaohsiung 83301, Taiwan; (H.-H.C.); (T.-Y.H.); (C.-C.T.); (Y.-J.L.); (Y.-J.L.)
| | - Hsin-Chun Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (C.-K.T.); (H.-C.H.); (Y.-L.T.); (C.-C.C.); (T.-A.T.)
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Julie Y. H. Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (C.-K.T.); (H.-C.H.); (Y.-L.T.); (C.-C.C.); (T.-A.T.)
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Chih-Cheng Chen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (C.-K.T.); (H.-C.H.); (Y.-L.T.); (C.-C.C.); (T.-A.T.)
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Ti-An Tsai
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (C.-K.T.); (H.-C.H.); (Y.-L.T.); (C.-C.C.); (T.-A.T.)
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Hong-Ren Yu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (C.-K.T.); (H.-C.H.); (Y.-L.T.); (C.-C.C.); (T.-A.T.)
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
- Correspondence: ; Tel.: +886-7-731-7123 (ext. 8713); Fax: +886-7-733-8009
| |
Collapse
|
21
|
Trim A, Hankinson SE, Liu S, Shadyab AH, Meliker J, Bao W, Luo J, Liu B, Manson JE, Tinker L, Bigelow C, Reeves KW. Biomarkers of phthalates and inflammation: Findings from a subgroup of Women's Health Initiative participants. Int J Hyg Environ Health 2021; 234:113743. [PMID: 33813346 PMCID: PMC8096686 DOI: 10.1016/j.ijheh.2021.113743] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/08/2021] [Accepted: 03/15/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Recent experimental work has shown that phthalates may increase inflammation. Prior research has not examined the role of exposure to phthalates in relation to inflammatory status among postmenopausal women who are at higher risk of developing inflammation-related chronic disorders. OBJECTIVES We aimed to examine the associations of urinary phthalate biomarker concentrations with circulating levels of c-reactive protein [CRP] and interleukin-6 [IL-6] among 443 postmenopausal women selected into a breast cancer case-control study nested within the Women's Health Initiative (WHI). METHODS A total of 13 phthalate metabolites were measured in urine samples provided at WHI enrollment from 1993 to 1998. We also measured baseline levels of CRP and IL-6 in these women's serum or plasma samples. Multivariable linear models were used to investigate the role of each phthalate biomarker in relation to CRP and IL-6, adjusting for potential confounding factors and specifically evaluating the role of BMI. RESULTS In adjusted models we observed positive associations of monocarboxynonyl phthalate (MCNP) with CRP (β = 0.092; 95% CI 0.026, 0.158) and IL-6 (β = 0.108; 95% CI 0.013, 0.204). These positive associations were attenuated and non-significant, however, after further adjustment for body mass index (BMI). In contrast, we observed inverse associations of monoethyl phthalate (MEP) (β = -0.019; 95% CI -0.036, -0.001) and monobenzyl phthalate (MBzP) (β = -0.034; 95% CI -0.058, -0.010) with CRP levels only after adjustment for BMI. Other phthalate biomarkers examined were not significantly associated with either CRP or IL-6 levels. CONCLUSIONS Overall, these results do not suggest an important role for phthalates in promoting an inflammatory response. Future prospective studies are warranted to improve understanding of these associations, particularly in clarifying the role of BMI.
Collapse
Affiliation(s)
- Avery Trim
- Department of Biostatistics and Epidemiology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Susan E Hankinson
- Department of Biostatistics and Epidemiology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Simin Liu
- Center for Global Cardiometabolic Health, Departments of Epidemiology, Medicine and Surgery, Brown University, USA
| | - Aladdin H Shadyab
- Department of Family Medicine and Public Health; University of California San Diego School of Medicine; La Jolla, CA, USA
| | - Jaymie Meliker
- Program in Public Health, Department of Family, Population, & Preventive Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Wei Bao
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA, 52242, USA
| | - Juhua Luo
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University, Bloomington, IN, 47405, USA
| | - Buyun Liu
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA, 52242, USA
| | - JoAnn E Manson
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School and the Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02215, USA
| | - Lesley Tinker
- Division of Public Health Sciences, Department of Cancer Prevention, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Carol Bigelow
- Department of Biostatistics and Epidemiology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Katherine W Reeves
- Department of Biostatistics and Epidemiology, University of Massachusetts Amherst, Amherst, MA, USA.
| |
Collapse
|
22
|
Urinary Biomarkers of Phthalates Exposure, Blood Lead Levels, and Risks of Thyroid Nodules. TOXICS 2021; 9:toxics9030068. [PMID: 33810189 PMCID: PMC8005157 DOI: 10.3390/toxics9030068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/03/2021] [Accepted: 03/16/2021] [Indexed: 12/23/2022]
Abstract
Thyroid nodules (TNs) are becoming increasingly prevalent. However, few studies have reported the effects of phthalates and lead (Pb) on TNs. In this study, we aimed to explore the associations of phthalates and Pb with the risks of TN. We sex-age-matched 220 TNs patients and 220 healthy controls from Zhejiang Shangyu, China. We measured 13 phthalate metabolites in spot urine samples. Blood lead levels (BLLs) were determined by atomic absorption spectrometry. The multivariable logistic regression models were used to assess the associations between urinary phthalate metabolites and BLLs and the risks of TNs. We found BLLs were associated with increased risk of TNs in total population. Female-specific positive associations of mono-2-ethyl-5-carboxypentylphthalate (MECPP), mono-2-ethyl-5-hydroxyhexylphthalate (MEHHP), mono-2-ethyl-5-oxohexylphthalate (MEOHP), mono-2-carboxymethyl-hexyl phthalate (MCMHP), and mono-isononyl phthalate (MiNP) with increased risk of TNs were also observed. Moreover, the positive association between phthalates and TNs was modified by BLLs. At the highest tertile of BLLs, monoethylphthalate (MEP), MECPP, MEHHP, MEOHP, and MiNP were significantly associated with increased risk of TNs. Our results indicated that certain phthalate metabolites and BLLs may contribute to increased risks of TNs.
