1
|
Cho IS, Shiomoto S, Yukawa N, Tanaka Y, Huh KM, Tanaka M. The Role of Intermediate Water in Enhancing Blood and Cellular Compatibility of Chitosan-Based Biomaterials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:8301-8311. [PMID: 40036609 DOI: 10.1021/acs.langmuir.5c00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Tissue engineering and regenerative medicine require biomaterials that balance blood compatibility with cell adhesion, proliferation, and differentiation. Chitosan and its derivatives, owing to their biocompatibility, biodegradability, and functional versatility, have been extensively explored for biomedical applications, including vascular grafts and tissue engineering scaffolds. This study investigates the effect of chemical modifications on the water state of chitosan derivatives─specifically, free water (FW), intermediate water (IW), and nonfreezing water (NFW)─and their implications for protein interactions, platelet adhesion, and mesenchymal stem cell (MSC) behavior. By incorporating hydrophilic and hydrophobic groups, the hydration of chitosan derivatives was precisely controlled, which significantly influenced blood compatibility and cell adhesion. Hexanoyl glycol chitosan (HGC) demonstrated reduced platelet adhesion, low fibrinogen denaturation, and favorable MSC adhesion, making it a promising candidate for applications requiring both enhanced blood compatibility and regenerative potential. These findings underscore the importance of hydration water modulation in designing advanced biomaterials for blood-contacting and regenerative medicine applications.
Collapse
Affiliation(s)
- Ik Sung Cho
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Shohei Shiomoto
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Naoki Yukawa
- Department of Applied Chemistry, Kyushu University, Fukuoka 819-0395, Japan
| | - Yukiko Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Kang-Moo Huh
- Department of Polymer Science and Engineering, Chungnam National University, Daejeon 34134, Korea
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
2
|
Nishimura SN, Kurahashi N, Shiomoto S, Harada Y, Tanaka M. Effects of hydration water on bioresponsiveness of polymer interfaces revealed by analysis of linear and cyclic polymer-grafted substrates. SOFT MATTER 2024. [PMID: 39565239 DOI: 10.1039/d4sm00977k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Given that the hydration water of polymer matrices may differ from that of outermost polymer surfaces, processes at biomaterial-biofluid interfaces and role of hydration water therein cannot be adequately examined using most conventional characterization methods. To bridge this gap, a gold substrate was herein modified with linear and cyclic poly(2-methoxyethyl acrylate) to prepare gl-PMEA and gc-PMEA surfaces, respectively, as models for the outermost surfaces of blood-contacting medical devices. Both surfaces suppressed the adhesion of human platelets but differed in the adhesion behaviors of normal and tumor cells despite having the same areal density of fixed-end units. The surfaces were analyzed using quartz crystal microbalance (QCM), frequency modulation atomic force microscopy (FM-AFM), and X-ray emission spectroscopy (XES) measurements under wet conditions to clarify the relationship between bioresponsivity and hydration water. QCM measurements provided evidence that both grafted-PMEA were hydrated. FM-AFM observations revealed that the swelling layer was thicker for gc-PMEA. To rationalize the differences in the surface hydration states, we performed XES measurements under conditions enabling control over the number of hydration water molecules. In the low-water-content region, hydrogen bonds or interactions between water molecules developed in the vicinity of gl-PMEA but not gc-PMEA. Thus, the initial hydration behavior of the gc-PMEA surface, which promoted intermediate water formation, was different from that of the gl-PMEA surface. The results suggested that the adjustment and optimization of the hydration state of outermost biomaterial surfaces enable the control of bioresponsivity, including the selective isolation of tumor cells.
Collapse
Affiliation(s)
- Shin-Nosuke Nishimura
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto 610-0394, Japan
| | - Naoya Kurahashi
- Department of Materials Molecular Science, Institute for Molecular Science, 38 Nishigonaka, Myodaijicho, Okazaki, Aichi 444-8585, Japan
- Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan.
| | - Shohei Shiomoto
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Yoshihisa Harada
- Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan.
- Synchrotron Radiation Collaborative Research Organization, The University of Tokyo, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
3
|
Yoshizawa K, Kobayashi H, Kaneki A, Takenouchi M, Belletto J, Baldwin A, Anzai T. Poly(2-methoxyethyl acrylate) (PMEA) improves the thromboresistance of FRED flow diverters: a thrombogenic evaluation of flow diverters with human blood under flow conditions. J Neurointerv Surg 2023; 15:1001-1006. [PMID: 36180206 PMCID: PMC10511968 DOI: 10.1136/jnis-2022-019248] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/18/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Surface modification of flow-diverting stents has been explored to reduce thrombus-related complications that may arise under clinical use. This study investigated the thromboresistant properties of the flow redirection endoluminal device (FRED) X, a flow diverter treated with a copolymer of poly(2-methoxyethyl acrylate) (PMEA; X Technology). METHODS The performance of FRED, FRED X, and Pipeline Flex with Shield Technology (sPED) was evaluated in an in vitro blood loop model. Blood activation level was assessed by the concentration of thrombin-antithrombin complex (TAT), β-thromboglobulin (β-TG), and platelet count, and qualitatively by scanning electron microscopy (SEM). Cellular adhesion characteristics were measured using human aortic endothelial cells that were seeded on flat sheets mimicking the surface of FRED, FRED X, and sPED, and evaluated with fluorescence microscopy. Statistical comparisons were conducted using one-way analysis of variance (ANOVA) with Tukey post hoc tests. RESULTS FRED X, sPED, and control blood loops showed significantly reduced blood activation levels (TAT and β-TG) compared with FRED (p<0.01). Consequently, FRED showed a significant decrease in platelet count compared with FRED X, sPED, and control loops (p<0.01). SEM imaging showed the lowest accumulation of blood cell-like deposits on FRED X compared with sPED and FRED, while FRED had the highest accumulation. Endothelial cells adhered and were widely spread on X Technology-treated sheets, while minimal cell adhesion was observed on phosphorylcholine-treated sheets. CONCLUSION The X Technology surface modification of FRED X demonstrated superior thromboresistant properties over untreated FRED while maintaining comparable cellular adhesion. Taken together, these properties may help mitigate material-related thromboembolic complications.
