1
|
Benz T, Larghero P, Meyer C, Müller M, Brüggmann D, Hentrich AE, Louwen F, Erkner E, Fitzel R, Schneidawind C, Marschalek R. Protocol for CRISPR-Cas9-mediated induction of KMT2A rearrangements in cell line and umbilical cord blood hematopoietic stem and progenitor cells. STAR Protoc 2024; 6:103481. [PMID: 39700011 PMCID: PMC11721537 DOI: 10.1016/j.xpro.2024.103481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/01/2024] [Accepted: 11/04/2024] [Indexed: 12/21/2024] Open
Abstract
KMT2A rearrangements are associated with a poor clinical outcome in infant, pediatric, and adult acute lymphoblastic and myeloid leukemia. Here, we present a protocol to reconstruct chromosomal translocations with different partner genes of KMT2A in vitro. We describe steps for patient-specific single guide RNA (sgRNA) design, optimized sgRNA in vitro transcription, detailed purification of hematopoietic stem and progenitor cells (HSPCs) from umbilical cord blood (UCB), and CRISPR-Cas9 editing of the test cell line K562 as well as UCB HSPCs. The provided methodology is donor independent.
Collapse
Affiliation(s)
- Tamara Benz
- Institute Pharmaceutical Biology/DCAL, Goethe-University, 60438 Frankfurt am Main, Germany.
| | - Patrizia Larghero
- Institute Pharmaceutical Biology/DCAL, Goethe-University, 60438 Frankfurt am Main, Germany
| | - Claus Meyer
- Institute Pharmaceutical Biology/DCAL, Goethe-University, 60438 Frankfurt am Main, Germany
| | - Marcel Müller
- Institute Pharmaceutical Biology/DCAL, Goethe-University, 60438 Frankfurt am Main, Germany
| | - Dörthe Brüggmann
- Department of Obstetrics and Perinatology, Goethe-University, 60590 Frankfurt am Main, Germany
| | - Anna-Elisabeth Hentrich
- Department of Obstetrics and Perinatology, Goethe-University, 60590 Frankfurt am Main, Germany
| | - Frank Louwen
- Department of Obstetrics and Perinatology, Goethe-University, 60590 Frankfurt am Main, Germany
| | - Estelle Erkner
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Rahel Fitzel
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Corina Schneidawind
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, 72076 Tübingen, Germany; Department of Medical Oncology and Hematology, University Hospital Zurich, 8091 Zürich, Switzerland
| | - Rolf Marschalek
- Institute Pharmaceutical Biology/DCAL, Goethe-University, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
2
|
Yamaguchi T, Uchida E, Okada T, Ozawa K, Onodera M, Kume A, Shimada T, Takahashi S, Tani K, Nasu Y, Mashimo T, Mizuguchi H, Mitani K, Maki K. Aspects of Gene Therapy Products Using Current Genome-Editing Technology in Japan. Hum Gene Ther 2020; 31:1043-1053. [PMID: 32731837 PMCID: PMC7585607 DOI: 10.1089/hum.2020.156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 07/17/2020] [Indexed: 12/26/2022] Open
Abstract
The development of genome-editing technology could lead to breakthrough gene therapy. Genome editing has made it possible to easily knock out or modify a target gene, while current gene therapy using a virus vector or plasmid hampering modification with respect to gene replacement therapies. Clinical development using these genome-editing tools is progressing rapidly. However, it is also becoming clear that there is a possibility of unintended gene sequence modification or deletion, or the insertion of undesired genes, or the selection of cells with abnormalities in the cancer suppressor gene p53; these unwanted actions are not possible with current gene therapy. The Science Board of the Pharmaceuticals and Medical Devices Agency of Japan has compiled a report on the expected aspects of such genome-editing technology and the risks associated with it. This article summarizes the history of that discussion and compares the key concepts with information provided by other regulatory authorities.
