1
|
Rojas-Osornio SA, Crespo-Ramírez M, Paredes-Cervantes V, Mata-Marín A, Martínez-Lara R, Pérez de la Mora M, Tesoro-Cruz E. Oral Administration of Efavirenz Dysregulates the Tph2 Gene in Brain Serotonergic Areas and Alters Weight and Mood in Mice. Pharmaceuticals (Basel) 2024; 17:801. [PMID: 38931468 PMCID: PMC11206422 DOI: 10.3390/ph17060801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Most HIV-antiretroviral drugs have adverse effects. Efavirenz (EFV) is an example of a drug with neuropsychiatric effects, such as anxiety, depression, and suicidal thoughts, in people living with HIV (PLWH). The mechanisms by which EFV causes neuropsychiatric alterations in PLWH are complex, multifactorial, and not fully understood, although several studies in animals have reported changes in brain energy metabolism, alterations in monoamine turnover, GABA, and glutamate levels, and changes in 5-HT receptors. In this report, we studied the effects of EFV on the serotonergic system in healthy mice, specifically, whether EFV results in alterations in the levels of the tryptophan hydroxylase 2 (Tph2) gene in the brain. EFV (10 mg/kg) and distilled water (1.5 µL/kg) (control group) were orally administered to the mice for 36 days. At the end of the treatment, Tph2 expression levels in mouse brains were measured, and mood was evaluated by three trials: the forced swim test, elevated plus maze, and open field test. Our results revealed dysregulation of Tph2 expression in the brainstem, amygdala, and hypothalamus in the EFV group, and 5-HT levels increased in the amygdala in the EFV group. In the behavioral tests, mice given EFV exhibited a passive avoidance response in the forced swim test and anxiety-like behavior in the elevated plus maze, and they lost weight. Herein, for the first time, we showed that EFV triggered dysregulation of the Tph2 gene in the three serotonergic areas studied; and 5-HT levels increased in the amygdala using the ELISA method. However, further studies will be necessary to clarify the increase of 5-HT in the amygdala as well as understand the paradoxical decrease in body weight with the simultaneous increase in food consumption. It will also be necessary to measure 5-HT by other techniques different from ELISA, such as HPLC.
Collapse
Affiliation(s)
| | - Minerva Crespo-Ramírez
- Division de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Vladimir Paredes-Cervantes
- Laboratorio Central, Hospital de Especialidades “Dr. Antonio Fraga Mouret” Centro Médico Nacional “La Raza” Instituto Mexicano del Seguro Social, Mexico City 02990, Mexico;
| | - Antonio Mata-Marín
- Departamento de Infectología, Hospital de Infectología del Centro Médico Nacional “La Raza” IMSS, Mexico City 02990, Mexico;
| | - Ricardo Martínez-Lara
- Unidad de Investigación Biomédica en Inmunología e Infectología, del Hospital de Infectología del Centro Médico Nacional “La Raza” IMSS, Mexico City 02990, Mexico;
| | - Miguel Pérez de la Mora
- Division de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Emiliano Tesoro-Cruz
- Unidad de Investigación Biomédica en Inmunología e Infectología, del Hospital de Infectología del Centro Médico Nacional “La Raza” IMSS, Mexico City 02990, Mexico;
| |
Collapse
|
2
|
Pesantes N, Barberá A, Pérez-Rocher B, Artacho A, Vargas SL, Moya A, Ruiz-Ruiz S. Influence of mental health medication on microbiota in the elderly population in the Valencian region. Front Microbiol 2023; 14:1094071. [PMID: 37007475 PMCID: PMC10062206 DOI: 10.3389/fmicb.2023.1094071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/13/2023] [Indexed: 03/18/2023] Open
Abstract
Spain has an aging population; 19.93% of the Spanish population is over 65. Aging is accompanied by several health issues, including mental health disorders and changes in the gut microbiota. The gut-brain axis is a bidirectional network linking the central nervous system with gastrointestinal tract functions, and therefore, the gut microbiota can influence an individual’s mental health. Furthermore, aging-related physiological changes affect the gut microbiota, with differences in taxa and their associated metabolic functions between younger and older people. Here, we took a case–control approach to study the interplay between gut microbiota and mental health of elderly people. Fecal and saliva samples from 101 healthy volunteers over 65 were collected, of which 28 (EE|MH group) reported using antidepressants or medication for anxiety or insomnia at the time of sampling. The rest of the volunteers (EE|NOMH group) were the control group. 16S rRNA gene sequencing and metagenomic sequencing were applied to determine the differences between intestinal and oral microbiota. Significant differences in genera were found, specifically eight in the gut microbiota, and five in the oral microbiota. Functional analysis of fecal samples showed differences in five orthologous genes related to tryptophan metabolism, the precursor of serotonin and melatonin, and in six categories related to serine metabolism, a precursor of tryptophan. Moreover, we found 29 metabolic pathways with significant inter-group differences, including pathways regulating longevity, the dopaminergic synapse, the serotoninergic synapse, and two amino acids.