Collapse
Affiliation(s)
- Keiko Yoshizawa
- Core Technology Group, Corporate R&D Center, Terumo Co., Ltd, Kanagawa, Japan
| | | | | | | | - John Belletto
- R&D, MicroVention Inc., Terumo Co., Ltd, Aliso Viejo, California, USA
| | - Aaron Baldwin
- R&D, MicroVention Inc., Terumo Co., Ltd, Aliso Viejo, California, USA
| | - Takao Anzai
- Core Technology Group, Corporate R&D Center, Terumo Co., Ltd, Kanagawa, Japan
| |
Collapse
|
4
|
Koguchi R, Jankova K, Tanaka Y, Yamamoto A, Murakami D, Yang Q, Ameduri B, Tanaka M. Altering the bio-inert properties of surfaces by fluorinated copolymers of mPEGMA. BIOMATERIALS ADVANCES 2023; 153:213573. [PMID: 37562157 DOI: 10.1016/j.bioadv.2023.213573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023]
Abstract
Hydrophilic materials display "bio-inert properties", meaning that they are less recognized as foreign substances by proteins and cells. Such materials are often water soluble; therefore, one general approach to enable the use of these materials in various applications deals with copolymerizing hydrophilic monomers with hydrophobic ones to facilitate such resulting copolymers water insoluble. However, reducing the hydrophilic monomer amount may reduce the bio-inert properties of the material. The decrease in bio-inert properties can be avoided when small amounts of fluorine are used in copolymers with hydrophilic monomers, as presented in this article. Even in small quantities (7.9 wt%), the fluorinated monomer, 1,1,1,3,3,3-hexafluoropropan-2-yl 2-fluoroacrylate (FAHFiP), contributed to the improved hydrophobicity of the polymers of the long side-chain poly(ethylene glycol) methyl ether methacrylate (mPEGMA) bearing nine ethylene glycol units turning them water insoluble. As evidenced by the AFM deformation image, a phase separation between the FAHFiP and mPEGMA domains was observed. The copolymer with the highest amount of the fluorinated monomer (66.2 wt%) displayed also high (82 %) FAHFiP amount at the polymer-water interface. In contrast, the hydrated sample with the lowest FAHFiP/highest mPEGMA amount was enriched of three times more hydrophilic domains at the polymer-water interface compared to that of the sample with the highest FAHFiP content. Thus, by adding a small FAHFiP amount to mPEGMA copolymers, water insoluble in the bulk too, could be turned highly hydrophilic at the water interface. The high content of intermediate water contributed to their excellent bio-inert properties. Platelet adhesion and fibrinogen adsorption on their surfaces were even more decreased as compared to those on poly(2-methoxyethyl acrylate), which is typically used in medical devices.
Collapse
Affiliation(s)
- Ryohei Koguchi
- AGC Inc. Organic Materials Division, Materials Integration Laboratories, 1-1 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Katja Jankova
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Build. CE41, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan; Department of Energy Conversion and Storage, Technical University of Denmark, Elektrovej, Build. 375, 2800 Kongens Lyngby, Denmark
| | - Yukiko Tanaka
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Build. CE41, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| | - Aki Yamamoto
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Build. CE41, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| | - Daiki Murakami
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Build. CE41, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| | - Qizhi Yang
- University of Montpellier, ICGM, CNRS, ENSCM, 34000 Montpellier, France
| | - Bruno Ameduri
- University of Montpellier, ICGM, CNRS, ENSCM, 34000 Montpellier, France.
| | - Masaru Tanaka
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Build. CE41, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
5
|
Simple Detection and Culture of Circulating Tumor Cells from Colorectal Cancer Patients Using Poly(2-Methoxyethyl Acrylate)-Coated Plates. Int J Mol Sci 2023; 24:ijms24043949. [PMID: 36835361 PMCID: PMC9959032 DOI: 10.3390/ijms24043949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/15/2023] [Accepted: 01/23/2023] [Indexed: 02/18/2023] Open
Abstract
Here we aimed to establish a simple detection method for detecting circulating tumor cells (CTCs) in the blood sample of colorectal cancer (CRC) patients using poly(2-methoxyethyl acrylate) (PMEA)-coated plates. Adhesion test and spike test using CRC cell lines assured efficacy of PMEA coating. A total of 41 patients with pathological stage II-IV CRC were enrolled between January 2018 and September 2022. Blood samples were concentrated by centrifugation by the OncoQuick tube, and then incubated overnight on PMEA-coated chamber slides. The next day, cell culture and immunocytochemistry with anti-EpCAM antibody were performed. Adhesion tests revealed good attachment of CRCs to PMEA-coated plates. Spike tests indicated that ~75% of CRCs from a 10-mL blood sample were recovered on the slides. By cytological examination, CTCs were identified in 18/41 CRC cases (43.9%). In cell cultures, spheroid-like structures or tumor-cell clusters were found in 18/33 tested cases (54.5%). Overall, CTCs and/or growing circulating tumor cells were found in 23/41 CRC cases (56.0%). History of chemotherapy or radiation was significantly negatively correlated with CTC detection (p = 0.02). In summary, we successfully captured CTCs from CRC patients using the unique biomaterial PMEA. Cultured tumor cells will provide important and timely information regarding the molecular basis of CTCs.
Collapse
|
6
|
Kobayashi S, Sugasaki A, Yamamoto Y, Shigenoi Y, Udaka A, Yamamoto A, Tanaka M. Enrichment of Cancer Cells Based on Antibody-Free Selective Cell Adhesion. ACS Biomater Sci Eng 2022; 8:4547-4556. [PMID: 36153975 DOI: 10.1021/acsbiomaterials.2c00662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Blood-compatible and cell-adhering polymer materials are extremely useful for regenerative medicine and disease diagnosis. (Meth)acryl polymers with high hydrophilicity have been widely used in industries, and attempts to apply these polymers in the medical field are frequently reported. We focused on crosslinked polymer films prepared using bifunctional monomers, which are widely used as coating materials, and attempted to alter the cell adhesion behavior while maintaining blood compatibility by changing the chemical structure of the crosslinker. Four bifunctional monomers were studied, three of which were found to be blood-compatible polymers and to suppress platelet adhesion. The adhesion behavior of cancer cells to polymer films varied; moreover, the cancer model cells MCF-7 [EpCAM(+)] and MDA-MB-231 [EpCAM (-)], with different expression levels of epithelial cell adhesion molecule (EpCAM), showed distinct adhesion behavior for each material. We suggest that a combination of these materials has the potential to selectively capture and enrich highly metastatic cancer cells.
Collapse
Affiliation(s)
- Shingo Kobayashi
- Institute for Materials Chemistry and Engineering, Kyushu University, CE41 744 Motooka, Nishi-ku, Fukuoka819-0395, Japan
| | - Atsushi Sugasaki
- Synthetic Organic Chemistry Laboratories, FUJIFILM Corporation, 4000 Kawashiri, Yoshida-cho, Haibara-gun, Shizuoka421-0396, Japan
| | - Yosuke Yamamoto
- Synthetic Organic Chemistry Laboratories, FUJIFILM Corporation, 577 Ushijima, Kaisei-machi, Ashigarakami-gun, Kanagawa258-0022, Japan
| | - Yuta Shigenoi
- Electronic Materials Research Laboratories, FUJIFILM Corporation, 4000 Kawashiri, Yoshida-cho, Haibara-gun, Shizuoka421-0396, Japan
| | - Airi Udaka
- Institute for Materials Chemistry and Engineering, Kyushu University, CE41 744 Motooka, Nishi-ku, Fukuoka819-0395, Japan
| | - Aki Yamamoto
- Institute for Materials Chemistry and Engineering, Kyushu University, CE41 744 Motooka, Nishi-ku, Fukuoka819-0395, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, CE41 744 Motooka, Nishi-ku, Fukuoka819-0395, Japan
| |
Collapse
|
7
|
Mofed D, Wahba MA, Salem TZ. Genetically Engineered Hepatitis C Virus-like Particles (HCV-LPs) Tagged with SP94 Peptide to Acquire Selectivity to Liver Cancer Cells via Grp78. Curr Issues Mol Biol 2022; 44:3746-3756. [PMID: 36005152 PMCID: PMC9406521 DOI: 10.3390/cimb44080256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/30/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Targeted cancer therapy is a challenging area that includes multiple chemical and biological vehicles. Virus-like particles (VLPs) combine safety and efficacy in their roles as potential vaccines and drug delivery vehicles. In this study, we propose a novel drug delivery system based on HCV-LPs engineered with SP94 and RGD peptides mediated by a specific molecular chaperone (Grp78) associated with cancer drug resistance. The PCR primers were designed for engineering two constructs, SP94-EGFP-CORE-HIS and RGD-EGFP-CORE-HIS, by sequential PCR reactions. The two fragments were cloned into pFastBac Dual under the polyhedrin promoter and then used to produce two recombinant baculoviruses (AcSP94 and AcRGD). The VLP's expression was optimized by recombinant virus infection with different MOIs, ranging from 1 to 20 MOI. Recombinant VLP2 were purified by Ni-NTA and their sizes and shapes were confirmed with TEM. They were incubated with different types of cells prior to examination using the fluorescence microscope to test the binding specificity. The effect of the overexpression of the Grp78 on the binding affinity of the engineered VLPs was tested in HepG2 and HeLa cells. The protocol optimization revealed that MOI 10 produced the highest fluorescence intensities after 72 h for the two recombinant proteins (SP94-core and RGD-core). Moreover, the binding assay tested on different types of mammalian cells (HeLa, HEK-293T, and HepG2 cells) showed green fluorescence on the periphery of all tested cell lines when using the RGD-core protein; while, the SP94-core protein showed green fluorescence only with the liver cancer cells, HepG2 and HuH7. Overexpression of Grp78 in HepG2 and HeLa cells enhanced the binding efficiency of the engineered VLPs. We confirmed that the SP94 peptide can be specifically used to target liver cancer cells, while the RGD peptide is sufficiently functional for most types of cancer cells. The overexpression of the Grp78 improved the binding capacity of both SP94 and RGD peptides. It is worth noting that the SP94 peptide can function properly as a recombinant peptide, and not only as a chemically conjugated peptide, as heretofore commonly used.