Collapse
|
23
|
Aung MT, Yu Y, Ferguson KK, Cantonwine DE, Zeng L, McElrath TF, Pennathur S, Mukherjee B, Meeker JD. Cross-Sectional Estimation of Endogenous Biomarker Associations with Prenatal Phenols, Phthalates, Metals, and Polycyclic Aromatic Hydrocarbons in Single-Pollutant and Mixtures Analysis Approaches. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:37007. [PMID: 33761273 PMCID: PMC7990518 DOI: 10.1289/ehp7396] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
BACKGROUND Humans are exposed to mixtures of toxicants that can impact several biological pathways. We investigated the associations between multiple classes of toxicants and an extensive panel of biomarkers indicative of lipid metabolism, inflammation, oxidative stress, and angiogenesis. METHODS We conducted a cross-sectional study of 173 participants (median 26 wk gestation) from the LIFECODES birth cohort. We measured exposure analytes of multiple toxicant classes [metals, phthalates, phenols, and polycyclic aromatic hydrocarbons (PAHs)] in urine samples. We also measured endogenous biomarkers (eicosanoids, cytokines, angiogenic markers, and oxidative stress markers) in either plasma or urine. We estimated pair-wise associations between exposure analytes and endogenous biomarkers using multiple linear regression after adjusting for covariates. We used adaptive elastic net regression, hierarchical Bayesian kernel machine regression, and sparse-group LASSO regression to evaluate toxicant mixtures associated with individual endogenous biomarkers. RESULTS After false-discovery adjustment (q<0.2), single-pollutant models yielded 19 endogenous biomarker signals associated with phthalates, 13 with phenols, 17 with PAHs, and 18 with trace metals. Notably, adaptive elastic net revealed that phthalate metabolites were selected for several positive signals with the cyclooxygenase (n=7), cytochrome p450 (n=7), and lipoxygenase (n=8) pathways. Conversely, the toxicant classes that exhibited the greatest number of negative signals overall in adaptive elastic net were phenols (n=20) and metals (n=21). DISCUSSION This study characterizes cross-sectional endogenous biomarker signatures associated with individual and mixtures of prenatal toxicant exposures. These results can help inform the prioritization of specific pairs or clusters of endogenous biomarkers and exposure analytes for investigating health outcomes. https://doi.org/10.1289/EHP7396.
Collapse
Affiliation(s)
- Max T. Aung
- Department of Biostatistics, University of Michigan (U-M) School of Public Health, Ann Arbor, Michigan, USA
| | - Youfei Yu
- Department of Biostatistics, University of Michigan (U-M) School of Public Health, Ann Arbor, Michigan, USA
| | - Kelly K. Ferguson
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - David E. Cantonwine
- Division of Maternal and Fetal Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lixia Zeng
- Department of Internal Medicine-Nephrology, U-M, Ann Arbor, Michigan, USA
| | - Thomas F. McElrath
- Division of Maternal and Fetal Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Subramaniam Pennathur
- Department of Internal Medicine-Nephrology, U-M, Ann Arbor, Michigan, USA
- Michigan Regional Comprehensive Metabolomics Resource Core, U-M, Ann Arbor, Michigan, USA
- Department of Molecular and Integrative Physiology, U-M, Ann Arbor, Michigan, USA
| | - Bhramar Mukherjee
- Department of Biostatistics, University of Michigan (U-M) School of Public Health, Ann Arbor, Michigan, USA
- Department of Epidemiology, U-M School of Public Health, Ann Arbor, Michigan, USA
| | - John D. Meeker
- Department of Environmental Health Sciences, U-M School of Public Health, Ann Arbor, Michigan, USA
| |
Collapse
|
24
|
Aung MT, Song Y, Ferguson KK, Cantonwine DE, Zeng L, McElrath TF, Pennathur S, Meeker JD, Mukherjee B. Application of an analytical framework for multivariate mediation analysis of environmental data. Nat Commun 2020; 11:5624. [PMID: 33159049 PMCID: PMC7648785 DOI: 10.1038/s41467-020-19335-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/29/2020] [Indexed: 01/08/2023] Open
Abstract
Diverse toxicological mechanisms may mediate the impact of environmental toxicants (phthalates, phenols, polycyclic aromatic hydrocarbons, and metals) on pregnancy outcomes. In this study, we introduce an analytical framework for multivariate mediation analysis to identify mediation pathways (q = 61 mediators) in the relationship between environmental toxicants (p = 38 analytes) and gestational age at delivery. Our analytical framework includes: (1) conducting pairwise mediation for unique exposure-mediator combinations, (2) exposure dimension reduction by estimating environmental risk scores, and (3) multivariate mediator analysis using either Bayesian shrinkage mediation analysis, population value decomposition, or mediation pathway penalization. Dimension reduction demonstrates that a one-unit increase in phthalate risk score is associated with a total effect of 1.07 lower gestational age (in weeks) at delivery (95% confidence interval: 0.48-1.67) and eicosanoids from the cytochrome p450 pathway mediated 26% of this effect (95% confidence interval: 4-63%). Eicosanoid products derived from the cytochrome p450 pathway may be important mediators of phthalate toxicity.
Collapse
Affiliation(s)
- Max T Aung
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, US
| | - Yanyi Song
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, US
| | - Kelly K Ferguson
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, Chapel Hill, US
| | - David E Cantonwine
- Division of Maternal and Fetal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, US
| | - Lixia Zeng
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, MI, US
| | - Thomas F McElrath
- Division of Maternal and Fetal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, US
| | - Subramaniam Pennathur
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, MI, US
- Michigan Regional Comprehensive Metabolomics Resource Core, University of Michigan, Ann Arbor, MI, US
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, US
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, US
| | - Bhramar Mukherjee
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, US.
