1
|
Pollmann M, Kuhn D, König C, Homolka I, Paschke S, Reinisch R, Schmidt A, Schwabe N, Weber J, Gottlieb Y, Steidle JLM. New species based on the biological species concept within the complex of Lariophagus distinguendus (Hymenoptera, Chalcidoidea, Pteromalidae), a parasitoid of household pests. Ecol Evol 2023; 13:e10524. [PMID: 37720058 PMCID: PMC10500055 DOI: 10.1002/ece3.10524] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/07/2023] [Accepted: 08/30/2023] [Indexed: 09/19/2023] Open
Abstract
The pteromalid parasitoid Lariophagus distinguendus (Foerster) belongs to the Hymenoptera, a megadiverse insect order with high cryptic diversity. It attacks stored product pest beetles in human storage facilities. Recently, it has been shown to consist of two separate species. To further study its cryptic diversity, strains were collected to compare their relatedness using barcoding and nuclear genes. Nuclear genes identified two clusters which agree with the known two species, whereas the barcode fragment determined an additional third Clade. Total reproductive isolation (RI) according to the biological species concept (BSC) was investigated in crossing experiments within and between clusters using representative strains. Sexual isolation exists between all studied pairs, increasing from slight to strong with genetic distance. Postzygotic barriers mostly affected hybrid males, pointing to Haldane's rule. Hybrid females were only affected by unidirectional Spiroplasma-induced cytoplasmic incompatibility and behavioural sterility, each in one specific strain combination. RI was virtually absent between strains separated by up to 2.8% COI difference, but strong or complete in three pairs from one Clade each, separated by at least 7.2%. Apparently, each of these clusters represents one separate species according to the BSC, highlighting cryptic diversity in direct vicinity to humans. In addition, these results challenge the recent 'turbo-taxonomy' practice of using 2% COI differences to delimitate species, especially within parasitic Hymenoptera. The gradual increase in number and strength of reproductive barriers between strains with increasing genetic distance also sheds light on the emergence of barriers during the speciation process in L. distinguendus.
Collapse
Affiliation(s)
- Marie Pollmann
- Department of Chemical Ecology 190t, Institute of BiologyUniversity of HohenheimStuttgartGermany
| | - Denise Kuhn
- Department of Entomology 360c, Institute of PhytomedicineUniversity of HohenheimStuttgartGermany
| | - Christian König
- Akademie für Natur‐ und Umweltschutz Baden‐WürttembergStuttgartGermany
| | - Irmela Homolka
- Department of Chemical Ecology 190t, Institute of BiologyUniversity of HohenheimStuttgartGermany
| | - Sina Paschke
- Department of Chemical Ecology 190t, Institute of BiologyUniversity of HohenheimStuttgartGermany
| | - Ronja Reinisch
- Department of Chemical Ecology 190t, Institute of BiologyUniversity of HohenheimStuttgartGermany
| | - Anna Schmidt
- Department of Chemical Ecology 190t, Institute of BiologyUniversity of HohenheimStuttgartGermany
| | - Noa Schwabe
- Plant Evolutionary Biology 190b, Institute of BiologyUniversity of HohenheimStuttgartGermany
| | - Justus Weber
- Department of Chemical Ecology 190t, Institute of BiologyUniversity of HohenheimStuttgartGermany
| | - Yuval Gottlieb
- Robert H. Smith Faculty of Agriculture, Food and Environment, Koret School of Veterinary MedicineHebrew University of JerusalemRehovotIsrael
| | - Johannes Luitpold Maria Steidle
- Department of Chemical Ecology 190t, Institute of BiologyUniversity of HohenheimStuttgartGermany
- KomBioTa – Center of Biodiversity and Integrative TaxonomyUniversity of HohenheimStuttgartGermany
| |
Collapse
|
2
|
Pérez-Lachaud G, Rocha FH, Lachaud JP. First Record of the Elusive Ant Parasitoid Horismenus floridensis (Hymenoptera: Eulophidae) in Mexico and New Association with an Ant Host. NEOTROPICAL ENTOMOLOGY 2023; 52:530-537. [PMID: 36662479 DOI: 10.1007/s13744-022-01022-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/24/2022] [Indexed: 05/13/2023]
Abstract
Most eulophid wasps are primary parasitoids, mainly of endophytic insect larvae (Diptera, Coleoptera, Lepidoptera, Hymenoptera, Hemiptera, and Thysanoptera), but can also attack spider eggs, gall-forming mites, or nematodes. A few species are known to parasitize ants. Here we report on the occurrence of Horismenus floridensis (Schauff and Bouček) attacking Camponotus atriceps (Smith) in southern Mexico (Campeche), expanding the distribution for this eulophid species and the range of its potential hosts. We also provide an updated list of the Horismenus Walker species found in Mexico, which currently includes 21 identified species. This is the second host ant ever recorded for H. floridensis and the first reliable record of C. atriceps as a host for this eulophid wasp. The first host ant reported from Florida 35 years ago was the closely related valid species, C. floridanus (Buckley), erroneously synonymized at that time with C. atriceps (formerly, C. abdominalis (Fabricius)).