Collapse
Affiliation(s)
- Dina Mofed
- Molecular Biology and Virology Lab, Biomedical Sciences Program, UST, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza 12578, Egypt
| | - Mohamed A. Wahba
- Molecular Biology and Virology Lab, Biomedical Sciences Program, UST, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza 12578, Egypt
| | - Tamer Z. Salem
- Molecular Biology and Virology Lab, Biomedical Sciences Program, UST, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza 12578, Egypt
- Department of Microbial Genetics, Agricultural Genetic Engineering Research Institute (AGERl), ARC, Giza 12619, Egypt
- National Biotechnology Network of Expertise (NBNE), Academy of Science Research and Technology (ASRT), Cairo 11334, Egypt
- Correspondence:
| |
Collapse
|
8
|
Nishida K, Anada T, Tanaka M. Roles of interfacial water states on advanced biomedical material design. Adv Drug Deliv Rev 2022; 186:114310. [PMID: 35487283 DOI: 10.1016/j.addr.2022.114310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 12/15/2022]
Abstract
When biomedical materials come into contact with body fluids, the first reaction that occurs on the material surface is hydration; proteins are then adsorbed and denatured on the hydrated material surface. The amount and degree of denaturation of adsorbed proteins affect subsequent cell behavior, including cell adhesion, migration, proliferation, and differentiation. Biomolecules are important for understanding the interactions and biological reactions of biomedical materials to elucidate the role of hydration in biomedical materials and their interaction partners. Analysis of the water states of hydrated materials is complicated and remains controversial; however, knowledge about interfacial water is useful for the design and development of advanced biomaterials. Herein, we summarize recent findings on the hydration of synthetic polymers, supramolecular materials, inorganic materials, proteins, and lipid membranes. Furthermore, we present recent advances in our understanding of the classification of interfacial water and advanced polymer biomaterials, based on the intermediate water concept.
Collapse
Affiliation(s)
- Kei Nishida
- Institute for Materials Chemistry and Engineering Kyushu university, 744 Motooka, Nishi-ku Fukuoka 819-0395, Japan; Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Japan(1)
| | - Takahisa Anada
- Institute for Materials Chemistry and Engineering Kyushu university, 744 Motooka, Nishi-ku Fukuoka 819-0395, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering Kyushu university, 744 Motooka, Nishi-ku Fukuoka 819-0395, Japan.
| |
Collapse
|
9
|
Shiomoto S, Inoue K, Higuchi H, Nishimura SN, Takaba H, Tanaka M, Kobayashi M. Characterization of Hydration Water Bound to Choline Phosphate-Containing Polymers. Biomacromolecules 2022; 23:2999-3008. [PMID: 35736642 DOI: 10.1021/acs.biomac.2c00484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Zwitterionic methacrylate polymers with either choline phosphate (CP) (poly(MCP)) or phosphorylcholine (PC) (poly(MPC)) side groups were analyzed to characterize the bound hydration water molecules as nonfreezing water (NFW), intermediate water (IW), or free water (FW). This characterization was carried out by differential scanning calorimetry (DSC) of polymer/water systems, and the enthalpy changes of cold crystallization and melting were determined. The electron pair orientation of CP is opposite to that of PC, and the former binds the alkyl terminal groups at the phosphate esters. The numbers of NFW and IW molecules per monomer unit of poly(MCP) with an isopropyl terminal group were estimated to be 10.7 and 11.3 mol/mol, respectively, which were slightly greater than those of the poly(MCP) bearing an ethyl terminal group. More NFW and IW molecules hydrated the phosphobetaine polyzwitterions, poly(MCP) and poly(MPC), compared with carboxybetaine and sulfobetaine polymers. Moreover, the hydration states of polyelectrolytes were compared with the zwitterionic polymers. Finally, we discuss the relationship between the amount of hydration water and bio-inert properties.
Collapse
Affiliation(s)
- Shohei Shiomoto
- Graduate School of Engineering, Kogakuin University, Tokyo 192-0015, Japan
| | - Kaito Inoue
- Graduate School of Engineering, Kogakuin University, Tokyo 192-0015, Japan
| | - Hayato Higuchi
- Graduate School of Engineering, Kogakuin University, Tokyo 192-0015, Japan
| | - Shin-Nosuke Nishimura
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Hiromitsu Takaba
- School of Advanced Engineering, Kogakuin University, Tokyo 192-0015, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Motoyasu Kobayashi
- School of Advanced Engineering, Kogakuin University, Tokyo 192-0015, Japan
| |
Collapse
|
10
|
Nishida K, Nishimura SN, Tanaka M. Selective Accumulation to Tumor Cells with Coacervate Droplets Formed from a Water-Insoluble Acrylate Polymer. Biomacromolecules 2022; 23:1569-1580. [PMID: 35089709 DOI: 10.1021/acs.biomac.1c01343] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Selective targeting of specific cells without the use of biological ligands has not been achieved. In the present study, we revealed that the coacervate droplets formed from poly(2-methoxyethyl acrylate) (PMEA) and its derivatives selectively accumulated to tumor cells. PMEA derivatives, which are insoluble acrylate polymers, induced coacervation in water to form polymer-dense droplets via hydrophobic interaction. Interestingly, the accumulation of coacervate droplets to tumor cells was involved in the bound water content of PMEA derivatives. Coacervate droplets with a high bound water content accumulated and internalized up to 36.6-fold higher in HeLa cervical tumor cells than in normal human fibroblasts (NHDF). Moreover, the interactions between coacervate droplets and plasma membrane components such as CD44 played a key role in this accumulation process. Therefore, coacervate droplets formed from PMEA derivatives have great clinical potential in tumor cell detection, development of alternative tumor-targeting ligands, and optimization of drug delivery carriers.