Collapse
Affiliation(s)
- Teruhide Yamaguchi
- Kanazawa Institute of Technology, Ishikawa, Japan
- Nihon Pharmaceutical University
| | | | | | | | | | | | | | | | | | - Yasutomo Nasu
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | | | | | | | | |
Collapse
|
3
|
High-efficiency CRISPR induction of t(9;11) chromosomal translocations and acute leukemias in human blood stem cells. Blood Adv 2020; 3:2825-2835. [PMID: 31582391 DOI: 10.1182/bloodadvances.2019000450] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/30/2019] [Indexed: 02/08/2023] Open
Abstract
Chromosomal rearrangements involving the mixed lineage leukemia (MLL) gene, also known as KMT2A, are often observed in human leukemias and are generally associated with a poor prognosis. To model these leukemias, we applied clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing to induce MLL chromosomal rearrangements in human hematopoietic stem and progenitor cells purified from umbilical cord blood. Electroporation of ribonucleoprotein complexes containing chemically modified synthetic single guide RNAs and purified Cas9 protein induced translocations between chromosomes 9 and 11 [t(9;11)] at an efficiency >1%. Transplantation of gene-edited cells into immune-compromised mice rapidly induced acute leukemias of different lineages and often with multiclonal origins dictated by the duration of in vitro culture prior to transplantation. Breakpoint junction sequences served as biomarkers to monitor clonal selection and progression in culture and in vivo. High-dimensional cell surface and intracellular protein analysis by mass cytometry (CyTOF) revealed that gene-edited leukemias recapitulated disease-specific protein expression observed in human patients and showed that MLL-rearranged (MLLr) mixed phenotype acute leukemias (MPALs) were more similar to acute myeloid leukemias (AMLs) than to acute lymphoblastic leukemias (ALLs). Therefore, highly efficient generation of MLL chromosomal translocations in primary human blood stem cells using CRISPR/Cas9 reliably models human acute MLLr leukemia and provides an experimental platform for basic and translational studies of leukemia biology and therapeutics.
Collapse
|
4
|
Sarrou E, Richmond L, Carmody RJ, Gibson B, Keeshan K. CRISPR Gene Editing of Murine Blood Stem and Progenitor Cells Induces MLL-AF9 Chromosomal Translocation and MLL-AF9 Leukaemogenesis. Int J Mol Sci 2020; 21:ijms21124266. [PMID: 32549410 PMCID: PMC7352880 DOI: 10.3390/ijms21124266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/04/2020] [Accepted: 06/10/2020] [Indexed: 01/07/2023] Open
Abstract
Chromosomal rearrangements of the mixed lineage leukaemia (MLL, also known as KMT2A) gene on chromosome 11q23 are amongst the most common genetic abnormalities observed in human acute leukaemias. MLL rearrangements (MLLr) are the most common cytogenetic abnormalities in infant and childhood acute myeloid leukaemia (AML) and acute lymphocytic leukaemia (ALL) and do not normally acquire secondary mutations compared to other leukaemias. To model these leukaemias, we have used clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing to induce MLL-AF9 (MA9) chromosomal rearrangements in murine hematopoietic stem and progenitor cell lines and primary cells. By utilizing a dual-single guide RNA (sgRNA) approach targeting the breakpoint cluster region of murine Mll and Af9 equivalent to that in human MA9 rearrangements, we show efficient de novo generation of MA9 fusion product at the DNA and RNA levels in the bulk population. The leukaemic features of MA9-induced disease were observed including increased clonogenicity, enrichment of c-Kit-positive leukaemic stem cells and increased MA9 target gene expression. This approach provided a rapid and reliable means of de novo generation of Mll-Af9 genetic rearrangements in murine haematopoietic stem and progenitor cells (HSPCs), using CRISPR/Cas9 technology to produce a cellular model of MA9 leukaemias which faithfully reproduces many features of the human disease in vitro.
Collapse
Affiliation(s)
- Evgenia Sarrou
- Paul O’Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G12 0YN, UK; (E.S.); (L.R.)
| | - Laura Richmond
- Paul O’Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G12 0YN, UK; (E.S.); (L.R.)
| | - Ruaidhrí J. Carmody
- Centre for Immunobiology, Institute of Infection, Immunity & Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK;
| | | | - Karen Keeshan
- Paul O’Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G12 0YN, UK; (E.S.); (L.R.)