Collapse
Affiliation(s)
- Nicole Pesantes
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), València, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBEResp), Madrid, Spain
| | - Ana Barberá
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), València, Spain
| | - Benjamí Pérez-Rocher
- Instituto de Biología Integrativa de Sistemas (I2Sysbio), CSIC-Universitat de València, València, Spain
| | - Alejandro Artacho
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), València, Spain
| | - Sergio Luís Vargas
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Andrés Moya
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), València, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBEResp), Madrid, Spain
- Instituto de Biología Integrativa de Sistemas (I2Sysbio), CSIC-Universitat de València, València, Spain
| | - Susana Ruiz-Ruiz
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), València, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBEResp), Madrid, Spain
- *Correspondence: Susana Ruiz-Ruiz,
| |
Collapse
|
3
|
Li L, Wyler SC, León-Mercado LA, Xu B, Oh Y, Swati, Chen X, Wan R, Arnold AG, Jia L, Wang G, Nautiyal K, Hen R, Sohn JW, Liu C. Delineating a serotonin 1B receptor circuit for appetite suppression in mice. J Exp Med 2022; 219:213337. [PMID: 35796804 PMCID: PMC9270184 DOI: 10.1084/jem.20212307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/04/2022] [Accepted: 06/13/2022] [Indexed: 01/09/2023] Open
Abstract
Triptans are a class of commonly prescribed antimigraine drugs. Here, we report a previously unrecognized role for them to suppress appetite in mice. In particular, frovatriptan treatment reduces food intake and body weight in diet-induced obese mice. Moreover, the anorectic effect depends on the serotonin (5-HT) 1B receptor (Htr1b). By ablating Htr1b in four different brain regions, we demonstrate that Htr1b engages in spatiotemporally segregated neural pathways to regulate postnatal growth and food intake. Moreover, Htr1b in AgRP neurons in the arcuate nucleus of the hypothalamus (ARH) contributes to the hypophagic effects of HTR1B agonists. To further study the anorexigenic Htr1b circuit, we generated Htr1b-Cre mice. We find that ARH Htr1b neurons bidirectionally regulate food intake in vivo. Furthermore, single-nucleus RNA sequencing analyses revealed that Htr1b marks a subset of AgRP neurons. Finally, we used an intersectional approach to specifically target these neurons (Htr1bAgRP neurons). We show that they regulate food intake, in part, through a Htr1bAgRP→PVH circuit.
Collapse
Affiliation(s)
- Li Li
- The Hypothalamic Research Center, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX
| | - Steven C. Wyler
- The Hypothalamic Research Center, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX
| | - Luis A. León-Mercado
- The Hypothalamic Research Center, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX
| | - Baijie Xu
- The Hypothalamic Research Center, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX
| | - Youjin Oh
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Swati
- The Hypothalamic Research Center, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX
| | - Xiameng Chen
- The Hypothalamic Research Center, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX
| | - Rong Wan
- The Hypothalamic Research Center, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX
| | - Amanda G. Arnold
- The Hypothalamic Research Center, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX
| | - Lin Jia
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX
| | - Guanlin Wang
- Centre for Computational Biology, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Katherine Nautiyal
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH
| | - René Hen
- Department of Psychiatry, Columbia University and Research Foundation for Mental Hygiene, New York State Psychiatric Institute, New York, NY,Department of Neuroscience, Columbia University, New York, NY,Department of Pharmacology, Columbia University, New York, NY
| | - Jong-Woo Sohn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea,Jong-Woo Sohn:
| | - Chen Liu
- The Hypothalamic Research Center, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX,Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX,Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX,Correspondence to Chen Liu:
| |
Collapse
|
4
|
Tesoro-Cruz E, Manuel-Apolinar L, Oviedo N, Orozco-Suárez S, Crespo Ramírez M, Bekker-Méndez VC, Aguirre-García MM, Rojas-Osornio SA, Paredes-Cervantes V, Pérez de la Mora M. Increase of 5-HT levels is induced both in mouse brain and HEK-293 cells following their exposure to a non-viral tryptophan hydroxylase construct. Transl Psychiatry 2021; 11:515. [PMID: 34625528 PMCID: PMC8501106 DOI: 10.1038/s41398-021-01634-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 09/03/2021] [Accepted: 09/21/2021] [Indexed: 12/21/2022] Open
Abstract
Tryptophan hydroxylase type 2 (Tph2) is the rate-limiting enzyme for serotonin (5-HT) biosynthesis in the brain. Dysfunctional Tph2 alters 5-HT biosynthesis, leading to a deficiency of 5-HT, which could have repercussions on human behavior. In the last decade, several studies have associated polymorphisms of the TPH2 gene with suicidal behavior. Additionally, a 5-HT deficiency has been implicated in various psychiatric pathologies, including alcoholism, impulsive behavior, anxiety, and depression. Therefore, the TPH2 gene could be an ideal target for analyzing the effects of a 5-HT deficiency on brain function. The aim of this study was to use the construct pIRES-hrGFP-1a-Tph2-FLAG to treat CD1-male mice and to transfect HEK-293-cells and then to evaluate whether this treatment increases 5-HT production. 5-HT levels were enhanced 48 h post-transfection, in HEK-293 cells. Three days after the ocular administration of pIRES-hrGFP-1a-Tph2-FLAG to mice, putative 5-HT production was significantly higher than in the control in both hypothalamus and amygdala, but not in the brainstem. Further research will be needed on the possible application of this treatment for psychiatric diseases involving a Tph2 dysfunction or serotonin deficiency.