Collapse
Affiliation(s)
- Kei Nishida
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shin-Nosuke Nishimura
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
11
|
Nishida K, Sekida S, Anada T, Tanaka M. Modulation of Biological Responses of Tumor Cells Adhered to Poly(2-methoxyethyl acrylate) with Increasing Cell Viability under Serum-Free Conditions. ACS Biomater Sci Eng 2022; 8:672-681. [PMID: 35037460 DOI: 10.1021/acsbiomaterials.1c01469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Circulating tumor cells in body fluids are important biomarkers in cancer diagnosis. The culture of tumor cells isolated from body fluids can provide intrinsic information about tumors and can be used to screen for the best anticancer drugs. However, the culture of primary tumor cells has been hindered by their low viability and difficulties in recapitulating the phenotype of primary tumors in in vitro culture. The culture of tumor cells under serum-free conditions is one of the methodologies to maintain the phenotype and genotype of primary tumors. Poly(2-methoxyethyl acrylate) (PMEA)-coated substrates have been investigated to prolong the proliferation of tumor cells under serum-free conditions. In this study, we investigated the detailed behavior and the mechanism of the increase in tumor cell viability after adherence to PMEA substrates. The blebbing formation of tumor cells on PMEA was attributed not to apoptosis but to the low adhesion strength of cells on PMEA. Moreover, blebbing tumor cells showed amoeboid movement and formed clusters with other cells via N-cadherin, leading to an increase in tumor cell viability. Furthermore, the behaviors of tumor cells adhered to PMEA under serum-free conditions were involved in the activation of the PI3K and Rho-associated protein kinase pathways. Thus, we propose that PMEA would be suitable for the development of devices to cultivate primary tumor cells under serum-free conditions for the label-free diagnosis of cancer.
Collapse
Affiliation(s)
- Kei Nishida
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shogo Sekida
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takahisa Anada
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
12
|
Jikei M, Takeda M, Kaneda Y, Kudo K, Tanaka N, Matsumoto K, Hikida M, Ueki S. Synthesis and Antiplatelet Adhesion Behavior of a Poly(L-lactide- co-glycolide)-Poly(1,5-dioxepan-2-one) Multiblock Copolymer. ACS OMEGA 2021; 6:27968-27975. [PMID: 34722996 PMCID: PMC8552321 DOI: 10.1021/acsomega.1c03846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/30/2021] [Indexed: 05/04/2023]
Abstract
Platelet adhesion and denaturation on artificial medical implants induce thrombus formation. In this study, bioabsorbable copolymers composed of poly(l-lactide-co-glycolide) (PLGA) and poly(1,5-dioxepan-2-one) (PDXO) were synthesized and evaluated for their antiplatelet adhesive properties. The PLGA-PXO multiblock copolymer (PLGA-PDXO MBC) and its random copolymer (PLGA-PDXO RC) showed effective antiplatelet adhesive properties, and the number of adhered platelets was similar to those adhered on poly(2-methoxyethylacrylate), a known antiplatelet adhesive polymer, although a large number of denatured platelets were observed on a PLGA-poly(ε-caprolactone) multiblock copolymer (PLGA-PCL MBC). Using monoclonal antifibrinogen IgG antibodies, we also found that both αC and γ-chains, the binding sites of fibrinogen for platelets, were less exposed on the PLGA-PDXO MBC surface compared to PLGA-PCL MBC. Furthermore, free-standing films of PLGA-PDXO MBC were prepared by casting the polymer solution on glass plates and showed good tensile properties and slow hydrolytic degradation in phosphate-buffered saline (pH = 7.4). We expect that the unique properties of PLGA-PDXO MBC, i.e., antiplatelet adhesive behavior, good tensile strength, and hydrolytic degradation, will pave the way for the development of new bioabsorbable implanting materials suitable for application at blood-contacting sites.
Collapse
Affiliation(s)
- Mitsutoshi Jikei
- Department
of Materials Engineering, Graduate School of Engineering Science, Akita University, 1-1, Tegatagakuen-machi, Akita-shi, Akita 010-8502, Japan
| | - Mao Takeda
- Department
of Materials Engineering, Graduate School of Engineering Science, Akita University, 1-1, Tegatagakuen-machi, Akita-shi, Akita 010-8502, Japan
| | - Yoshiki Kaneda
- Department
of Materials Engineering, Graduate School of Engineering Science, Akita University, 1-1, Tegatagakuen-machi, Akita-shi, Akita 010-8502, Japan
| | - Kohei Kudo
- Department
of Materials Engineering, Graduate School of Engineering Science, Akita University, 1-1, Tegatagakuen-machi, Akita-shi, Akita 010-8502, Japan
| | - Nozomi Tanaka
- Department
of Materials Engineering, Graduate School of Engineering Science, Akita University, 1-1, Tegatagakuen-machi, Akita-shi, Akita 010-8502, Japan
| | - Kazuya Matsumoto
- Department
of Materials Engineering, Graduate School of Engineering Science, Akita University, 1-1, Tegatagakuen-machi, Akita-shi, Akita 010-8502, Japan
| | - Masaki Hikida
- Department
of Life Science, Graduate School of Engineering Science, Akita University, 1-1, Tegatagakuen-machi, Akita-shi, Akita 010-8502, Japan
| | - Shigeharu Ueki
- Department
of General Internal Medicine and Clinical Laboratory Medicine, Graduate
School of Medicine, Akita University, 1-1-1, Hondo, Akita-shi, Akita 010-8543, Japan
| |
Collapse
|
13
|
Nishida K, Anada T, Kobayashi S, Ueda T, Tanaka M. Effect of bound water content on cell adhesion strength to water-insoluble polymers. Acta Biomater 2021; 134:313-324. [PMID: 34332104 DOI: 10.1016/j.actbio.2021.07.058] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023]
Abstract
Adhesion of cells on biomaterials plays an essential role in modulating cellular functions. Although hydration of biomaterials occurs under biological conditions, it is challenging to systematically evaluate the correlation of hydrated water content in biomaterials with the cell adhesion strength. In this report, we investigated the effect of bound water content on the adhesion strength of cells on poly(2-methoxyethyl acrylate) (PMEA) analogue substrates. Water-insoluble PMEA analogues were synthesized to fabricate substrates with a systemically controlled bound water content. To assess the surface properties of their substrates, contact angle measurement, atomic force microscopy (AFM), and fluorescence measurement were conducted. To reflect the effect of bound water of PMEA analogues, the relationship between the bound water content and cell adhesion behavior was evaluated under serum-free condition. From the single cell force spectrometry (SCFS) and microscopic analysis, it revealed that the increment of bound water content on the substrates decreased cell adhesion strength and cell spreading on the substrates. The bound water content exhibited a good correlation with adhesion strength, spreading area, circularity, and aspect ratio of cells. Our findings indicate that the bound water content could contribute to the development of a novel biomaterial and evaluation of cell behaviors on biomaterials. STATEMENT OF SIGNIFICANCE: For coordinating cell functions, such as growth, mobility, and differentiation, modulating the adhesion strength between cells and their environments is important. Although the hydration to biomaterials has been reported to be closely related to a antifouling property, the effect of hydration water on the cell adhesion behavior is not well understood. We present the first demonstration of essential relationship between cell adhesion strength and hydrated water on a biomaterials surface using the water-insoluble polymers with different hydrated water content. The results reveal that the hydrated water content of polymer substrates strong correlation with adhesion strength of cells. Collectively, the hydrated water content of the biomaterials will be a predominant factor affecting the cell adhesion strength and behavior.