- Correspondence:
| |
Collapse
|
5
|
Inhibition of DOT1L and PRMT5 promote synergistic anti-tumor activity in a human MLL leukemia model induced by CRISPR/Cas9. Oncogene 2019; 38:7181-7195. [PMID: 31417187 DOI: 10.1038/s41388-019-0937-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 04/30/2019] [Accepted: 05/29/2019] [Indexed: 02/07/2023]
Abstract
MLL rearrangements play a crucial role in leukemogenesis and comprise a poor prognosis. Therefore, new treatment strategies are urgently needed. We used the CRISPR/Cas9 system to generate an innovative leukemia model based on 100% pure MLL-AF4 or -AF9 rearranged cells derived from umbilical cord blood with indefinite growth in cell culture systems. Our model shared phenotypical, morphological and molecular features of patient cells faithfully mimicking the nature of the disease. Thus, it serves as a fundamental basis for pharmacological studies: inhibition of histone methyltransferase disruptor of telomeric silencing 1-like (DOT1L) is one specific therapeutic approach currently tested in clinical trials. However, success was limited by restricted response warranting further investigation of drug combinations. Recently, it has been shown that the inhibition of protein arginine methyltransferase 5 (PRMT5) exhibits anti-tumoral activity against human cell lines and in MLL mouse models. Here, we used DOT1L and PRMT5 inhibitors in our human MLL-rearranged model demonstrating dose-dependent reduced proliferation, impairment of cell cycle, increasing differentiation, apoptosis, downregulation of target genes and sensitization to chemotherapy. Strikingly, the combination of both compounds led to synergistic anti-tumoral effects. Our study provides a strong rationale for novel targeted combination therapies to improve the outcome of MLL-rearranged leukemias.
Collapse
|
6
|
Tsuyama N, Abe Y, Yanagi A, Yanai Y, Sugai M, Katafuchi A, Kawamura F, Kamiya K, Sakai A. Induction of t(11;14) IgH enhancer/promoter- cyclin D1 gene translocation using CRISPR/Cas9. Oncol Lett 2019; 18:275-282. [PMID: 31289497 PMCID: PMC6539856 DOI: 10.3892/ol.2019.10303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 04/18/2019] [Indexed: 12/13/2022] Open
Abstract
Chromosomal translocation is a key process in the oncogenic transformation of somatic cells. Previously, artificial induction of chromosomal translocation was performed using homologous recombination-mediated loxP labeling of target regions followed by Cre-mediated recombination. Recent progress in genome editing techniques has facilitated the easier induction of artificial translocation by cutting two targeted genome sequences from different chromosomes. The present study established a system to induce t(11;14)(q13;q32), which is observed primarily in multiple myeloma (MM) and involves the repositioning of the cyclin D1 (CCND1) gene downstream of the immunoglobulin heavy chain (IgH) constant region enhancers by translocation. The placing of tandem gRNAs designed to cut both the IgH Eµ and CCND1 15-kb upstream regions in lentiCRISPRv2 enabled the induction of chromosomal translocation in 293T cells, with confirmation by translocation-specific PCR and fluorescence in situ hybridization probing with IgH and CCND1. At the translocation junctions, small deletions and the addition of DNA sequences (indels) were observed in several clones. Cloned cells with t(11;14) exhibited slower growth and lower CCND1 mRNA expression compared to the parent cells, presenting the opposite phenomena induced by t(11;14) in MM cells, indicating that the silent IgH gene juxtaposed to CCND1 may negatively affect CCND1 gene expression and cell proliferation in the non-B lymphocyte lineage. Therefore, the present study achieved the induction of silent promoter/enhancer translocation in t(11;14)(q13;q32) as a preparatory experiment to study the role of IgH constant region enhancer-driven CCND1 overexpression in oncogenic transformation processes in B lymphocytes.