Collapse
Affiliation(s)
- Gabriela Pérez-Lachaud
- Depto. Conservación de la Biodiversidad, El Colegio de La Frontera Sur, Quintana Roo, Chetumal, México.
| | - Franklin H Rocha
- Depto. Apicultura, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Yucatán, Mérida, México
| | - Jean-Paul Lachaud
- Depto. Conservación de la Biodiversidad, El Colegio de La Frontera Sur, Quintana Roo, Chetumal, México.
| |
Collapse
|
3
|
Gil‐Tapetado D, Durán‐Montes P, García‐París M, López‐Estrada EK, Sánchez‐Vialas A, Jiménez‐Ruiz Y, Gómez JF, Nieves‐Aldrey JL. Host specialization is ancestral in
Torymus
(Hymenoptera, Chalcidoidea) cynipid gall parasitoids. ZOOL SCR 2021. [DOI: 10.1111/zsc.12515] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Diego Gil‐Tapetado
- Museo Nacional de Ciencias Naturales (CSIC) Madrid Spain
- Facultad de Ciencias Biológicas Departamento de Biodiversidad, Ecología y Evolución Universidad Complutense de Madrid Madrid Spain
| | - Patricia Durán‐Montes
- Facultad de Ciencias Biológicas Departamento de Biodiversidad, Ecología y Evolución Universidad Complutense de Madrid Madrid Spain
| | | | | | | | | | - Jose F. Gómez
- Facultad de Ciencias Biológicas Departamento de Biodiversidad, Ecología y Evolución Universidad Complutense de Madrid Madrid Spain
| | | |
Collapse
|
4
|
Cozzarolo CS, Balke M, Buerki S, Arrigo N, Pitteloud C, Gueuning M, Salamin N, Sartori M, Alvarez N. Biogeography and Ecological Diversification of a Mayfly Clade in New Guinea. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00233] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
5
|
Cruaud A, Nidelet S, Arnal P, Weber A, Fusu L, Gumovsky A, Huber J, Polaszek A, Rasplus JY. Optimized DNA extraction and library preparation for minute arthropods: Application to target enrichment in chalcid wasps used for biocontrol. Mol Ecol Resour 2019; 19:702-710. [PMID: 30758892 DOI: 10.1111/1755-0998.13006] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/18/2019] [Accepted: 02/01/2019] [Indexed: 01/04/2023]
Abstract
Target enrichment is increasingly used for genotyping of plant and animal species or to better understand the evolutionary history of important lineages through the inference of statistically robust phylogenies. Limitations to routine target enrichment are both the complexity of current protocols and low input DNA quantity. Thus, working with tiny organisms such as microarthropods can be challenging. Here, we propose easy to set up optimizations for DNA extraction and library preparation prior to target enrichment. Prepared libraries were used to capture 1,432 ultraconserved elements (UCEs) from microhymenoptera (Chalcidoidea), which are among the tiniest insects on Earth and the most commercialized worldwide for biological control purposes. Results show no correlation between input DNA quantities (1.8-250 ng, 0.4 ng with an extra whole genome amplification step) and the number of sequenced UCEs on an Illumina MiSeq. Phylogenetic inferences highlight the potential of UCEs to solve relationships within the families of chalcid wasps, which has not been achieved so far. The protocol (library preparation + target enrichment) allows processing 96 specimens in five working days, by a single person, without requiring the use of expensive robotic molecular biology platforms, which could help to generalize the use of target enrichment for minute specimens.
Collapse
Affiliation(s)
- Astrid Cruaud
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Sabine Nidelet
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Pierre Arnal
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, University of Montpellier, Montpellier, France.,ISYEB-UMR 7205 MNHN, CNRS, UPMC, EPHE, Sorbonne Universités, Paris, France
| | - Audrey Weber
- AGAP, INRA, CIRAD, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Lucian Fusu
- Faculty of Biology, Alexandru Ioan Cuza University, Iasi, Romania
| | - Alex Gumovsky
- Schmalhausen Institute of Zoology, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - John Huber
- Natural Resources Canada, c/o Canadian National Collection of Insects, Ottawa, Canada
| | - Andrew Polaszek
- Department of Life Sciences, Natural History Museum, London, UK
| | - Jean-Yves Rasplus
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, University of Montpellier, Montpellier, France
| |
Collapse
|
6
|
Cruaud A, Groussier G, Genson G, Sauné L, Polaszek A, Rasplus JY. Pushing the limits of whole genome amplification: successful sequencing of RADseq library from a single microhymenopteran (Chalcidoidea, Trichogramma). PeerJ 2018; 6:e5640. [PMID: 30356952 PMCID: PMC6195110 DOI: 10.7717/peerj.5640] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/27/2018] [Indexed: 11/20/2022] Open
Abstract
A major obstacle to high-throughput genotyping of microhymenoptera is their small size. As species are difficult to discriminate, and because complexes may exist, the sequencing of a pool of specimens is hazardous. Thus, one should be able to sequence pangenomic markers (e.g., RADtags) from a single specimen. To date, whole genome amplification (WGA) prior to library construction is still a necessity as at most 10 ng of DNA can be obtained from single specimens (sometimes less). However, this amount of DNA is not compatible with manufacturer's requirements for commercial kits. Here we test the accuracy of the GenomiPhi kit V2 on Trichogramma wasps by comparing RAD libraries obtained from the WGA of single specimens (F0 and F1 generation, about1 ng input DNA for the WGA (0.17-2.9 ng)) and a biological amplification of genomic material (the pool of the progeny of the F1 generation). Globally, we found that 99% of the examined loci (up to 48,189 for one of the crosses, 109 bp each) were compatible with the mode of reproduction of the studied model (haplodiploidy) and Mendelian inheritance of alleles. The remaining 1% (0.01% of the analysed nucleotides) could represent WGA bias or other experimental/analytical bias. This study shows that the multiple displacement amplification method on which the GenomiPhi kit relies, could also be of great help for the high-throughput genotyping of microhymenoptera used for biological control, or other organisms from which only a very small amount of DNA can be extracted, such as human disease vectors (e.g., sandflies, fleas, ticks etc.).