Collapse
|
14
|
Yang L, Pijuan-Galito S, Rho HS, Vasilevich AS, Eren AD, Ge L, Habibović P, Alexander MR, de Boer J, Carlier A, van Rijn P, Zhou Q. High-Throughput Methods in the Discovery and Study of Biomaterials and Materiobiology. Chem Rev 2021; 121:4561-4677. [PMID: 33705116 PMCID: PMC8154331 DOI: 10.1021/acs.chemrev.0c00752] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Indexed: 02/07/2023]
Abstract
The complex interaction of cells with biomaterials (i.e., materiobiology) plays an increasingly pivotal role in the development of novel implants, biomedical devices, and tissue engineering scaffolds to treat diseases, aid in the restoration of bodily functions, construct healthy tissues, or regenerate diseased ones. However, the conventional approaches are incapable of screening the huge amount of potential material parameter combinations to identify the optimal cell responses and involve a combination of serendipity and many series of trial-and-error experiments. For advanced tissue engineering and regenerative medicine, highly efficient and complex bioanalysis platforms are expected to explore the complex interaction of cells with biomaterials using combinatorial approaches that offer desired complex microenvironments during healing, development, and homeostasis. In this review, we first introduce materiobiology and its high-throughput screening (HTS). Then we present an in-depth of the recent progress of 2D/3D HTS platforms (i.e., gradient and microarray) in the principle, preparation, screening for materiobiology, and combination with other advanced technologies. The Compendium for Biomaterial Transcriptomics and high content imaging, computational simulations, and their translation toward commercial and clinical uses are highlighted. In the final section, current challenges and future perspectives are discussed. High-throughput experimentation within the field of materiobiology enables the elucidation of the relationships between biomaterial properties and biological behavior and thereby serves as a potential tool for accelerating the development of high-performance biomaterials.
Collapse
Affiliation(s)
- Liangliang Yang
- University
of Groningen, W. J. Kolff Institute for Biomedical Engineering and
Materials Science, Department of Biomedical Engineering, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Sara Pijuan-Galito
- School
of Pharmacy, Biodiscovery Institute, University
of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Hoon Suk Rho
- Department
of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Aliaksei S. Vasilevich
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Aysegul Dede Eren
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Lu Ge
- University
of Groningen, W. J. Kolff Institute for Biomedical Engineering and
Materials Science, Department of Biomedical Engineering, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Pamela Habibović
- Department
of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Morgan R. Alexander
- School
of Pharmacy, Boots Science Building, University
of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Jan de Boer
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Aurélie Carlier
- Department
of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Patrick van Rijn
- University
of Groningen, W. J. Kolff Institute for Biomedical Engineering and
Materials Science, Department of Biomedical Engineering, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Qihui Zhou
- Institute
for Translational Medicine, Department of Stomatology, The Affiliated
Hospital of Qingdao University, Qingdao
University, Qingdao 266003, China
| |
Collapse
|
15
|
Attachment and Growth of Fibroblast Cells on Poly (2-Methoxyethyl Acrylate) Analog Polymers as Coating Materials. COATINGS 2021. [DOI: 10.3390/coatings11040461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The regulation of adhesion and the subsequent behavior of fibroblast cells on the surface of biomaterials is important for successful tissue regeneration and wound healing by implanted biomaterials. We have synthesized poly(ω-methoxyalkyl acrylate)s (PMCxAs; x indicates the number of methylene carbons between the ester and ethyl oxygen), with a carbon chain length of x = 2–6, to investigate the regulation of fibroblast cell behavior including adhesion, proliferation, migration, differentiation and collagen production. We found that PMC2A suppressed the cell spreading, protein adsorption, formation of focal adhesion, and differentiation of normal human dermal fibroblasts, while PMC4A surfaces enhanced them compared to other PMCxAs. Our findings suggest that fibroblast activities attached to the PMCxA substrates can be modified by changing the number of methylene carbons in the side chains of the polymers. These results indicate that PMCxAs could be useful coating materials for use in skin regeneration and wound dressing applications.
Collapse
|
16
|
Tanaka M, Morita S, Hayashi T. Role of interfacial water in determining the interactions of proteins and cells with hydrated materials. Colloids Surf B Biointerfaces 2020; 198:111449. [PMID: 33310639 DOI: 10.1016/j.colsurfb.2020.111449] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/09/2020] [Accepted: 11/01/2020] [Indexed: 01/27/2023]
Abstract
Water molecules play a crucial role in biointerfacial interactions, including protein adsorption and desorption. To understand the role of water in the interaction of proteins and cells at biological interfaces, it is important to compare particular states of hydration water with various physicochemical properties of hydrated biomaterials. In this review, we discuss the fundamental concepts for determining the interactions of proteins and cells with hydrated materials along with selected examples corresponding to our recent studies, including poly(2-methoxyethyl acrylate) (PMEA), PMEA derivatives, and other biomaterials. The states of water were analyzed by differential scanning calorimetry, in situ attenuated total reflection infrared spectroscopy, and surface force measurements. We found that intermediate water which is loosely bound to a biomaterial, is a useful indicator of the bioinertness of material surfaces. This finding on intermediate water provides novel insights and helps develop novel experimental models for understanding protein adsorption in a wide range of materials, such as those used in biomedical applications.
Collapse
Affiliation(s)
- Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, CE41 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Shigeaki Morita
- Department of Engineering Science, Osaka Electro-Communication University, 18-8 Hatsucho, Neyagawa, 572-8530, Japan
| | - Tomohiro Hayashi
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8502, Japan; JST-PRESTO, 4-1-8 Hon-cho, Kawaguchi, Saitama, 332-0012, Japan
| |
Collapse
|
17
|
Ishihara K, Mitera K, Inoue Y, Fukazawa K. Effects of molecular interactions at various polymer brush surfaces on fibronectin adsorption induced cell adhesion. Colloids Surf B Biointerfaces 2020; 194:111205. [DOI: 10.1016/j.colsurfb.2020.111205] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/06/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023]
|
18
|
Sonoda T, Kobayashi S, Herai K, Tanaka M. Side-Chain Spacing Control of Derivatives of Poly(2-methoxyethyl acrylate): Impact on Hydration States and Antithrombogenicity. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01144] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Toshiki Sonoda
- Department of Applied Molecular Chemistry, Graduate School of Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shingo Kobayashi
- Institute for Materials Chemistry and Engineering, Kyushu University, CE41 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Keisuke Herai
- Department of Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, CE41 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
19
|
Tazawa S, Maeda T, Nakayama M, Hotta A. Synthesis of Thermoplastic Poly(2-methoxyethyl acrylate)-Based Polyurethane by RAFT and Condensation Polymerization. Macromol Rapid Commun 2020; 41:e2000346. [PMID: 32808412 DOI: 10.1002/marc.202000346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/05/2020] [Indexed: 11/10/2022]
Abstract
Thermoplastic solid poly(2-methoxyethyl acrylate) (PMEA)-based polyurethane (PU) is synthesized through the reversible addition-fragmentation chain transfer (RAFT) polymerization and the condensation polymerization, using hydroxyl-terminated RAFT reagents and diisocyanate, respectively. Neat PMEA is a promising antithrombogenic liquid used in the medical fields. The thermoplastic property of the solid PMEA-based PU due to hydrogen bonding is confirmed by the dynamic mechanical analysis (DMA) at temperature below 72 °C. The antithrombogenic property of PMEA-based PU is also analyzed by the platelet adhesion test. The number of platelets on PMEA-based PU is 17 cells per unit area, which is smaller than that on the fluorinated diamond-like carbon (F-DLC), a well-known highly antithrombogenic material. It is concluded that a newly synthesized PMEA-based PU exhibits thermoplastic characteristics with excellent antithrombogenicity.