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, US.
| |
Collapse
|
25
|
Wang JQ, Hu YB, Gao H, Sheng J, Huang K, Zhang YW, Mao LJ, Zhou SS, Cai XX, Zhang LJ, Wang SF, Hao JH, Yang LQ, Tao FB. Sex-specific difference in placental inflammatory transcriptional biomarkers of maternal phthalate exposure: a prospective cohort study. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2020; 30:835-844. [PMID: 32015430 DOI: 10.1038/s41370-020-0200-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 11/10/2019] [Accepted: 11/24/2019] [Indexed: 05/08/2023]
Abstract
Previous epidemiologic research has shown that phthalate exposure in pregnant women is related to birth outcomes in a sex-specific manner. These outcomes may be mediated by placental inflammation, which is the proposed biological mechanism. This is the first study to address the relationship between phthalate exposure and gene expression in placental inflammation in a sex-specific manner. We performed quantitative PCR to measure placental inflammatory mRNAs (CRP, TNF-α, IL-1β, IL-6, IL-10, MCP-1, IL-8, CD68, and CD206) in 2469 placentae that were sampled at birth. We estimated the associations between mRNA and urinary phthalate monoesters using multiple linear regression models. Mono-n-butyl phthalate (MBP) was correlated with higher IL-1β, IL-6, and CRP expression in placentae of male fetuses and with higher IL-6, CRP, MCP-1, IL-8, IL-10, and CD68 expression in placentae of female fetuses. Mono benzyl phthalate (MBzP) increased the expression of TNF-α, MCP-1, and CD68 only in placentae of male fetuses. Mono (2-ethyl-5-oxohexyl) phthalate (MEOHP) was negatively correlated with CRP, MCP-1, and CD68 in placentae of female fetuses. Maternal phthalate exposure was associated with inflammatory variations in placental tissues. The associations were stronger in placentae of male than of female fetuses. Compared with the other metabolites, MBP plays a strong role in these associations. The placenta is worth being further investigated as a potential mediator of maternal exposure-induced disease risk in children.
Collapse
Affiliation(s)
- Jian-Qing Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- The Fourth Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Ya-Bin Hu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Hui Gao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jie Sheng
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Kun Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yun-Wei Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Lei-Jing Mao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Shan-Shan Zhou
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Xiu-Xiu Cai
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Liang-Jian Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Su-Fang Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jia-Hu Hao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Li-Qi Yang
- The Fourth Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China.
| | - Fang-Biao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China.
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
26
|
Song W, Puttabyatappa M, Zeng L, Vazquez D, Pennathur S, Padmanabhan V. Developmental programming: Prenatal bisphenol A treatment disrupts mediators of placental function in sheep. CHEMOSPHERE 2020; 243:125301. [PMID: 31726260 PMCID: PMC7243413 DOI: 10.1016/j.chemosphere.2019.125301] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/21/2019] [Accepted: 11/02/2019] [Indexed: 05/09/2023]
Abstract
Gestational Bisphenol A (BPA) exposure is associated with low birth weight. We hypothesized that the low birth weight is the consequence of reduced placental efficiency and a function of BPA-induced inflammatory, oxidative, lipotoxic, angiogenic, steroidal and fibrotic changes involving epigenetic alterations. Placentomes were collected during early (day 65) and mid (day 90) gestation (term ∼147 days) from control and BPA (gestational day 30-90)-treated pregnant sheep. BPA treatment: reduced placental efficiency and fetal weight; increased interleukin 8, lipid peroxidation marker, antioxidants, aromatase, 17 alpha-hydroxylase, estrogen receptor 2, insulin like growth factor (IGF) 2 receptor and IGF binding proteins (IGFBP), and histone deacetylase 1 and 2; reduced tumor necrosis factor alpha and IGF1 receptor at early gestation (Day 65). Gestational BPA-induced mid-gestational changes include: reduced angiogenic factor hypoxia inducible factor 1 alpha; increased IL1beta, oxidative stress markers, triglyceride, 17alpha hydroxylase, IGFBP 1, DNA methyltransferase 3 A and histone deacetylase 1. These findings indicate that gestational BPA, either acting directly or by altering steroidal input, produces early/mid-gestational-specific epigenetic changes culminating in placental disruptions at several levels, in keeping with time-specific/time-lagged pregnancy-associated changes in placental efficiency and fetal weight. The reduced early-gestational placental efficiency may be a function of increased inflammation/oxidative stress and reduced IGF bioavailability with the mid-gestational restoration of placental efficiency likely driven by improved IGF bioavailability and the time-lagged response to antioxidant increase. This compensation, the result of time-lagged response to increases in negative mediators of placental function must have failed with pregnancy advancement to explain the low birthweight outcome.
Collapse
Affiliation(s)
- Wenhui Song
- The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei, 050011, PR China; Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | | | - Lixia Zeng
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Delia Vazquez
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | | | | |
Collapse
|
27
|
Mechanisms of Testicular Disruption from Exposure to Bisphenol A and Phtalates. J Clin Med 2020; 9:jcm9020471. [PMID: 32046352 PMCID: PMC7074154 DOI: 10.3390/jcm9020471] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 12/20/2022] Open
Abstract
Great attention has been paid in recent years to the harmful effects of various chemicals that interfere with our natural hormone balance, collectively known as endocrine-disrupting chemicals (EDCs) or endocrine disruptors. The effects on the reproductive system of bisphenol A (BPA) and phthalates have received particular attention: while they have a short half-life, they are so widespread that human exposure can be considered as continuous. Evidence is often limited to the animal model, disregarding the likelihood of human exposure to a mixture of contaminants. Data from animal models show that maternal exposure probably has harmful effects on the male fetus, with an increased risk of urogenital developmental abnormalities. After birth, exposure is associated with changes in the hypothalamic-pituitary-testicular axis, hindering the development and function of the male genital pathways through the mediation of inflammatory mechanisms and oxidative stress. The epidemiological and clinical evidence, while generally confirming the association between reproductive abnormalities and some phthalate esters and BPA, is more contradictory, with wildly different findings. The aim of this review is therefore to provide an update of the potential mechanisms of the damage caused by BPA and phthalates to reproductive function and a review of the clinical evidence currently available in the literature.