Collapse
Affiliation(s)
- Emiliano Tesoro-Cruz
- Unidad de Investigación Biomédica en Inmunología e Infectología, Hospital de Infectología, Centro Médico Nacional "La Raza", IMSS, Ciudad de México, México.
| | - Leticia Manuel-Apolinar
- grid.418385.3Unidad de Investigación Médica en Enfermedades Endócrinas, UMAE, Hospital de Especialidades, Centro Médico Nacional “Siglo XXI”, IMSS, Ciudad de México, México
| | - Norma Oviedo
- grid.418382.40000 0004 1759 7317Unidad de Investigación Biomédica en Inmunología e Infectología, Hospital de Infectología, Centro Médico Nacional “La Raza”, IMSS, Ciudad de México, México
| | - Sandra Orozco-Suárez
- grid.418385.3Unidad de Investigación Médica en Enfermedades Neurólogicas, UMAE, Hospital de Especialidades, Centro Médico Nacional “Siglo XXI”, IMSS, Ciudad de México, México
| | - Minerva Crespo Ramírez
- grid.9486.30000 0001 2159 0001División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Vilma Carolina Bekker-Méndez
- grid.418382.40000 0004 1759 7317Unidad de Investigación Biomédica en Inmunología e Infectología, Hospital de Infectología, Centro Médico Nacional “La Raza”, IMSS, Ciudad de México, México
| | - M. Magdalena Aguirre-García
- grid.419172.80000 0001 2292 8289Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, UNAM, Instituto Nacional de Cardiología Ignacio Chávez., Ciudad de México, México
| | - Sandra Angélica Rojas-Osornio
- grid.418275.d0000 0001 2165 8782Sección de Estudios de Posgrado e Investigación de la Escuela Superior de Medicina del Instituto Politécnico Nacional, Ciudad de México, México
| | - Vladimir Paredes-Cervantes
- grid.418382.40000 0004 1759 7317Unidad de Investigación Biomédica en Inmunología e Infectología, Hospital de Infectología, Centro Médico Nacional “La Raza”, IMSS, Ciudad de México, México
| | - Miguel Pérez de la Mora
- grid.9486.30000 0001 2159 0001División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
5
|
Jalali A, Firouzabadi N, Zarshenas MM. Pharmacogenetic-based management of depression: Role of traditional Persian medicine. Phytother Res 2021; 35:5031-5052. [PMID: 34041799 DOI: 10.1002/ptr.7134] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/26/2021] [Accepted: 04/10/2021] [Indexed: 12/11/2022]
Abstract
Depression is one of the most common mental disorders worldwide. The genetic factors are linked to depression and anti-depressant outcomes. Traditional Persian medicine (TPM) manuscripts have provided various anti-depressant remedies, which may be useful in depression management. This review has studied the bioactive compounds, underlying mechanisms, and treatment outcomes of the medicinal plants traditionally mentioned effective for depression from "The storehouse of medicament" (a famous pharmacopeia of TPM) to merge those with the novel genetics science and serve new scope in depression prevention and management. This review paper has been conducted in two sections: (1) Collecting medicinal plants and their bioactive components from "The storehouse of medicament," "Physician's Desk Reference (PDR) for Herbal Medicines," and "Google scholar" database. (2) The critical key factors and genes in depression pathophysiology, prevention, and treatment were clarified. Subsequently, the association between bioactive components' underlying mechanism and depression treatment outcomes via considering polymorphisms in related genes was derived. Taken together, α-Mangostin, β-carotene, β-pinene, apigenin, caffeic acid, catechin, chlorogenic acid, citral, ellagic acid, esculetin, ferulic acid, gallic acid, gentiopicroside, hyperoside, kaempferol, limonene, linalool, lycopene, naringin, protocatechuic acid, quercetin, resveratrol, rosmarinic acid, and umbelliferone are suitable for future pharmacogenetics-based studies in the management of depression.
Collapse
Affiliation(s)
- Atefeh Jalali
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Firouzabadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad M Zarshenas
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Shah PA, Park CJ, Shaughnessy MP, Cowles RA. Serotonin as a Mitogen in the Gastrointestinal Tract: Revisiting a Familiar Molecule in a New Role. Cell Mol Gastroenterol Hepatol 2021; 12:1093-1104. [PMID: 34022423 PMCID: PMC8350061 DOI: 10.1016/j.jcmgh.2021.05.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 02/02/2023]
Abstract
Serotonin signaling is ubiquitous in the gastrointestinal (GI) system, where it acts as a neurotransmitter in the enteric nervous system (ENS) and influences intestinal motility and inflammation. Since its discovery, serotonin has been linked to cellular proliferation in several types of tissues, including vascular smooth muscle, neurons, and hepatocytes. Activation of serotonin receptors on distinct cell types has been shown to induce well-known intracellular proliferation pathways. In the GI tract, potentiation of serotonin signaling results in enhanced intestinal epithelial proliferation, and decreased injury from intestinal inflammation. Furthermore, activation of the type 4 serotonin receptor on enteric neurons leads to neurogenesis and neuroprotection in the setting of intestinal injury. It is not surprising that the mitogenic properties of serotonin are pronounced within the GI tract, where enterochromaffin cells in the intestinal epithelium produce 90% of the body's serotonin; however, these proliferative effects are attributed to increased serotonin signaling within the ENS compartment as opposed to the intestinal mucosa, which are functionally and chemically separate by virtue of the distinct tryptophan hydroxylase enzyme isoforms involved in serotonin synthesis. The exact mechanism by which serotonergic neurons in the ENS lead to intestinal proliferation are not known, but the activation of muscarinic receptors on intestinal crypt cells indicate that cholinergic signaling is essential to this signaling pathway. Further understanding of serotonin's role in mucosal and enteric nervous system mitogenesis may aid in harnessing serotonin signaling for therapeutic benefit in many GI diseases, including inflammatory bowel disease, malabsorptive conditions, and cancer.