Collapse
Affiliation(s)
- Shunsuke Tazawa
- Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Tomoki Maeda
- Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan.,Frontier Research Center for Applied Atomic Sciences, Ibaraki University, 162-1 Shirakata, Tokai village, Naka-gun, Ibaraki, 319-1106, Japan
| | - Masamitsu Nakayama
- Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan.,Department of Medicine, Tokai University Graduate School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Atsushi Hotta
- Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| |
Collapse
|
20
|
Tsai MY, Aratsu F, Sekida S, Kobayashi S, Tanaka M. Blood-Compatible Poly(2-methoxyethyl acrylate) Induces Blebbing-like Phenomenon and Promotes Viability of Tumor Cells in Serum-Free Medium. ACS APPLIED BIO MATERIALS 2020; 3:1858-1864. [DOI: 10.1021/acsabm.9b00885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Meng-Yu Tsai
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Fumihiro Aratsu
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shogo Sekida
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shingo Kobayashi
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
21
|
Tanaka M, Kobayashi S, Murakami D, Aratsu F, Kashiwazaki A, Hoshiba T, Fukushima K. Design of Polymeric Biomaterials: The “Intermediate Water Concept”. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20190274] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Masaru Tanaka
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Build. CE41, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shingo Kobayashi
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Build. CE41, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Daiki Murakami
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Build. CE41, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Fumihiro Aratsu
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Build. CE41, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Aki Kashiwazaki
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Build. CE41, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takashi Hoshiba
- Frontier Center for Organic Materials, Yamagata University, 4-3-16 Yonezawa, Yamagata 992-8510, Japan
| | - Kazuki Fukushima
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Yonezawa, Yamagata 992-8510, Japan
| |
Collapse
|
22
|
Yahata C, Suzuki J, Mochizuki A. Biocompatibility and adhesive strength properties of poly(methyl acrylate-co-acrylic acid) as a function of acrylic acid content. J BIOACT COMPAT POL 2019. [DOI: 10.1177/0883911519877427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Metals and metal alloys are widely used in medical devices that contact blood and/or tissue, and various coating materials for the metal parts have been proposed to improve surface properties such as biocompatibility. This study aims to understand the performance of new coating materials, copolymers of methyl acrylate and acrylic acid, in terms of their biocompatibility and adhesive strength to a metal surface. Blood compatibility was investigated through platelet and coagulation system responses. Cytocompatibility was studied in three cell-line types (endothelium, smooth muscle, and fibroblasts) in terms of cell viability and morphology; these tests showed that compatibility depended on the cell types and acrylic acid content of the copolymers. Because of their blood compatibility and adhesion strength, the methyl acrylate and acrylic acid copolymers containing 10–24 mol% acrylic acid were found to be excellent candidates as potential coating materials for devices contacting blood.
Collapse
Affiliation(s)
- Chie Yahata
- Department of Biomedical Engineering, School of Engineering, Tokai University, Isehara, Japan
| | - Junya Suzuki
- Department of Biomedical Engineering, School of Engineering, Tokai University, Isehara, Japan
| | - Akira Mochizuki
- Department of Biomedical Engineering, School of Engineering, Tokai University, Isehara, Japan
| |
Collapse
|
23
|
Hoshiba T, Yoshikawa C, Sakakibara K. Characterization of Initial Cell Adhesion on Charged Polymer Substrates in Serum-Containing and Serum-Free Media. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:4043-4051. [PMID: 29544251 DOI: 10.1021/acs.langmuir.8b00233] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Charged substrates are expected to promote cell adhesion via electrostatic interaction, but it remains unclear how cells adhere to these substrates. Here, initial cell adhesion (<30 min) was re-examined on charged substrates in serum-containing and serum-free media to distinguish among various cell adhesion mechanisms (i.e., electrostatic interaction, hydrophobic interaction, and biological interaction). Cationic and anionic methacrylate copolymers were coated on nonionic nontissue culture-treated polystyrene to create charged substrates. Cells adhered similarly on cationic, anionic, and nonionic substrates in serum-free medium via integrin-independent mechanisms, but their adhesion forces differed (anionic > cationic > nonionic substrates), indicating that cell adhesion is not mediated solely by the cells' negative charge. In serum-containing medium, the cells adhered minimally on anionic and nonionic substrates, but they adhered abundantly on cationic substrates via both integrin-dependent and -independent mechanisms. These results suggest that neither electrostatic force nor protein adsorption is accountable for cell adhesion. Conclusively, the observed phenomena revealed a gap in the generally accepted understanding of cell adhesion mechanisms on charged polymeric substrates. A reanalysis of their mechanisms is necessary.
Collapse
Affiliation(s)
- Takashi Hoshiba
- International Center for Materials Nanoarchitechtonics , National Institute for Materials Science , 1-2-1 Sengen , Tsukuba , Ibaraki 305-0047 , Japan
| | - Chiaki Yoshikawa
- International Center for Materials Nanoarchitechtonics , National Institute for Materials Science , 1-2-1 Sengen , Tsukuba , Ibaraki 305-0047 , Japan
| | - Keita Sakakibara
- Institute for Chemical Research , Kyoto University , Gokasho, Uji, Kyoto 611-0011 , Japan
| |
Collapse
|
24
|
Hoshiba T, Sato K, Kawazoe N, Chen G, Tanaka M. Chondrocyte Shapes and Detachment on a Thermoresponsive Poly(2-methoxyethyl acrylate) Analog for the Development of New Chondrocytes Subculture Substrate. CHEM LETT 2018. [DOI: 10.1246/cl.170889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Takashi Hoshiba
- Frontier Center for Organic Materials, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
- Innovative Flex Course for Frontier Organic Material Systems, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510, Japan
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Kazuhiro Sato
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Naoki Kawazoe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Guoping Chen
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Masaru Tanaka
- Frontier Center for Organic Materials, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
25
|
Kureha T, Nishizawa Y, Suzuki D. Controlled Separation and Release of Organoiodine Compounds Using Poly(2-methoxyethyl acrylate)-Analogue Microspheres. ACS OMEGA 2017; 2:7686-7694. [PMID: 31457326 PMCID: PMC6645105 DOI: 10.1021/acsomega.7b01556] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 10/30/2017] [Indexed: 05/16/2023]
Abstract
A selective adsorption/desorption of organoiodine compounds was achieved on poly(2-methoxyethyl acrylate)-analogue microspheres, wherein the side chains in the polymers act as halogen-bonding sites. These results demonstrate that the halogen-bonding sites in the side chains exhibit adequate specific affinity for organoiodine compounds. In addition, the water-swollen pMEA-analogue microspheres (microgels) showed a thermoresponsive swelling/deswelling behavior that permitted a controlled release of the organoiodine compounds upon changing the temperature. Thus, it seems plausible that a variety of problems associated with, e.g., the recovery of rare iodine-containing compounds, such as the marine-derived iodine compounds, the delivery of iodine-containing drugs, or the removal of halogen compounds from wastewater, could be resolved by polymer microspheres that exhibit controlled halogen bonding.