Collapse
|
28
|
Puttabyatappa M, Banker M, Zeng L, Goodrich JM, Domino SE, Dolinoy DC, Meeker JD, Pennathur S, Song PXK, Padmanabhan V. Maternal Exposure to Environmental Disruptors and Sexually Dimorphic Changes in Maternal and Neonatal Oxidative Stress. J Clin Endocrinol Metab 2020; 105:dgz063. [PMID: 31613966 PMCID: PMC7046018 DOI: 10.1210/clinem/dgz063] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/27/2019] [Indexed: 12/21/2022]
Abstract
CONTEXT Early pregnancy exposure to endocrine disrupting chemicals (EDCs) may contribute to poor birth outcomes through oxidative stress (OS)-mediated disruption of the maternal and fetal milieu. Most studies have investigated the effect of single EDC exposures on OS. OBJECTIVE Assess the association of uniquely weighted mixtures of early pregnancy exposures with the maternal and neonatal OS markers. DESIGN Prospective analysis of mother-infant dyads. SETTING University hospital. PARTICIPANTS 56 mother-infant dyads. MAIN OUTCOME MEASURES The association of OS markers (nitrotyrosine, dityrosine, chlorotyrosine) in maternal first trimester and term, and cord blood plasma with maternal first trimester exposure levels of each of 41 toxicants (trace elements, metals, phenols, and phthalates) from 56 subjects was analyzed using Spearman correlations and linear regression. The association of OS markers with inflammatory cytokines and birth outcomes were analyzed by Spearman correlation and linear regression analysis, respectively. Weighted mixtures of early pregnancy exposures were created by principal component analysis and offspring sex-dependent and independent associations with oxidative stress markers were assessed. RESULTS (1) An inverse relationship between levels of maternal/cord OS markers and individual EDCs was evident. In contrast, when assessed as EDC mixtures, both direct and inverse associations were evident in a sex-specific manner; (2) the maternal term OS marker, nitrotyrosine, was inversely associated with gestational age, and (3) both direct and inverse associations were evident between the 3 OS markers and individual cytokines. CONCLUSIONS Provides proof of concept that effects of exposures on OS varies when assessed as EDC mixtures versus individually.
Collapse
Affiliation(s)
| | | | - Lixia Zeng
- Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Jaclyn M Goodrich
- Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan
| | - Steven E Domino
- Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan
| | - Dana C Dolinoy
- Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan
| | - John D Meeker
- Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan
| | | | - Peter X K Song
- Biostatistics, University of Michigan, Ann Arbor, Michigan
| | - Vasantha Padmanabhan
- Departments of Pediatrics, University of Michigan, Ann Arbor, Michigan
- Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan
- Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
29
|
Buxton MA, Meraz-Cruz N, Sanchez BN, Gronlund CJ, Foxman B, Vadillo-Ortega F, O'Neill MS. Air pollution and inflammation: Findings from concurrent repeated measures of systemic and reproductive tract cytokines during term pregnancy in Mexico City. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 681:235-241. [PMID: 31103661 PMCID: PMC6582973 DOI: 10.1016/j.scitotenv.2019.05.041] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 05/02/2019] [Accepted: 05/04/2019] [Indexed: 04/15/2023]
Abstract
BACKGROUND Environmental exposures are associated with a number of outcomes including adverse pregnancy outcomes. Although inflammation is hypothesized to play a role, the mechanistic pathways between environmental exposures and adverse health outcomes, including associations between exposures and longitudinal measures of systemic and reproductive tract inflammation, need elucidation. OBJECTIVES This study was conducted to evaluate whether exposure to air pollution is associated with immunologic responses in the systemic circulation and lower reproductive tract, and to evaluate whether systemic and reproductive tract immunologic responses are similar. METHODS We quantified repeated measures of cytokines from cervico-vaginal exudates and serum obtained concurrently among 104 women with term pregnancies and estimated PM10 and CO exposure using the monitor nearest each participant's residence. Serum and cervico-vaginal cytokines were compared using Wilcoxon signed-ranks test and Spearman rank correlations for select gestational months. We used intraclass correlation coefficients (ICCs) to quantify reproducibility of cytokine measurements, and Tobit regression to estimate associations between air pollution and cytokines. RESULTS Median cervico-vaginal levels of IL-6, Eotaxin, IP-10, MCP-1, MIP-1α, MIP-1β, and TNFα were higher than corresponding serum cytokines, significantly so for IL-6 and IP-10. Cervico-vaginal and serum cytokines were not correlated, but cytokines from the same fluid were correlated. ICCs for most serum cytokines were ≤0.40, while ICCs were higher in cervico-vaginal cytokines (range 0.52-0.83). IP-10 and Eotaxin had the highest ICCs for both cytokine sources. In adjusted models, PM10 was positively associated with serum cytokines IL-6, IP-10, MIP-1β and Eotaxin but inversely associated with cervico-vaginal cytokine TNFα, IP-10, MIP-1β, MCP-1 and Eotaxin, controlling for false discovery rate. CO was inversely associated with cervico-vaginal TNFα, IL-6, MIP-1β, MCP-1 and Eotaxin. CONCLUSIONS Inflammatory processes are compartment-specific. Systemic inflammatory markers may provide information on immunologic processes and response to environmental exposures, but are not proxies for lower reproductive tract inflammation.