Collapse
Affiliation(s)
- Pooja A Shah
- Division of Pediatric Surgery, Department of Surgery, Yale School of Medicine, New Haven, Connecticut
| | - Christine J Park
- Division of Pediatric Surgery, Department of Surgery, Yale School of Medicine, New Haven, Connecticut
| | - Matthew P Shaughnessy
- Division of Pediatric Surgery, Department of Surgery, Yale School of Medicine, New Haven, Connecticut
| | - Robert A Cowles
- Division of Pediatric Surgery, Department of Surgery, Yale School of Medicine, New Haven, Connecticut.
| |
Collapse
|
7
|
Paul N, Raymond J, Lumbreras S, Bartsch D, Weber T, Lau T. Activation of the glucocorticoid receptor rapidly triggers calcium-dependent serotonin release in vitro. CNS Neurosci Ther 2021; 27:753-764. [PMID: 33715314 PMCID: PMC8193689 DOI: 10.1111/cns.13634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/01/2022] Open
Abstract
Aims Glucocorticoids rapidly provoke serotonin (5‐HT) release in vivo. We aimed to investigate molecular mechanisms of glucocorticoid receptor (GR)‐triggered 5‐HT release. Methods Employing 1C11 cells to model 5‐HT neurotransmission, immunofluorescence and Pearson's Correlation Coefficient were used to analyze colocalization of GR, 5‐HT, vesicle membrane protein synaptotagmin 1 and vesicle dye FM4‐64FX. FFN511 and FM4‐64FX dyes as well as calcium imaging were used to visualize vesicular 5‐HT release upon application of GR agonist dexamethasone, GR antagonist mifepristone and voltage‐gated calcium channel (VGCC) inhibitors. Results GR, 5‐HT, synaptotagmin 1 and FM4‐64FX showed overlapping staining patterns, with Pearson's Correlation Coefficient indicating colocalization. Similarly to potassium chloride, dexamethasone caused a release of FFN511 and uptake of FM4‐64FX, indicating vesicular 5‐HT release. Mifepristone, calcium depletion and inhibition of L‐type VGCC significantly diminished dexamethasone‐induced vesicular 5‐HT release. Conclusions In close proximity to 5‐HT releasing sites, activated GR rapidly triggers L‐type VGCC‐dependent vesicular 5‐HT release. These findings provide a better understanding of the interrelationship between glucocorticoids and 5‐HT release.
Collapse
Affiliation(s)
- Nicolas Paul
- Department of Psychiatry and Psychotherapy, Biochemical Laboratory, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Justine Raymond
- Department of Psychiatry and Psychotherapy, Biochemical Laboratory, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sara Lumbreras
- Department of Psychiatry and Psychotherapy, Biochemical Laboratory, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Dusan Bartsch
- Transgenic Models, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Tillmann Weber
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,MEDIAN Klinik Wilhelmsheim, Oppenweiler, Germany
| | - Thorsten Lau
- Department of Psychiatry and Psychotherapy, Biochemical Laboratory, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Translational Brain Research, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Hector Institute for Translational Brain Research, Mannheim, Germany.,German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
8
|
Serotonin deficiency induced after brain maturation rescues consequences of early life adversity. Sci Rep 2021; 11:5368. [PMID: 33686115 PMCID: PMC7940624 DOI: 10.1038/s41598-021-83592-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 01/22/2021] [Indexed: 01/31/2023] Open
Abstract
Brain serotonin (5-HT) system dysfunction is implicated in depressive disorders and acute depletion of 5-HT precursor tryptophan has frequently been used to model the influence of 5-HT deficiency on emotion regulation. Tamoxifen (TAM)-induced Cre/loxP-mediated inactivation of the tryptophan hydroxylase-2 gene (Tph2) was used to investigate the effects of provoked 5-HT deficiency in adult mice (Tph2 icKO) previously subjected to maternal separation (MS). The efficiency of Tph2 inactivation was validated by immunohistochemistry and HPLC. The impact of Tph2 icKO in interaction with MS stress (Tph2 icKO × MS) on physiological parameters, emotional behavior and expression of 5-HT system-related marker genes were assessed. Tph2 icKO mice displayed a significant reduction in 5-HT immunoreactive cells and 5-HT concentrations in the rostral raphe region within four weeks following TAM treatment. Tph2 icKO and MS differentially affected food and water intake, locomotor activity as well as panic-like escape behavior. Tph2 icKO prevented the adverse effects of MS stress and altered the expression of the genes previously linked to stress and emotionality. In conclusion, an experimental model was established to study the behavioral and neurobiological consequences of 5-HT deficiency in adulthood in interaction with early-life adversity potentially affecting brain development and the pathogenesis of depressive disorders.
Collapse
|
9
|
Romero-Reyes J, Molina-Hernández A, Díaz NF, Camacho-Arroyo I. Role of serotonin in vertebrate embryo development. Reprod Biol 2020; 21:100475. [PMID: 33370653 DOI: 10.1016/j.repbio.2020.100475] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/08/2020] [Accepted: 12/12/2020] [Indexed: 12/22/2022]
Abstract
Since its discovery in 1937, serotonin (5-HT) has become one of the most studied biogenic amines due to its predominant role in regulating several physiological processes such as mood, sleep, and food intake. This amine and the main components of the serotoninergic system are in almost all cells of the body. The presence of 5-HT and the serotoninergic system has been observed in oocytes and in different embryo development stages of fish, amphibians, birds, and mammals. In several classes of vertebrates, the change in the concentration of 5-HT or the alteration of the serotoninergic system, interfere with early embryo development. These data suggest that 5-HT participates in embryo development of vertebrates.