Collapse
Affiliation(s)
- Naohiro Tsuyama
- Department of Radiation Life Sciences, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Yu Abe
- Department of Radiation Life Sciences, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Aki Yanagi
- Department of Radiation Life Sciences, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Yukari Yanai
- Department of Radiation Life Sciences, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Misaki Sugai
- Department of Radiation Life Sciences, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Atsushi Katafuchi
- Department of Radiation Life Sciences, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Fumihiko Kawamura
- Department of Radiation Life Sciences, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Kenji Kamiya
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Minami-ku, Hiroshima 734-8553, Japan
| | - Akira Sakai
- Department of Radiation Life Sciences, Fukushima Medical University, Fukushima 960-1295, Japan
| |
Collapse
|
7
|
MLL leukemia induction by t(9;11) chromosomal translocation in human hematopoietic stem cells using genome editing. Blood Adv 2019; 2:832-845. [PMID: 29650777 DOI: 10.1182/bloodadvances.2017013748] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 03/01/2018] [Indexed: 01/21/2023] Open
Abstract
Genome editing provides a potential approach to model de novo leukemogenesis in primary human hematopoietic stem and progenitor cells (HSPCs) through induction of chromosomal translocations by targeted DNA double-strand breaks. However, very low efficiency of translocations and lack of markers for translocated cells serve as barriers to their characterization and model development. Here, we used transcription activator-like effector nucleases to generate t(9;11) chromosomal translocations encoding MLL-AF9 and reciprocal AF9-MLL fusion products in CD34+ human cord blood cells. Selected cytokine combinations enabled monoclonal outgrowth and immortalization of initially rare translocated cells, which were distinguished by elevated MLL target gene expression, high surface CD9 expression, and increased colony-forming ability. Subsequent transplantation into immune-compromised mice induced myeloid leukemias within 48 weeks, whose pathologic and molecular features extensively overlap with de novo patient MLL-rearranged leukemias. No secondary pathogenic mutations were revealed by targeted exome sequencing and whole genome RNA-sequencing analyses, suggesting the genetic sufficiency of t(9;11) translocation for leukemia development from human HSPCs. Thus, genome editing enables modeling of human acute MLL-rearranged leukemia in vivo, reflecting the genetic simplicity of this disease, and provides an experimental platform for biological and disease-modeling applications.
Collapse
|
8
|
Almosailleakh M, Schwaller J. Murine Models of Acute Myeloid Leukaemia. Int J Mol Sci 2019; 20:E453. [PMID: 30669675 PMCID: PMC6358780 DOI: 10.3390/ijms20020453] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 01/08/2023] Open
Abstract
Acute myeloid leukaemia (AML) is a rare but severe form of human cancer that results from a limited number of functionally cooperating genetic abnormalities leading to uncontrolled proliferation and impaired differentiation of hematopoietic stem and progenitor cells. Before the identification of genetic driver lesions, chemically, irradiation or viral infection-induced mouse leukaemia models provided platforms to test novel chemotherapeutics. Later, transgenic mouse models were established to test the in vivo transforming potential of newly cloned fusion genes and genetic aberrations detected in patients' genomes. Hereby researchers constitutively or conditionally expressed the respective gene in the germline of the mouse or reconstituted the hematopoietic system of lethally irradiated mice with bone marrow virally expressing the mutation of interest. More recently, immune deficient mice have been explored to study patient-derived human AML cells in vivo. Unfortunately, although complementary to each other, none of the currently available strategies faithfully model the initiation and progression of the human disease. Nevertheless, fast advances in the fields of next generation sequencing, molecular technology and bioengineering are continuously contributing to the generation of better mouse models. Here we review the most important AML mouse models of each category, briefly describe their advantages and limitations and show how they have contributed to our understanding of the biology and to the development of novel therapies.
Collapse
MESH Headings
- Animals
- Bone Marrow Transplantation
- Carcinogens/administration & dosage
- Cell Transformation, Viral
- Disease Models, Animal
- Gene Editing
- Heterografts
- Humans
- Immunocompromised Host
- Leukemia, Myeloid, Acute/etiology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mice
- Mice, Transgenic
- Radiation, Ionizing
Collapse
Affiliation(s)
- Marwa Almosailleakh
- Department of Biomedicine, University Children's Hospital beider Basel (UKBB), University of Basel, 4031 Basel, Switzerland.
| | - Juerg Schwaller
- Department of Biomedicine, University Children's Hospital beider Basel (UKBB), University of Basel, 4031 Basel, Switzerland.