Collapse
Affiliation(s)
- Miatta A Buxton
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States of America.
| | - Noemi Meraz-Cruz
- Unidad de Vinculación Científica de la Facultad de Medicina, Universidad Nacional Autónoma de México en el Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Brisa N Sanchez
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, United States of America
| | - Carina J Gronlund
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, United States of America
| | - Betsy Foxman
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States of America
| | - Felipe Vadillo-Ortega
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States of America; Unidad de Vinculación Científica de la Facultad de Medicina, Universidad Nacional Autónoma de México en el Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Marie S O'Neill
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States of America; Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States of America
| |
Collapse
|
30
|
Sweeney MR, O’Leary KG, Jeney Z, Braunlin MC, Gibb HJ. Systematic review and quality ranking of studies of two phthalate metabolites and anogenital distance, bone health, inflammation, and oxidative stress. Crit Rev Toxicol 2019; 49:281-301. [DOI: 10.1080/10408444.2019.1605332] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
van ′t Erve TJ, Rosen EM, Barrett ES, Nguyen RH, Sathyanarayana S, Milne GL, Calafat AM, Swan SH, Ferguson KK. Phthalates and Phthalate Alternatives Have Diverse Associations with Oxidative Stress and Inflammation in Pregnant Women. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:3258-3267. [PMID: 30793895 PMCID: PMC6487641 DOI: 10.1021/acs.est.8b05729] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Exposure to environmental chemicals such as phthalates has been linked to numerous adverse pregnancy outcomes, potentially through an oxidative stress mediated mechanism. Most research examined urinary 8-iso-prostaglandin F2α (8-iso-PGF2α) as the oxidative stress biomarker. However, 8-iso-PGF2α also originates from enzymatic sources linked to inflammation. Therefore, associations between phthalates and 8-iso-PGF2α could have been misinterpreted. To clarify this, the 8-iso-PGF2α/prostaglandin F2α ratio approach was used to quantitatively distinguish between inflammation or oxidative stress derived 8-iso-PGF2α and estimate their associations with phthalate metabolites in a cohort of 758 pregnant women from The Infant Development and Environment Study (TIDES). Most urinary phthalate metabolites were associated with a significant increase in 8-iso-PGF2α. For example, a 22.4% higher 8-iso-PGF2α concentration (95% confidence interval = 14.4, 30.9) was observed with an interquartile range increase in mono- n-butyl phthalate. For most metabolites, associations were observed solely with oxidative stress derived 8-iso-PGF2α. In contrast, monocarboxy-isononyl phthalate and monoisononyl phthalate (MNP) were associated with both sources of 8-iso-PGF2α. Metabolites of the phthalate alternative 1,2-cyclohexane dicarboxylic acid, diisononyl ester (DINCH), were only associated with inflammation-derived 8-iso-PGF2α, which is interesting because DINCH metabolites and MNP have structural similarities.In conclusion, phthalates metabolites are not exclusively associated with oxidative stress derived 8-iso-PGF2α. Depending on the metabolite structure, some are also associated with inflammation derived sources, which provides interesting insights in the toxicology of phthalates.
Collapse
Affiliation(s)
- Thomas J. van ′t Erve
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, 27709, NC, USA
| | - Emma M. Rosen
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, 27709, NC, USA
| | - Emily S. Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, 08901, USA
- Department of Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY,14642, USA
| | - Ruby H.N. Nguyen
- Department of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, 55454, USA
| | - Sheela Sathyanarayana
- Department of Pediatrics, Seattle Children’s Research Institute, University of Washington, Seattle, WA, 98101, USA
| | - Ginger L. Milne
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232-6602, USA
| | - Antonia, M. Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, 30341, USA
| | - Shanna H. Swan
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kelly K. Ferguson
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, 27709, NC, USA
| |
Collapse
|
32
|
Ferguson KK, McElrath TF, Mukherjee B, Loch-Caruso R, Meeker JD. Correction: Associations between Maternal Biomarkers of Phthalate Exposure and Inflammation Using Repeated Measurements across Pregnancy. PLoS One 2019; 14:e0212958. [PMID: 30794717 PMCID: PMC6386260 DOI: 10.1371/journal.pone.0212958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
33
|
Aung MT, Ferguson KK, Cantonwine DE, Bakulski KM, Mukherjee B, Loch-Caruso R, McElrath TF, Meeker JD. Associations between maternal plasma measurements of inflammatory markers and urinary levels of phenols and parabens during pregnancy: A repeated measures study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:1131-1140. [PMID: 30308801 PMCID: PMC6236678 DOI: 10.1016/j.scitotenv.2018.08.356] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/03/2018] [Accepted: 08/25/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND Maternal immune system regulation is critical for maintenance of a healthy pregnancy and fetal development. Exposure to phenols and parabens is widespread, and may be linked to systemic inflammation and alteration of circulating immunological biomarkers. OBJECTIVE We sought to characterize associations between repeated measures of individual urinary phenols, parabens and plasma inflammatory markers across pregnancy. METHODS In the LIFECODES prospective birth cohort, we conducted a nested preterm birth case-control study, including 130 cases and 352 controls. In urine samples collected from each participant at up to four study visits during pregnancy, we measured concentrations of six phenols and four parabens, as well as five plasma inflammatory markers. We used multivariable linear mixed models to analyze repeated measures of exposures on inflammatory markers. We created and applied inverse probability weights to account for the sampling approach. RESULTS We observed bidirectional associations between select phenols and parabens and inflammatory markers. An interquartile range increase in triclosan (55.2 ng/mL) was associated with a 12.5% (95% CI: 3.67, 22.0) increase in C-reactive protein, a 7.95% (95% CI: 1.95, 14.3) increase in interleukin 10, and a 7.93% (95% CI: 3.82, 12,2) increase in tumor necrosis factor-α. Additionally, an interquartile range increase in 2,5-dichlorophenol (11.0 ng/mL) was associated with a 10% increase in C-reactive protein (95% CI: 1.92, 18.7). Conversely, an interquartile range increase in ethyl paraben (10.4 ng/mL) was associated with a 7.7% decrease in interleukin‑1β (95% CI: -14.1, -0.86). CONCLUSIONS Our findings can be organized into two thematic frameworks, one where concentrations of urinary phenols and parabens during pregnancy reflected a pro-inflammatory relationship with immunological biomarkers, and the other contrary theme - an anti-inflammatory relationship. These findings have implications for fetal development and reproductive outcomes, and emphasize the need for further research on immunological mechanisms of phenol and paraben action during pregnancy.