Collapse
Affiliation(s)
- Jessica Romero-Reyes
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México. Mexico City, Mexico
| | | | - Néstor Fabián Díaz
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Mexico.
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México. Mexico City, Mexico.
| |
Collapse
|
10
|
Pratelli M, Pasqualetti M. Serotonergic neurotransmission manipulation for the understanding of brain development and function: Learning from Tph2 genetic models. Biochimie 2019; 161:3-14. [DOI: 10.1016/j.biochi.2018.11.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/24/2018] [Indexed: 01/04/2023]
|
11
|
Haney MM, Sinnott J, Osman KL, Deninger I, Andel E, Caywood V, Mok A, Ballenger B, Cummings K, Thombs L, Lever TE. Mice Lacking Brain-Derived Serotonin Have Altered Swallowing Function. Otolaryngol Head Neck Surg 2019; 161:468-471. [PMID: 31035861 DOI: 10.1177/0194599819846109] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The intricate sensorimotor neural circuits that control swallowing are heavily reliant on serotonin (5-hydroxytryptamine [5-HT]); however, the impact of 5-HT deficiency on swallow function remains largely unexplored. We investigated this using mice deficient in tryptophan-hydroxylase-2 (TPH2), the enzyme catalyzing the rate-limiting step in 5-HT synthesis. Videofluoroscopy was utilized to characterize the swallowing function of TPH2 knockout (TPH2-/-) mice as compared with littermate controls (TPH2+/+). Results showed that 5-HT deficiency altered all 3 stages of swallowing. As compared with controls, TPH2-/- mice had significantly slower lick and swallow rates and faster esophageal transit times. Future studies with this model are necessary to determine if 5-HT replacement may rescue abnormal swallowing function. If so, supplemental 5-HT therapy may have vast applications for a large population of patients with a variety of neurologic disorders resulting in life-diminishing dysphagia, particularly amyotrophic lateral sclerosis and Parkinson's disease, for which 5-HT deficiency is implicated in the disease pathogenesis.
Collapse
Affiliation(s)
- Megan M Haney
- 1 Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Joseph Sinnott
- 2 Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Kate L Osman
- 2 Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Ian Deninger
- 2 Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Ellyn Andel
- 2 Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Victoria Caywood
- 2 Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Alexis Mok
- 2 Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Brayton Ballenger
- 2 Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Kevin Cummings
- 3 Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Lori Thombs
- 4 Department of Statistics, College of Arts and Sciences, University of Missouri, Columbia, Missouri, USA
| | - Teresa E Lever
- 2 Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, Missouri, USA.,3 Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
12
|
Gasparini CF, Smith RA, Griffiths LR. Genetic and biochemical changes of the serotonergic system in migraine pathobiology. J Headache Pain 2017; 18:20. [PMID: 28194570 PMCID: PMC5307402 DOI: 10.1186/s10194-016-0711-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/09/2016] [Indexed: 12/23/2022] Open
Abstract
Migraine is a brain disorder characterized by a piercing headache which affects one side of the head, located mainly at the temples and in the area around the eye. Migraine imparts substantial suffering to the family in addition to the sufferer, particularly as it affects three times more women than men and is most prevalent between the ages of 25 and 45, the years of child rearing. Migraine typically occurs in individuals with a genetic predisposition and is aggravated by specific environmental triggers. Attempts to study the biochemistry of migraine began as early as the 1960s and were primarily directed at serotonin metabolism after an increase of 5-hydroxyindoleacetic acid (5-HIAA), the main metabolite of serotonin was observed in urine of migraineurs. Genetic and biochemical studies have primarily focused on the neurotransmitter serotonin, considering receptor binding, transport and synthesis of serotonin and have investigated serotonergic mediators including enzymes, receptors as well as intermediary metabolites. These studies have been mainly assayed in blood, CSF and urine as the most accessible fluids. More recently PET imaging technology integrated with a metabolomics and a systems biology platform are being applied to study serotonergic biology. The general trend observed is that migraine patients have alterations of neurotransmitter metabolism detected in biological fluids with different biochemistry from controls, however the interpretation of the biological significance of these peripheral changes is unresolved. In this review we present the biology of the serotonergic system and metabolic routes for serotonin and discuss results of biochemical studies with regard to alterations in serotonin in brain, cerebrospinal fluid, saliva, platelets, plasma and urine of migraine patients.