Collapse
Affiliation(s)
- Astrid Cruaud
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Géraldine Groussier
- Institut Sophia Agrobiotech, INRA, CNRS, Université Côte d’Azur, Sophia Antipolis, France
| | - Guenaëlle Genson
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Laure Sauné
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Andrew Polaszek
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Jean-Yves Rasplus
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| |
Collapse
|
7
|
Preliminary Investigation of Species Diversity of Rice Hopper Parasitoids in Southeast Asia. INSECTS 2018; 9:insects9010019. [PMID: 29425132 PMCID: PMC5872284 DOI: 10.3390/insects9010019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/05/2018] [Accepted: 01/26/2018] [Indexed: 11/17/2022]
Abstract
Ongoing intensification of rice production systems in Southeast Asia is causing devastating yield losses each year due to rice hoppers. Their continuing development of immunity to resistant rice varieties and pesticide applications further complicates this problem. Hence, there is a high demand for biological control agents of rice hoppers. Egg parasitoid wasps are among the most important natural enemies of rice hoppers, such as Nilaparvata lugens and Nephotettix spp. However, our knowledge of their diversity is still very limited, due to their small size and the lack of available morphological information. Classifying these parasitoids is the first step to properly understanding their role in the rice agroecosystem. We used traditional morphological identification, as well as DNA sequencing of the 28S rRNA and the COI genes, to investigate the diversity of four important hopper egg parasitoid genera in the Philippines. Parasitoids of the genera Anagrus, Oligosita, Gonatocerus, and Paracentrobia were collected in eight study landscapes located in Luzon. Our findings illustrate that characterization of species diversity using morphological and molecular analyses were concordant only for the genus Paracentrobia. The genera Anagrus and Gonatocerus exhibited more genetic diversity than estimated with the morphological analysis, while the opposite was observed for Oligosita. This is the first study investigating the molecular diversity of rice hopper parasitoids in the Philippines. More research combining morphological, behavioral, and molecular methods, as well as the establishment of a comprehensive DNA database, are urgently needed to assess the performance and suitability of these organisms as biocontrol agents.
Collapse
|
8
|
Cuny MAC, Shlichta GJ, Benrey B. The Large Seed Size of Domesticated Lima Beans Mitigates Intraspecific Competition among Seed Beetle Larvae. Front Ecol Evol 2017. [DOI: 10.3389/fevo.2017.00145] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
9
|
van Nouhuys S. Diversity, population structure, and individual behaviour of parasitoids as seen using molecular markers. CURRENT OPINION IN INSECT SCIENCE 2016; 14:94-99. [PMID: 27436653 DOI: 10.1016/j.cois.2016.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/06/2016] [Accepted: 02/08/2016] [Indexed: 06/06/2023]
Abstract
Parasitoids have long been models for host-parasite interactions, and are important in biological control. Neutral molecular markers have become increasingly accessible tools, revealing previously unknown parasitoid diversity. Thus, insect communities are now seen as more speciose. They have also been found to be more complex, based on trophic links detected using bits of parasitoid DNA in hosts, and host DNA in adult parasitoids. At the population level molecular markers are used to determine the influence of factors such as host dynamics on parasitoid population structure. Finally, at the individual level, they are used to identify movement of individuals. Overall molecular markers greatly increase the value of parasitoid samples collected, for both basic and applied research, at all levels of study.
Collapse
Affiliation(s)
- Saskya van Nouhuys
- Department of Biosciences, University of Helsinki, PO box 65, Helsinki 00014, Finland; Department of Entomology, Cornell University, Comstock Hall, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
10
|
Affiliation(s)
- Sven Buerki
- Department of Life Sciences; Natural History Museum; Cromwell Road London SW7 5BD UK
| | | |
Collapse
|