Collapse
Affiliation(s)
- Max T Aung
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Kelly K Ferguson
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States; Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - David E Cantonwine
- Division of Maternal and Fetal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Kelly M Bakulski
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Bhramar Mukherjee
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, United States; Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Rita Loch-Caruso
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Thomas F McElrath
- Division of Maternal and Fetal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States.
| |
Collapse
|
34
|
Huffman AM, Wu H, Rosati A, Rahil T, Sites CK, Whitcomb BW, Richard Pilsner J. Associations of urinary phthalate metabolites and lipid peroxidation with sperm mitochondrial DNA copy number and deletions. ENVIRONMENTAL RESEARCH 2018; 163:10-15. [PMID: 29421168 PMCID: PMC6171500 DOI: 10.1016/j.envres.2018.01.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/04/2018] [Accepted: 01/19/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND Phthalates, a chemical class of plasticizers, are ubiquitous environmental contaminants that have been associated with oxidative stress. Mitochondria DNA copy number (mtDNAcn) and DNA deletions (mtDNAdel) are emerging biomarkers for cellular oxidative stress and environment exposures. OBJECTIVES To examine associations of urinary phthalate metabolite and isoprostane concentrations on sperm mtDNAcn and mtDNAdel in male partners undergoing assisted reproductive technologies (ART). METHODS Ninety-nine sperm samples were collected from male partners undergoing ART at Baystate Medical Center in Springfield, MA as part of the Sperm Environmental Epigenetics and Development Study (SEEDS). Seventeen urinary phthalate metabolite concentrations were analyzed by the Centers for Disease Control using tandem mass spectrometry. Urinary 15-F2t-isoprostane concentrations, a biomarker of lipid peroxidation, were measured using a competitive enzyme-linked immunosorbent assay. A triplex qPCR method was used to determine the relative quantification of mtDNAcn and mtDNAdel. RESULTS Sperm mtDNAcn and mtDNAdel were positively correlated (Spearman rho = 0.31; p = .002). Adjusting for age, BMI, current smoking, race, and measurement batch, urinary monocarboxy-isononyl phthalate (MCNP) concentrations were positively associated with mtDNAcn (β = 1.63, 95% CI: 0.14, 3.11). Other urinary phthalate metabolite and isoprostane concentrations were not associated with sperm mtDNAcn or mtDNAdel. CONCLUSIONS Among this cohort of male ART participants, those with higher MCNP had higher mtDNAcn; other phthalate metabolites and isoprostane were not associated with mtDNAcn and mtDNAdel. Given our relatively small sample size, our results should be interpreted with caution. Future research is needed to replicate the findings in larger studies and among sperm samples obtained from the general population.
Collapse
Affiliation(s)
- Alexandra M Huffman
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, 686 North Pleasant Street, Amherst, MA 01003, United States
| | - Haotian Wu
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, 686 North Pleasant Street, Amherst, MA 01003, United States
| | - Allyson Rosati
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, 686 North Pleasant Street, Amherst, MA 01003, United States
| | - Tayyab Rahil
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Baystate Medical Center, 759 Chestnut Street, Springfield, MA 01199, United States
| | - Cynthia K Sites
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Baystate Medical Center, 759 Chestnut Street, Springfield, MA 01199, United States
| | - Brian W Whitcomb
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts, 715 North Pleasant Street, Amherst, MA 01003, United States
| | - J Richard Pilsner
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, 686 North Pleasant Street, Amherst, MA 01003, United States.
| |
Collapse
|
35
|
Prenatal phthalate exposure and 8-isoprostane among Mexican-American children with high prevalence of obesity. J Dev Orig Health Dis 2016; 8:196-205. [PMID: 28031075 DOI: 10.1017/s2040174416000763] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oxidative stress has been linked to many obesity-related conditions among children including cardiovascular disease, diabetes mellitus and hypertension. Exposure to environmental chemicals such as phthalates, ubiquitously found in humans, may also generate reactive oxygen species and subsequent oxidative stress. We examined longitudinal changes of 8-isoprostane urinary concentrations, a validated biomarker of oxidative stress, and associations with maternal prenatal urinary concentrations of phthalate metabolites for 258 children at 5, 9 and 14 years of age participating in a birth cohort residing in an agricultural area in California. Phthalates are endocrine disruptors, and in utero exposure has been also linked to altered lipid metabolism, as well as adverse birth and neurodevelopmental outcomes. We found that median creatinine-corrected 8-isoprostane concentrations remained constant across all age groups and did not differ by sex. Total cholesterol, systolic and diastolic blood pressure were positively associated with 8-isoprostane in 14-year-old children. No associations were observed between 8-isoprostane and body mass index (BMI), BMI Z-score or waist circumference at any age. Concentrations of three metabolites of high molecular weight phthalates measured at 13 weeks of gestation (monobenzyl, monocarboxyoctyl and monocarboxynonyl phthalates) were negatively associated with 8-isoprostane concentrations among 9-year olds. However, at 14 years of age, isoprostane concentrations were positively associated with two other metabolites (mono(2-ethylhexyl) and mono(2-ethyl-5-carboxypentyl) phthalates) measured in early pregnancy. Longitudinal data on 8-isoprostane in this pediatric population with a high prevalence of obesity provides new insight on certain potential cardiometabolic risks of prenatal exposure to phthalates.