| |
Collapse
|
9
|
Mesuraca M, Amodio N, Chiarella E, Scicchitano S, Aloisio A, Codispoti B, Lucchino V, Montalcini Y, Bond HM, Morrone G. Turning Stem Cells Bad: Generation of Clinically Relevant Models of Human Acute Myeloid Leukemia through Gene Delivery- or Genome Editing-Based Approaches. Molecules 2018; 23:E2060. [PMID: 30126100 PMCID: PMC6222541 DOI: 10.3390/molecules23082060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/09/2018] [Accepted: 08/14/2018] [Indexed: 02/07/2023] Open
Abstract
Acute myeloid leukemia (AML), the most common acute leukemia in the adult, is believed to arise as a consequence of multiple molecular events that confer on primitive hematopoietic progenitors unlimited self-renewal potential and cause defective differentiation. A number of genetic aberrations, among which a variety of gene fusions, have been implicated in the development of a transformed phenotype through the generation of dysfunctional molecules that disrupt key regulatory mechanisms controlling survival, proliferation, and differentiation in normal stem and progenitor cells. Such genetic aberrations can be recreated experimentally to a large extent, to render normal hematopoietic stem cells "bad", analogous to the leukemic stem cells. Here, we wish to provide a brief outline of the complementary experimental approaches, largely based on gene delivery and more recently on gene editing, employed over the last two decades to gain insights into the molecular mechanisms underlying AML development and progression and on the prospects that their applications offer for the discovery and validation of innovative therapies.
Collapse
Affiliation(s)
- Maria Mesuraca
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy.
| | - Nicola Amodio
- Laboratory of Medical Oncology, Department of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy.
| | - Emanuela Chiarella
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy.
| | - Stefania Scicchitano
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy.
| | - Annamaria Aloisio
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy.
| | - Bruna Codispoti
- Tecnologica Research Institute-Marrelli Hospital, 88900 Crotone, Italy.
| | - Valeria Lucchino
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy.
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany.
| | - Ylenia Montalcini
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy.
| | - Heather M Bond
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy.
| | - Giovanni Morrone
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy.
| |
Collapse
|
10
|
Montaño A, Forero-Castro M, Hernández-Rivas JM, García-Tuñón I, Benito R. Targeted genome editing in acute lymphoblastic leukemia: a review. BMC Biotechnol 2018; 18:45. [PMID: 30016959 PMCID: PMC6050675 DOI: 10.1186/s12896-018-0455-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/05/2018] [Indexed: 12/18/2022] Open
Abstract
Background Genome editing technologies offers new opportunities for tackling diseases such as acute lymphoblastic leukemia (ALL) that have been beyond the reach of previous therapies. Results We show how the recent availability of genome-editing tools such as CRISPR-Cas9 are an important means of advancing functional studies of ALL through the incorporation, elimination and modification of somatic mutations and fusion genes in cell lines and mouse models. These tools not only broaden the understanding of the involvement of various genetic alterations in the pathogenesis of the disease but also identify new therapeutic targets for future clinical trials. Conclusions New approaches including CRISPR-Cas9 are crucial for functional studies of genetic aberrations driving cancer progression, and that may be responsible for treatment resistance and relapses. By using this approach, diseases can be more faithfully reproduced and new therapeutic targets and approaches found.
Collapse
Affiliation(s)
- Adrián Montaño
- IBSAL, IBMCC, University of Salamanca-CSIC, Cancer Research Center, Salamanca, Spain
| | - Maribel Forero-Castro
- School of Biological Sciences (GICBUPTC Research group), Universidad Pedagógica y Tecnológica de Colombia, Boyacá, Colombia
| | - Jesús-María Hernández-Rivas
- IBSAL, IBMCC, University of Salamanca-CSIC, Cancer Research Center, Salamanca, Spain. .,Department of Medicine, University of Salamanca, Spain, Department of Hematology, University Hospital of Salamanca, Salamanca, Spain. .,IBMCC, CIC University of Salamanca-CSIC, University Hospital of Salamanca, Salamanca, Spain.
| | - Ignacio García-Tuñón
- IBSAL, IBMCC, University of Salamanca-CSIC, Cancer Research Center, Salamanca, Spain
| | - Rocío Benito
- IBSAL, IBMCC, University of Salamanca-CSIC, Cancer Research Center, Salamanca, Spain
| |
Collapse
|
11
|
Brunet E, Jasin M. Induction of Chromosomal Translocations with CRISPR-Cas9 and Other Nucleases: Understanding the Repair Mechanisms That Give Rise to Translocations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1044:15-25. [PMID: 29956288 DOI: 10.1007/978-981-13-0593-1_2] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Chromosomal translocations are associated with several tumor types, including hematopoietic malignancies, sarcomas, and solid tumors of epithelial origin, due to their activation of a proto-oncogene or generation of a novel fusion protein with oncogenic potential. In many cases, the availability of suitable human models has been lacking because of the difficulty in recapitulating precise expression of the fusion protein or other reasons. Further, understanding how translocations form mechanistically has been a goal, as it may suggest ways to prevent their occurrence. Chromosomal translocations arise when DNA ends from double-strand breaks (DSBs) on two heterologous chromosomes are improperly joined. This review provides a summary of DSB repair mechanisms and their contribution to translocation formation, the various programmable nuclease platforms that have been used to generate translocations, and the successes that have been achieved in this area.