Collapse
Affiliation(s)
- Claudia Francesca Gasparini
- Menzies Health Institute Queensland, Griffith University Gold Coast, Parklands Drive, Southport, QLD, 4222, Australia
| | - Robert Anthony Smith
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Musk Ave, Kelvin Grove, QLD, 4059, Australia
| | - Lyn Robyn Griffiths
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Musk Ave, Kelvin Grove, QLD, 4059, Australia.
| |
Collapse
|
13
|
Adult Brain Serotonin Deficiency Causes Hyperactivity, Circadian Disruption, and Elimination of Siestas. J Neurosci 2017; 36:9828-42. [PMID: 27656022 DOI: 10.1523/jneurosci.1469-16.2016] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/03/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Serotonin (5-HT) is a crucial neuromodulator linked to many psychiatric disorders. However, after more than 60 years of study, its role in behavior remains poorly understood, in part because of a lack of methods to target 5-HT synthesis specifically in the adult brain. Here, we have developed a genetic approach that reproducibly achieves near-complete elimination of 5-HT synthesis from the adult ascending 5-HT system by stereotaxic injection of an adeno-associated virus expressing Cre recombinase (AAV-Cre) into the midbrain/pons of mice carrying a loxP-conditional tryptophan hydroxylase 2 (Tph2) allele. We investigated the behavioral effects of deficient brain 5-HT synthesis and discovered a unique composite phenotype. Surprisingly, adult 5-HT deficiency did not affect anxiety-like behavior, but resulted in a robust hyperactivity phenotype in novel and home cage environments. Moreover, loss of 5-HT led to an altered pattern of circadian behavior characterized by an advance in the onset and a delay in the offset of daily activity, thus revealing a requirement for adult 5-HT in the control of daily activity patterns. Notably, after normalizing for hyperactivity, we found that the normal prolonged break in nocturnal activity (siesta), a period of rapid eye movement (REM) and non-REM sleep, was absent in all animals in which 5-HT deficiency was verified. Our findings identify adult 5-HT as a requirement for siestas, implicate adult 5-HT in sleep-wake homeostasis, and highlight the importance of our adult-specific 5-HT-synthesis-targeting approach in understanding 5-HT's role in controlling behavior. SIGNIFICANCE STATEMENT Serotonin (5-HT) is a crucial neuromodulator, yet its role in behavior remains poorly understood, in part because of a lack of methods to target specifically adult brain 5-HT synthesis. We developed an approach that reproducibly achieves near-complete elimination of 5-HT synthesis from the adult ascending 5-HT system. Using this technique, we discovered that adult 5-HT deficiency led to a novel compound phenotype consisting of hyperactivity, disrupted circadian behavior patterns, and elimination of siestas, a period of increased sleep during the active phase. These findings highlight the importance of our approach in understanding 5-HT's role in behavior, especially in controlling activity levels, circadian behavior, and sleep-wake homeostasis, behaviors that are disrupted in many psychiatric disorders such as attention deficit hyperactivity disorder.
Collapse
|
14
|
Maddaloni G, Bertero A, Pratelli M, Barsotti N, Boonstra A, Giorgi A, Migliarini S, Pasqualetti M. Development of Serotonergic Fibers in the Post-Natal Mouse Brain. Front Cell Neurosci 2017; 11:202. [PMID: 28769763 PMCID: PMC5509955 DOI: 10.3389/fncel.2017.00202] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/27/2017] [Indexed: 11/13/2022] Open
Abstract
Serotonin (5-HT)-synthetizing neurons, which are confined in the raphe nuclei of the rhombencephalon, provide a pervasive innervation of the central nervous system (CNS) and are involved in the modulation of a plethora of functions in both developing and adult brain. Classical studies have described the post-natal development of serotonergic axons as a linear process of terminal field innervation. However, technical limitations have hampered a fine morphological characterization. With the advent of genetic mouse models, the possibility to label specific neuronal populations allowed the rigorous measurement of their axonal morphological features as well as their developmental dynamics. Here, we used the Tph2GFP knock-in mouse line, in which GFP expression allows punctual identification of serotonergic neurons and axons, for confocal microscope imaging and we performed 3-dimensional reconstruction in order to morphologically characterize the development of serotonergic fibers in specified brain targets from birth to adulthood. Our analysis highlighted region-specific developmental patterns of serotonergic fiber density ranging from a linear and progressive colonization of the target (Caudate/Putamen, Basolateral Amygdala, Geniculate Nucleus and Substantia Nigra) to a transient increase in fiber density (medial Prefrontal Cortex, Globus Pallidus, Somatosensory Cortex and Hippocampus) occurring with a region-specific timing. Despite a common pattern of early post-natal morphological maturation in which a progressive rearrangement from a dot-shaped to a regular and smooth fiber morphology was observed, starting from post-natal day 28 serotonergic fibers acquire the region specific morphological features present in the adult. In conclusion, we provided novel, target-specific insights on the morphology and temporal dynamics of the developing serotonergic fibers.