Collapse
|
36
|
Sathyanarayana S, Grady R, Barrett ES, Redmon B, Nguyen RHN, Barthold JS, Bush NR, Swan SH. First trimester phthalate exposure and male newborn genital anomalies. ENVIRONMENTAL RESEARCH 2016; 151:777-782. [PMID: 27567446 DOI: 10.1016/j.envres.2016.07.043] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/29/2016] [Accepted: 07/30/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Anti-androgenic phthalates are environmental chemicals that affect male genital development in rodents leading to genitourinary birth defects. We examined whether first trimester phthalate exposure may exert similar effects in humans leading to an increased incidence of newborn male genital anomalies in a multi-center cohort study. METHODS We recruited first trimester pregnant women within The Infant Development and the Environment Study (TIDES) from 2010 to 2012 from four study centers and limited analyses to all mother/male infant dyads who had complete urinary phthalate and birth exam data (N=371). We used multivariate logistic regression to determine the odds of having a genital anomaly in relation to phthalate exposure. RESULTS Hydrocele was the primary abnormality observed in the cohort (N=30) followed by undescended testes (N=5) and hypospadias (N=3). We observed a statistically significant 2.5 fold increased risk (95% CI 1.1, 5.9) of having any anomaly and 3.0 fold increased risk (95% CI 1.2, 7.6) of isolated hydrocele in relation to a one log unit increase in the sum of di-ethylhexyl phthalate (DEHP) metabolites. CONCLUSIONS First trimester urinary DEHP metabolite concentrations were associated with increased odds of any newborn genital anomaly, and this association was primarily driven by isolated hydrocele which made up the majority of anomalies in newborn males. The association with hydrocele has not been previously reported and suggests that it may be an endpoint affected by prenatal phthalate exposures in the first trimester of development. Future human studies should include hydrocele assessment in order to confirm findings.
Collapse
Affiliation(s)
- Sheela Sathyanarayana
- Seattle Children's Research Institute, Seattle, WA, USA; Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA.
| | - Richard Grady
- Seattle Children's Research Institute, Seattle, WA, USA
| | - Emily S Barrett
- Department of Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Bruce Redmon
- Department of Endocrinology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Ruby H N Nguyen
- Division of Epidemiology & Community Health, University of Minnesota, Minneapolis, MN, USA
| | - Julia S Barthold
- Division of Urology, Department of Surgery, Nemours/Alfred I DuPont Hospital for Children, DE, USA
| | - Nicole R Bush
- Departments of Psychiatry and Pediatrics, University of California, San Francisco, USA
| | - Shanna H Swan
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai , New York City, NY, USA
| |
Collapse
|
37
|
Repeated measures analysis of associations between urinary bisphenol-A concentrations and biomarkers of inflammation and oxidative stress in pregnancy. Reprod Toxicol 2016; 66:93-98. [PMID: 27751756 DOI: 10.1016/j.reprotox.2016.10.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 09/16/2016] [Accepted: 10/13/2016] [Indexed: 12/31/2022]
Abstract
Bisphenol-A (BPA) exposure occurs commonly and may adversely impact pregnancy. Endocrine disruption is posited as the primary mechanism of action, but oxidative stress and inflammation pathways may also be important. We investigated associations between BPA exposure and oxidative stress and inflammation in 482 pregnant women. Participants were recruited early in pregnancy and provided urine and plasma at up to four visits. We measured total BPA and two biomarkers of oxidative stress (8-hydroxydeoxyguanosine and 8-isoprostane) in urine from each visit. Inflammation markers, including C-reactive protein and four cytokines were measured in plasma from the same time points. In adjusted models, an interquartile range increase in BPA was associated with significant increases in both oxidative stress biomarkers (5-9% increase). Additionally, we observed significantly higher IL-6 concentrations in association with an interquartile range increase in BPA (8.95% increase). These systemic changes consequent to BPA exposure may mediate adverse birth outcomes and/or fetal development.
Collapse
|
38
|
Huen K, Calafat AM, Bradman A, Yousefi P, Eskenazi B, Holland N. Maternal phthalate exposure during pregnancy is associated with DNA methylation of LINE-1 and Alu repetitive elements in Mexican-American children. ENVIRONMENTAL RESEARCH 2016; 148:55-62. [PMID: 27019040 PMCID: PMC4874877 DOI: 10.1016/j.envres.2016.03.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/24/2016] [Accepted: 03/18/2016] [Indexed: 05/21/2023]
Abstract
Phthalates are frequently used in personal care products and plasticizers and phthalate exposure is ubiquitous in the US population. Exposure to phthalates during critical periods in utero has been associated with a variety of adverse health outcomes but the biological mechanisms linking these exposures with disease are not well characterized. In this study, we examined the relationship of in utero phthalate exposure with repetitive element DNA methylation, an epigenetic marker of genome instability, in children from the longitudinal birth cohort CHAMACOS. Methylation of Alu and long interspersed nucleotide elements (LINE-1) was determined using pyrosequencing of bisulfite-treated DNA isolated from whole blood samples collected from newborns and 9 year old children (n=355). Concentrations of eleven phthalate metabolites were measured in urine collected from pregnant mothers at 13 and 26 weeks gestation. We found a consistent inverse association between prenatal concentrations of monoethyl phthalate, the most frequently detected urinary metabolite, with cord blood methylation of Alu repeats (β(95%CI): -0.14 (-0.28,0.00) and -0.16 (-0.31, -0.02)) for early and late pregnancy, respectively, and a similar but weaker association with LINE-1 methylation. Additionally, increases in urinary concentrations of di-(2-ethylhexyl) phthalate metabolites during late pregnancy were associated with lower levels of methylation of Alu repeats in 9 year old blood (significant p-values ranged from 0.003 to 0.03). Our findings suggest that prenatal exposure to some phthalates may influence differences in repetitive element methylation, highlighting epigenetics as a plausible biological mechanism through which phthalates may affect health.