Collapse
Affiliation(s)
- Erika Brunet
- Genome Dynamics in the Immune System Laboratory, Institut Imagine, INSERM UMR 1163, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
12
|
Prieto C, Marschalek R, Kühn A, Bursen A, Bueno C, Menéndez P. The AF4-MLL fusion transiently augments multilineage hematopoietic engraftment but is not sufficient to initiate leukemia in cord blood CD34 + cells. Oncotarget 2017; 8:81936-81941. [PMID: 29137234 PMCID: PMC5669860 DOI: 10.18632/oncotarget.19567] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 04/22/2017] [Indexed: 12/25/2022] Open
Abstract
The translocation t(4;11)(q21;q23) is the hallmark genetic abnormality associated with infant pro-B acute lymphoblastic leukemia (B-ALL) and has the highest frequency of rearrangement in Mixed-lineage leukemia (MLL) leukemias. Unlike other MLL translocations, MLL-AF4-induced proB-ALL is exceptionally difficult to model in mice/humans. Previous work has investigated the relevance of the reciprocal translocation fusion protein AF4-MLL for t(4;11) leukemia, finding that AF4-MLL is capable of inducing proB-ALL without requirement for MLL-AF4 when expressed in murine hematopoietic stem/progenitor cells (HSPCs). Therefore, AF4-MLL might represent a key genetic lesion contributing to t(4;11)-driven leukemogenesis. Here, we aimed to establish a humanized mouse model by using AF4-MLL to analyze its transformation potential in human cord blood-derived CD34+ HSPCs. We show that AF4-MLL-expressing human CD34+ HSPCs provide enhanced long-term hematopoietic reconstitution in primary immunodeficient recipients but are not endowed with subsequent self-renewal ability upon serial transplantation. Importantly, expression of AF4-MLL in primary neonatal CD34+ HSPCs failed to render any phenotypic or hematological sign of disease, and was therefore not sufficient to initiate leukemia within a 36-week follow-up. Species-specific (epi)-genetic intrinsic determinants may underlie the different outcome observed when AF4-MLL is expressed in murine or human HSPCs.
Collapse
Affiliation(s)
- Cristina Prieto
- Department of Biomedicine, Josep Carreras Leukemia Research Institute, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Rolf Marschalek
- Institute of Pharmaceutical Biology/DCAL, Goethe-University, Frankfurt, Germany
| | - Alessa Kühn
- Institute of Pharmaceutical Biology/DCAL, Goethe-University, Frankfurt, Germany
| | - Adelheid Bursen
- Institute of Pharmaceutical Biology/DCAL, Goethe-University, Frankfurt, Germany
| | - Clara Bueno
- Department of Biomedicine, Josep Carreras Leukemia Research Institute, School of Medicine, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cancer (CIBERONC), Barcelona, Spain
| | - Pablo Menéndez
- Department of Biomedicine, Josep Carreras Leukemia Research Institute, School of Medicine, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cancer (CIBERONC), Barcelona, Spain.,Instituciò Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
13
|
Reimer J, Knöß S, Labuhn M, Charpentier EM, Göhring G, Schlegelberger B, Klusmann JH, Heckl D. CRISPR-Cas9-induced t(11;19)/MLL-ENL translocations initiate leukemia in human hematopoietic progenitor cells in vivo. Haematologica 2017; 102:1558-1566. [PMID: 28572162 PMCID: PMC5685230 DOI: 10.3324/haematol.2017.164046] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 05/31/2017] [Indexed: 12/17/2022] Open
Abstract
Chromosomal translocations that generate oncogenic fusion proteins are causative for most pediatric leukemias and frequently affect the MLL/KMT2A gene. In vivo modeling of bona fide chromosomal translocations in human hematopoietic stem and progenitor cells is challenging but essential to determine their actual leukemogenic potential. We therefore developed an advanced lentiviral CRISPR-Cas9 vector that efficiently transduced human CD34+ hematopoietic stem and progenitor cells and induced the t(11;19)/MLL-ENL translocation. Leveraging this system, we could demonstrate that hematopoietic stem and progenitor cells harboring the translocation showed only a transient clonal growth advantage in vitro In contrast, t(11;19)/MLL-ENL-harboring CD34+ hematopoietic stem and progenitor cells not only showed long-term engraftment in primary immunodeficient recipients, but t(11;19)/MLL-ENL also served as a first hit to initiate a monocytic leukemia-like disease. Interestingly, secondary recipients developed acute lymphoblastic leukemia with incomplete penetrance. These findings indicate that environmental cues not only contribute to the disease phenotype, but also to t(11;19)/MLL-ENL-mediated oncogenic transformation itself. Thus, by investigating the true chromosomal t(11;19) rearrangement in its natural genomic context, our study emphasizes the importance of environmental cues for the pathogenesis of pediatric leukemias, opening an avenue for novel treatment options.