Collapse
Affiliation(s)
- Giacomo Maddaloni
- Unit of Cell and Developmental Biology, Department of Biology, University of PisaPisa, Italy
| | - Alice Bertero
- Unit of Cell and Developmental Biology, Department of Biology, University of PisaPisa, Italy.,Center for Neuroscience and Cognitive Systems, Istituto Italiano di Technologia, University of TrentoRovereto, Italy
| | - Marta Pratelli
- Unit of Cell and Developmental Biology, Department of Biology, University of PisaPisa, Italy
| | - Noemi Barsotti
- Unit of Cell and Developmental Biology, Department of Biology, University of PisaPisa, Italy
| | - Annemarie Boonstra
- Unit of Cell and Developmental Biology, Department of Biology, University of PisaPisa, Italy
| | - Andrea Giorgi
- Unit of Cell and Developmental Biology, Department of Biology, University of PisaPisa, Italy.,Center for Neuroscience and Cognitive Systems, Istituto Italiano di Technologia, University of TrentoRovereto, Italy
| | - Sara Migliarini
- Unit of Cell and Developmental Biology, Department of Biology, University of PisaPisa, Italy
| | - Massimo Pasqualetti
- Unit of Cell and Developmental Biology, Department of Biology, University of PisaPisa, Italy.,Center for Neuroscience and Cognitive Systems, Istituto Italiano di Technologia, University of TrentoRovereto, Italy
| |
Collapse
|
15
|
Chen Y, Xu H, Zhu M, Liu K, Lin B, Luo R, Chen C, Li M. Stress inhibits tryptophan hydroxylase expression in a rat model of depression. Oncotarget 2017; 8:63247-63257. [PMID: 28968985 PMCID: PMC5609917 DOI: 10.18632/oncotarget.18780] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/21/2017] [Indexed: 12/30/2022] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) dysfunction is associated with the pathophysiology of depression. Tryptophan hydroxylase (TPH), the rate-limiting enzyme in 5-HT biosynthesis, is believed to have essential role in many mental disorders, including depression. In the present study, we generated a rat model of depression by exposing the animals to stress, and the rats were then treated with paroxetine. The results indicated that the concentration of 5-HT in the brain and liver tissues were significantly lower in the rat model of depression than in healthy or treated rats. Immunohistochemical analyses of TPH1/2 showed less TPH1 and TPH2 expression, specifically TPH2, in the brain, liver and kidney of the depressive rats than in the healthy rats; In addition, the two TPH isoforms, TPH1 and TPH2, had different spatial distributions,the mRNAs of the TPH1/2 genes were significantly decreased and TPH1/2 were highly methylated in the depressive model rat, but treatment with paroxetine ameliorated the expression and methylation of TPH1/2. All together, stress was able to inhibit expression of TPH1/2 in brain tissue and decrease concentration of 5-HT, the mechanism maybe involve in increasing the methylation of TPH2 genes promoter; Paroxetine has a role in confronting the effect of stress in depressive rat model.
Collapse
Affiliation(s)
- Yi Chen
- Key Laboratory of Molecular Biology, Hainan Medical College, Haikou 571199, Hainan Province, P. R. China.,Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, P. R. China
| | - Haixia Xu
- Key Laboratory of Molecular Biology, Hainan Medical College, Haikou 571199, Hainan Province, P. R. China.,Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, P. R. China
| | - Mingyue Zhu
- Key Laboratory of Molecular Biology, Hainan Medical College, Haikou 571199, Hainan Province, P. R. China.,Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, P. R. China
| | - Kun Liu
- Key Laboratory of Molecular Biology, Hainan Medical College, Haikou 571199, Hainan Province, P. R. China.,Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, P. R. China
| | - Bo Lin
- Key Laboratory of Molecular Biology, Hainan Medical College, Haikou 571199, Hainan Province, P. R. China.,Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, P. R. China
| | - Ruxian Luo
- Department of Psychiatry, Hainan Provincial Anning Hospital, Haikou 571199, Hainan Province, P. R. China
| | - Chuanbai Chen
- Department of Psychiatry, Hainan Provincial Anning Hospital, Haikou 571199, Hainan Province, P. R. China
| | - Mengsen Li
- Key Laboratory of Molecular Biology, Hainan Medical College, Haikou 571199, Hainan Province, P. R. China.,Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, P. R. China
| |
Collapse
|
16
|
Perturbation of Serotonin Homeostasis during Adulthood Affects Serotonergic Neuronal Circuitry. eNeuro 2017; 4:eN-NWR-0376-16. [PMID: 28413824 PMCID: PMC5388670 DOI: 10.1523/eneuro.0376-16.2017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/14/2017] [Accepted: 02/17/2017] [Indexed: 02/01/2023] Open
Abstract
Growing evidence shows that the neurotransmitter serotonin (5-HT) modulates the fine-tuning of neuron development and the establishment of wiring patterns in the brain. However, whether serotonin is involved in the maintenance of neuronal circuitry in the adult brain remains elusive. Here, we use a Tph2fl°x conditional knockout (cKO) mouse line to assess the impact of serotonin depletion during adulthood on serotonergic system organization. Data show that the density of serotonergic fibers is increased in the hippocampus and decreased in the thalamic paraventricular nucleus (PVN) as a consequence of brain serotonin depletion. Strikingly, these defects are rescued following reestablishment of brain 5-HT signaling via administration of the serotonin precursor 5-hydroxytryptophan (5-HTP). Finally, 3D reconstruction of serotonergic fibers reveals that changes in serotonin homeostasis affect axonal branching complexity. These data demonstrate that maintaining proper serotonin homeostasis in the adult brain is crucial to preserve the correct serotonergic axonal wiring.
Collapse
|
17
|
Bello EP, Casas-Cordero R, Galiñanes GL, Casey E, Belluscio MA, Rodríguez V, Noaín D, Murer MG, Rubinstein M. Inducible ablation of dopamine D2 receptors in adult mice impairs locomotion, motor skill learning and leads to severe parkinsonism. Mol Psychiatry 2017; 22:595-604. [PMID: 27431292 DOI: 10.1038/mp.2016.105] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 04/20/2016] [Accepted: 05/06/2016] [Indexed: 11/09/2022]
Abstract
Motor execution and planning are tightly regulated by dopamine D1 and D2 receptors present in basal ganglia circuits. Although stimulation of D1 receptors is known to enhance motor function, the global effect of D2 receptor (D2R) stimulation or blockade remains highly controversial, with studies showing increasing, decreasing or no changes in motor activity. Moreover, pharmacological and genetic attempts to block or eliminate D2R have led to controversial results that questioned the importance of D2R in motor function. In this study, we generated an inducible Drd2 null-allele mouse strain that circumvented developmental compensations found in constitutive Drd2-/- mice and allowed us to directly evaluate the participation of D2R in spontaneous locomotor activity and motor learning. We have found that loss of D2R during adulthood causes severe motor impairments, including hypolocomotion, deficits in motor coordination, impaired learning of new motor routines and spontaneous catatonia. Moreover, severe motor impairment, resting tremor and abnormal gait and posture, phenotypes reminiscent of Parkinson's disease, were evident when the mutation was induced in aged mice. Altogether, the conditional Drd2 knockout model studied here revealed the overall fundamental contribution of D2R in motor functions and explains some of the side effects elicited by D2R blockers when used in neurological and psychiatric conditions, including schizophrenia, bipolar disorder, Tourette's syndrome, dementia, alcohol-induced delusions and obsessive-compulsive disorder.