Collapse
Affiliation(s)
- Karen Huen
- Center for Children's Environmental Health, School of Public Health, University of California, Berkeley, 1995 University Avenue Suite 265, Berkeley, CA 94720, USA.
| | - Antonia M Calafat
- Centers for Disease Control and Prevention, 4770 Buford Hwy, MS F17, Atlanta, GA 30341, USA.
| | - Asa Bradman
- Center for Children's Environmental Health, School of Public Health, University of California, Berkeley, 1995 University Avenue Suite 265, Berkeley, CA 94720, USA.
| | - Paul Yousefi
- Center for Children's Environmental Health, School of Public Health, University of California, Berkeley, 1995 University Avenue Suite 265, Berkeley, CA 94720, USA.
| | - Brenda Eskenazi
- Center for Children's Environmental Health, School of Public Health, University of California, Berkeley, 1995 University Avenue Suite 265, Berkeley, CA 94720, USA.
| | - Nina Holland
- Center for Children's Environmental Health, School of Public Health, University of California, Berkeley, 1995 University Avenue Suite 265, Berkeley, CA 94720, USA.
| |
Collapse
|
39
|
James-Todd TM, Chiu YH, Zota AR. Racial/ethnic disparities in environmental endocrine disrupting chemicals and women's reproductive health outcomes: epidemiological examples across the life course. CURR EPIDEMIOL REP 2016; 3:161-180. [PMID: 28497013 DOI: 10.1007/s40471-016-0073-9] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Disparities in women's reproductive health outcomes across the life course have been well-documented. Endocrine disrupting chemicals may be one factor driving disparities, as studies suggest exposure to certain environmental endocrine disrupting chemicals, such as certain phthalates, bisphenol A, parabens and polybrominated diphenyl ethers are higher in non-whites. Yet, a limited amount of research has focused on these chemical exposures as a potential mediator of racial/ethnic differences in women's reproductive health outcomes, such as pubertal development, fibroids, infertility, and pregnancy complications. Given that race/ethnicity is a social construct, the purpose of this review was to present the current state of the literature on racial/ethnic disparities in both environmental endocrine disrupting chemicals, as well as associations between these chemicals and selected women's reproductive health outcomes. Our goal was to evaluate literature from populations based in the United States to: 1) characterize racial/ethnic differences in environmental endocrine disrupting chemicals and 2) systematically review literature on environmental endocrine disrupting chemicals and selected women's health outcomes in populations containing more than one racial/ethnic group. This review highlights the need for future work in determining whether higher exposures to some environmental endocrine disrupting chemicals might partly explain differences in women's reproductive health outcomes in these higher-exposure and high-risk groups.
Collapse
Affiliation(s)
- Tamarra M James-Todd
- Departments of Environmental Health and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, U.S
- Division of Women's Health, Department of Medicine, Connors Center for Women's Health and Gender Biology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02120, U.S
| | - Yu-Han Chiu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, U.S
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, U.S
| | - Ami R Zota
- Department of Environmental and Occupational Health, George Washington University, Milken Institute School of Public Health, Washington, DC, 20052, U.S
| |
Collapse
|
40
|
Holland N, Huen K, Tran V, Street K, Nguyen B, Bradman A, Eskenazi B. Urinary Phthalate Metabolites and Biomarkers of Oxidative Stress in a Mexican-American Cohort: Variability in Early and Late Pregnancy. TOXICS 2016; 4. [PMID: 28008399 PMCID: PMC5171220 DOI: 10.3390/toxics4010007] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
People are exposed to phthalates through their wide use as plasticizers and in personal care products. Many phthalates are endocrine disruptors and have been associated with adverse health outcomes. However, knowledge gaps exist in understanding the molecular mechanisms associated with the effects of exposure in early and late pregnancy. In this study, we examined the relationship of eleven urinary phthalate metabolites with isoprostane, an established marker of oxidative stress, among pregnant Mexican-American women from an agricultural cohort. Isoprostane levels were on average 20% higher at 26 weeks than at 13 weeks of pregnancy. Urinary phthalate metabolite concentrations suggested relatively consistent phthalate exposures over pregnancy. The relationship between phthalate metabolite concentrations and isoprostane levels was significant for the sum of di-2-ethylhexyl phthalate and the sum of high molecular weight metabolites with the exception of monobenzyl phthalate, which was not associated with oxidative stress at either time point. In contrast, low molecular weight metabolite concentrations were not associated with isoprostane at 13 weeks, but this relationship became stronger later in pregnancy (p-value = 0.009 for the sum of low molecular weight metabolites). Our findings suggest that prenatal exposure to phthalates may influence oxidative stress, which is consistent with their relationship with obesity and other adverse health outcomes.
Collapse
|
41
|
Meruvu S, Zhang J, Bedi YS, Choudhury M. Mono-(2-ethylhexyl) phthalate induces apoptosis through miR-16 in human first trimester placental cell line HTR-8/SVneo. Toxicol In Vitro 2015; 31:35-42. [PMID: 26597031 DOI: 10.1016/j.tiv.2015.11.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 11/06/2015] [Accepted: 11/16/2015] [Indexed: 01/07/2023]
Abstract
Phthalates have been linked to adverse pregnancy complications. Mono-(2-ethylhexyl) phthalate, an active metabolite of di-(2-ethylhexyl) phthalate and an endocrine disruptor, has been shown to induce apoptosis in various cell types including placental cells. However, the mechanism of action of MEHP induced apoptosis is still unknown. We hypothesized that apoptosis may be mediated in part through altered microRNA(s) in placenta under MEHP exposure. In the present study, we report that MEHP increases miR-16 expression in a time- and dose-dependent manner (p<0.05), while inducing apoptosis in HTR-8/SVneo. Cells treated with MEHP showed a dose-dependent increase in cytotoxicity and reactive oxygen species along with decreased cell viability. Consistent with significant increase in apoptosis analyzed by flow cytometry, we detected decreased anti-apoptotic BCL-2 at transcriptional and translational levels with MEHP (p<0.05). Knockdown of miR-16 did not decrease the BCL-2/BAX protein expression ratio in the presence of MEHP when compared to negative control demonstrating that MEHP induces apoptosis directly through miR-16. In conclusion, our study demonstrates for the first time that MEHP induces miR-16, which in turn, alters BCL-2/BAX ratio leading to increased apoptosis. This study provides a novel insight into MEHP induced epigenetic regulation in placental apoptosis which may lead to pregnancy complications.
Collapse
Affiliation(s)
- Sunitha Meruvu
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, TX, USA
| | - Jian Zhang
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, TX, USA
| | - Yudhishtar Singh Bedi
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, TX, USA
| | - Mahua Choudhury
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, TX, USA.
| |
Collapse
|