Collapse
Affiliation(s)
- Takuma Kureha
- Graduate
School of Textile Science & Technology and Division of Smart Textiles, Institute
for Fiber Engineering, Interdisciplinary Cluster for Cutting Edge
Research, Shinshu University, 3-15-1 Tokida, Ueda 386-8567, Japan
| | - Yuichiro Nishizawa
- Graduate
School of Textile Science & Technology and Division of Smart Textiles, Institute
for Fiber Engineering, Interdisciplinary Cluster for Cutting Edge
Research, Shinshu University, 3-15-1 Tokida, Ueda 386-8567, Japan
| | - Daisuke Suzuki
- Graduate
School of Textile Science & Technology and Division of Smart Textiles, Institute
for Fiber Engineering, Interdisciplinary Cluster for Cutting Edge
Research, Shinshu University, 3-15-1 Tokida, Ueda 386-8567, Japan
- E-mail:
| |
Collapse
|
26
|
Hoshiba T, Maruyama H, Sato K, Endo C, Kawazoe N, Chen G, Tanaka M. Maintenance of Cartilaginous Gene Expression of Serially Subcultured Chondrocytes on Poly(2‐Methoxyethyl Acrylate) Analogous Polymers. Macromol Biosci 2017; 17. [DOI: 10.1002/mabi.201700297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/18/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Takashi Hoshiba
- Frontier Center for Organic Materials Yamagata University 4‐3‐16 Jonan Yonezawa Yamagata 992‐8510 Japan
- Innovative Flex Course for Frontier Organic Materials Systems Yamagata University 4‐3‐16 Jonan Yonezawa Yamagata 992‐8510 Japan
- Research Center for Functional Materials National Institute for Materials Science 1‐1 Namiki Tsukuba Ibaraki 305‐0044 Japan
| | - Hiroka Maruyama
- Graduate School of Science and Engineering Yamagata University 4‐3‐16 Jonan Yonezawa Yamagata 992‐8510 Japan
| | - Kazuhiro Sato
- Graduate School of Science and Engineering Yamagata University 4‐3‐16 Jonan Yonezawa Yamagata 992‐8510 Japan
| | - Chiho Endo
- Graduate School of Science and Engineering Yamagata University 4‐3‐16 Jonan Yonezawa Yamagata 992‐8510 Japan
| | - Naoki Kawazoe
- Research Center for Functional Materials National Institute for Materials Science 1‐1 Namiki Tsukuba Ibaraki 305‐0044 Japan
| | - Guoping Chen
- Research Center for Functional Materials National Institute for Materials Science 1‐1 Namiki Tsukuba Ibaraki 305‐0044 Japan
| | - Masaru Tanaka
- Frontier Center for Organic Materials Yamagata University 4‐3‐16 Jonan Yonezawa Yamagata 992‐8510 Japan
- Institute for Materials Chemistry and Engineering Kyushu University 744 Motooka, Nishi‐ku Fukuoka Fukuoka 819‐0395 Japan
| |
Collapse
|
27
|
Hoshiba T, Yoshihiro A, Tanaka M. Evaluation of initial cell adhesion on poly (2-methoxyethyl acrylate) (PMEA) analogous polymers. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 28:986-999. [DOI: 10.1080/09205063.2017.1312738] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Takashi Hoshiba
- Frontier Center for Organic Materials, Yamagata University, Yonezawa, Japan
- Innovative Flex Course for Frontier Organic Materials Systems, Yamagata University, Yonezawa, Japan
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Ayano Yoshihiro
- Faculty of Engineering, Yamagata University, Yonezawa, Japan
| | - Masaru Tanaka
- Frontier Center for Organic Materials, Yamagata University, Yonezawa, Japan
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, Japan
| |
Collapse
|
28
|
Hoshiba T. Cultured cell-derived decellularized matrices: a review towards the next decade. J Mater Chem B 2017; 5:4322-4331. [DOI: 10.1039/c7tb00074j] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Summary of recent progress in cell-derived decellularized matrices preparation and application, with perspectives towards the next decade.
Collapse
Affiliation(s)
- T. Hoshiba
- Frontier Center for Organic Materials
- Yamagata University
- Yonezawa
- Japan
- Innovative Flex Course for Frontier Organic Materials Systems
| |
Collapse
|
29
|
Hoshiba T, Nemoto E, Sato K, Maruyama H, Endo C, Tanaka M. Promotion of Adipogenesis of 3T3-L1 Cells on Protein Adsorption-Suppressing Poly(2-methoxyethyl acrylate) Analogs. Biomacromolecules 2016; 17:3808-3815. [PMID: 27809482 DOI: 10.1021/acs.biomac.6b01340] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Stem cell differentiation is an important issue in regenerative medicine and tissue engineering. It has been reported that cell shape is one of the factors that determine the lineage commitment of mesenchymal stem cells (MSCs). Therefore, the substrates have been developed to control their shapes. Recently, we found that poly(2-methoxyethyl acrylate) (PMEA) analogs can control tumor cell shape through the alteration of protein adsorption. Here, the adipogenesis of an adipocyte-progenitor cell, 3T3-L1 cells, was attempted; adipogenesis was to be regulated by surfaces coated with PMEA analogs through the control of their shape. The adipogenesis of 3T3-L1 cells was promoted on the surfaces coated with PMEA and its analogs, PMe3A and PMe2A. Evident focal adhesions were hardly observed on these surfaces, suggesting that integrin signal activation was suppressed. Additionally, actin assembly and cell spreading were suppressed on these surfaces. Therefore, the surfaces coated with PMEA analogs are expected to be suitable surfaces to regulate adipogenesis through the suppression of cell spreading. Additionally, we found that protein adsorption correlated with actin assembly and adipogenesis.
Collapse
Affiliation(s)
- Takashi Hoshiba
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science , 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | | | | | | | | | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University , 744 Motooka, Nishi-ku, Fukuoka, Fukuoka 819-0395, Japan
| |
Collapse
|
30
|
In Vitro Endothelialization Test of Biomaterials Using Immortalized Endothelial Cells. PLoS One 2016; 11:e0158289. [PMID: 27348615 PMCID: PMC4922589 DOI: 10.1371/journal.pone.0158289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/13/2016] [Indexed: 11/19/2022] Open
Abstract
Functionalizing biomaterials with peptides or polymers that enhance recruitment of endothelial cells (ECs) can reduce blood coagulation and thrombosis. To assess endothelialization of materials in vitro, primary ECs are generally used, although the characteristics of these cells vary among the donors and change with time in culture. Recently, primary cell lines immortalized by transduction of simian vacuolating virus 40 large T antigen or human telomerase reverse transcriptase have been developed. To determine whether immortalized ECs can substitute for primary ECs in material testing, we investigated endothelialization on biocompatible polymers using three lots of primary human umbilical vein endothelial cells (HUVEC) and immortalized microvascular ECs, TIME-GFP. Attachment to and growth on polymer surfaces were comparable between cell types, but results were more consistent with TIME-GFP. Our findings indicate that TIME-GFP is more suitable for in vitro endothelialization testing of biomaterials.