Collapse
Affiliation(s)
- E P Bello
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - R Casas-Cordero
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - G L Galiñanes
- Instituto de Fisiología y Biofísica Bernardo Houssay, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - E Casey
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M A Belluscio
- Instituto de Fisiología y Biofísica Bernardo Houssay, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - V Rodríguez
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - D Noaín
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M G Murer
- Instituto de Fisiología y Biofísica Bernardo Houssay, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.,Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M Rubinstein
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
18
|
Waider J, Ziegler J, Lau T. Outside the brain: an inside view on transgenic animal and stem cell-based models to examine neuronal serotonin-dependent regulation of HPA axis-controlled events during development and adult stages. Stem Cell Investig 2017; 3:94. [PMID: 28078274 DOI: 10.21037/sci.2016.11.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 11/08/2016] [Indexed: 11/06/2022]
Abstract
Recently, Trista North and colleagues showed that neuronal synthesis of serotonin is an essential key process for embryonic hematopoietic stem (HPS) cell production in zebrafish. Using their experimental design, they were able to show that neuronal serotonin activates the stress-responsive hypothalamic-pituitary-adrenal (HPA) axis and glucocorticoid receptor activity which in turn induces HPS cell formation. In our perspective, we give a short overview on established experimental approaches for serotonergic neurotransmission in vivo and in vitro and their potential to address putative contributions of serotonergic neurotransmission to physiological processes beyond the central nervous systems (CNS). We briefly introduce common features of brain serotonin-depleted, tryptophan hydroxylase-2 knockout mice, which can be applied to investigate the contribution of brain-derived serotonin to developmental and adult physiological processes outside the CNS. These models allow to analyzing gender-specific, HPA axis-dependent processes in female and male knockout mice during developmental and adult stages. We also highlight the application of human and mouse stem cell-derived serotonergic neurons as an independent research model as well as complementary experimental approach to transgenic animal models. In case of human serotonergic neurotransmission, human in vitro-generated neurons present a very promising and highly valuable experimental approach to address characteristics of human neuronal serotonin signaling on a molecular and cellular level. The combination of transgenic animal models and newly established stem cell technologies will provide powerful research platforms, which will help to answer yet unsolved mysteries of serotonergic neurotransmission.
Collapse
Affiliation(s)
- Jonas Waider
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Janina Ziegler
- Central Institute of Mental Health, Hector Institute for Translational Brain Research, Medical Faculty Mannheim, University Heidelberg, Heidelberg, Germany
| | - Thorsten Lau
- Central Institute of Mental Health, Hector Institute for Translational Brain Research, Medical Faculty Mannheim, University Heidelberg, Heidelberg, Germany
| |
Collapse
|
19
|
Li Z, Yang HY, Wang Y, Zhang ML, Liu XR, Xiong Q, Zhang LN, Jin Y, Mou LS, Liu Y, Li RF, Rao Y, Dai YF. Generation of tryptophan hydroxylase 2 gene knockout pigs by CRISPR/Cas9-mediated gene targeting. J Biomed Res 2017; 31:445-452. [PMID: 28866660 PMCID: PMC5706437 DOI: 10.7555/jbr.31.20170026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Unbalanced brain serotonin (5-HT) levels have implications in various behavioral abnormalities and neuropsychiatric disorders. The biosynthesis of neuronal 5-HT is regulated by the rate-limiting enzyme, tryptophan hydroxylase-2 (TPH2). In the present study, the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) system was used to target theTph2 gene in Bama mini pig fetal fibroblasts. It was found that CRISPR/Cas9 targeting efficiency could be as high as 61.5%, and the biallelic mutation efficiency reached at 38.5%. The biallelic modified colonies were used as donors for somatic cell nuclear transfer (SCNT) and 10Tph2 targeted piglets were successfully generated. These Tph2 KO piglets were viable and appeared normal at the birth. However, their central 5-HT levels were dramatically reduced, and their survival and growth rates were impaired before weaning. TheseTph2 KO pigs are valuable large-animal models for studies of 5-HT deficiency induced behavior abnomality.
Collapse
Affiliation(s)
- Ze Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Hai-Yuan Yang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Ying Wang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Man-Ling Zhang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xiao-Rui Liu
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Qiang Xiong
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Li-Ning Zhang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yong Jin
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Li-Sha Mou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, China
| | - Yan Liu
- Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, the School of Life Sciences, Peking University, Beijing 100871, China
| | - Rong-Feng Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yi Rao
- Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, the School of Life Sciences, Peking University, Beijing 100871, China
| | - Yi-Fan Dai
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|