Collapse
|
31
|
Hoshiba T, Nikaido M, Yagi S, Konno I, Yoshihiro A, Tanaka M. Blood-compatible poly (2-methoxyethyl acrylate) for the adhesion and proliferation of lung cancer cells toward the isolation and analysis of circulating tumor cells. J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911515618976] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Circulating tumor cells have received attention for their role in cancer diagnosis and the decision on which chemotherapeutic course to take. For these purposes, the isolation of circulating tumor cells has been important. Previously, we reported that non-blood cells can adhere on blood-compatible polymer substrates, such as poly(2-methoxyethyl acrylate) and poly(tetrahydrofurfuryl acrylate). In this study, we examined whether blood-compatible poly(2-methoxyethyl acrylate) and poly(tetrahydrofurfuryl acrylate) allow the adhesion and growth of A549 lung cancer cells for isolating circulating tumor cells by adhesion-mediated manner to diagnose metastatic cancer and to decide on the chemotherapeutic course. A549 cells can adhere on poly(2-methoxyethyl acrylate) and poly(tetrahydrofurfuryl acrylate) substrates via an integrin-dependent mechanism after 1 h of incubation, suggesting that blood-compatible poly(2-methoxyethyl acrylate) and poly(tetrahydrofurfuryl acrylate) substrates possess the ability to capture circulating tumor cells selectively from peripheral blood. After 1 day of culture, A549 cells started to spread on poly(2-methoxyethyl acrylate) and poly(tetrahydrofurfuryl acrylate) substrates. A549 can also grow on poly(2-methoxyethyl acrylate) and poly(tetrahydrofurfuryl acrylate) substrates. Additionally, the chemoresistance of A549 cells against 5-fluorouracil on poly(2-methoxyethyl acrylate) and poly(tetrahydrofurfuryl acrylate) substrates was similar to that on the conventional cell culture substrate, tissue culture polystyrene. These results indicate that circulating tumor cells can be cultured on poly(2-methoxyethyl acrylate) and poly(tetrahydrofurfuryl acrylate) substrates after they are isolated from peripheral blood, and poly(2-methoxyethyl acrylate) and poly(tetrahydrofurfuryl acrylate) substrates can be used as circulating tumor cell culture substrates for screening anti-cancer drugs. Therefore, poly(2-methoxyethyl acrylate) and poly(tetrahydrofurfuryl acrylate) substrates might be able to be applied to the development of a new device for a circulating tumor cell–based diagnosis of metastatic cancer and a personalized medicine approach regarding the decision of which chemotherapeutic course should be taken.
Collapse
Affiliation(s)
- Takashi Hoshiba
- Frontier Center for Organic Materials, Yamagata University, Yamagata, Japan
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Mayo Nikaido
- Graduate School of Science and Engineering, Yamagata University, Yamagata, Japan
| | - Satomi Yagi
- Graduate School of Science and Engineering, Yamagata University, Yamagata, Japan
| | - Iku Konno
- Department of Biochemical Engineering, Yamagata University, Yamagata, Japan
| | - Ayano Yoshihiro
- Department of Biochemical Engineering, Yamagata University, Yamagata, Japan
| | - Masaru Tanaka
- Frontier Center for Organic Materials, Yamagata University, Yamagata, Japan
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, Japan
| |
Collapse
|
32
|
HOSHIBA T, TANAKA M. Integrin-independent Cell Adhesion Substrates: Possibility of Applications for Mechanobiology Research. ANAL SCI 2016; 32:1151-1158. [DOI: 10.2116/analsci.32.1151] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Takashi HOSHIBA
- Frontier Center for Organic Materials, Yamagata University
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science
| | - Masaru TANAKA
- Frontier Center for Organic Materials, Yamagata University
- Institute for Materials Chemistry and Engineering, Kyushu University
| |
Collapse
|
33
|
Hoshiba T, Orui T, Endo C, Sato K, Yoshihiro A, Minagawa Y, Tanaka M. Adhesion-based simple capture and recovery of circulating tumor cells using a blood-compatible and thermo-responsive polymer-coated substrate. RSC Adv 2016. [DOI: 10.1039/c6ra15229e] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Circulating tumor cells (CTCs) have been a focus of study for metastatic cancer diagnostics, in in vitro anti-cancer drug screening to decide the chemotherapeutic course, and cancer biology research.
Collapse
Affiliation(s)
- Takashi Hoshiba
- Frontier Center for Organic Materials
- Yamagata University
- Yonezawa
- Japan
- International Center for Materials Nanoarchitectonics
| | - Toshihiko Orui
- Graduate School of Science and Engineering
- Yamagata University
- Yonezawa
- Japan
| | - Chiho Endo
- Graduate School of Science and Engineering
- Yamagata University
- Yonezawa
- Japan
| | - Kazuhiro Sato
- Graduate School of Science and Engineering
- Yamagata University
- Yonezawa
- Japan
| | - Ayano Yoshihiro
- Department of Biochemical Engineering
- Yamagata University
- Yonezawa
- Japan
| | | | - Masaru Tanaka
- Frontier Center for Organic Materials
- Yamagata University
- Yonezawa
- Japan
- Institute for Materials Chemistry and Engineering
| |
Collapse
|
34
|
Hoshiba T, Otaki T, Nemoto E, Maruyama H, Tanaka M. Blood-Compatible Polymer for Hepatocyte Culture with High Hepatocyte-Specific Functions toward Bioartificial Liver Development. ACS APPLIED MATERIALS & INTERFACES 2015; 7:18096-18103. [PMID: 26258689 DOI: 10.1021/acsami.5b05210] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The development of bioartificial liver (BAL) is expected because of the shortage of donor liver for transplantation. The substrates for BAL require the following criteria: (a) blood compatibility, (b) hepatocyte adhesiveness, and (c) the ability to maintain hepatocyte-specific functions. Here, we examined blood-compatible poly(2-methoxyethyl acrylate) (PMEA) and poly(tetrahydrofurfuryl acrylate) (PTHFA) (PTHFA) as the substrates for BAL. HepG2, a human hepatocyte model, could adhere on PMEA and PTHFA substrates. The spreading of HepG2 cells was suppressed on PMEA substrates because integrin contribution to cell adhesion on PMEA substrate was low and integrin signaling was not sufficiently activated. Hepatocyte-specific gene expression in HepG2 cells increased on PMEA substrate, whereas the expression decreased on PTHFA substrates due to the nuclear localization of Yes-associated protein (YAP). These results indicate that blood-compatible PMEA is suitable for BAL substrate. Also, PMEA is expected to be used to regulate cell functions for blood-contacting tissue engineering.
Collapse
Affiliation(s)
- Takashi Hoshiba
- †Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
- ‡International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Takayuki Otaki
- †Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Eri Nemoto
- †Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Hiroka Maruyama
- †Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Masaru Tanaka
- †Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
- §Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Fukuoka 819-0395, Japan
| |
Collapse
|