Collapse
Affiliation(s)
- Jana Reimer
- Pediatric Hematology & Oncology, Hannover Medical School, Germany
| | - Sabine Knöß
- Pediatric Hematology & Oncology, Hannover Medical School, Germany
| | - Maurice Labuhn
- Pediatric Hematology & Oncology, Hannover Medical School, Germany
| | - Emmanuelle M Charpentier
- Max Planck Institute for Infection Biology, Berlin, Germany.,The Laboratory for Molecular Infection Medicine Sweden, Umeå University, Sweden
| | | | | | - Jan-Henning Klusmann
- Pediatric Hematology & Oncology, Hannover Medical School, Germany Klusmann.Jan-Henning@mh-hannover
| | - Dirk Heckl
- Pediatric Hematology & Oncology, Hannover Medical School, Germany Klusmann.Jan-Henning@mh-hannover
| |
Collapse
|
14
|
Chemical exposure and infant leukaemia: development of an adverse outcome pathway (AOP) for aetiology and risk assessment research. Arch Toxicol 2017; 91:2763-2780. [PMID: 28536863 DOI: 10.1007/s00204-017-1986-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/08/2017] [Indexed: 01/06/2023]
Abstract
Infant leukaemia (<1 year old) is a rare disease of an in utero origin at an early phase of foetal development. Rearrangements of the mixed-lineage leukaemia (MLL) gene producing abnormal fusion proteins are the most frequent genetic/molecular findings in infant B cell-acute lymphoblastic leukaemia. In small epidemiological studies, mother/foetus exposures to some chemicals including pesticides have been associated with infant leukaemia; however, the strength of evidence and power of these studies are weak at best. Experimental in vitro or in vivo models do not sufficiently recapitulate the human disease and regulatory toxicology studies are unlikely to capture this kind of hazard. Here, we develop an adverse outcome pathway (AOP) based substantially on an analogous disease-secondary acute leukaemia caused by the topoisomerase II (topo II) poison etoposide-and on cellular and animal models. The hallmark of the AOP is the formation of MLL gene rearrangements via topo II poisoning, leading to fusion genes and ultimately acute leukaemia by global (epi)genetic dysregulation. The AOP condenses molecular, pathological, regulatory and clinical knowledge in a pragmatic, transparent and weight of evidence-based framework. This facilitates the interpretation and integration of epidemiological studies in the process of risk assessment by defining the biologically plausible causative mechanism(s). The AOP identified important gaps in the knowledge relevant to aetiology and risk assessment, including the specific embryonic target cell during the short and spatially restricted period of susceptibility, and the role of (epi)genetic features modifying the initiation and progression of the disease. Furthermore, the suggested AOP informs on a potential Integrated Approach to Testing and Assessment to address the risk caused by environmental chemicals in the future.
Collapse
|
15
|
Marschalek R. Systematic Classification of Mixed-Lineage Leukemia Fusion Partners Predicts Additional Cancer Pathways. Ann Lab Med 2017; 36:85-100. [PMID: 26709255 PMCID: PMC4713862 DOI: 10.3343/alm.2016.36.2.85] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/26/2015] [Accepted: 12/03/2015] [Indexed: 11/19/2022] Open
Abstract
Chromosomal translocations of the human mixed-lineage leukemia (MLL) gene have been analyzed for more than 20 yr at the molecular level. So far, we have collected about 80 direct MLL fusions (MLL-X alleles) and about 120 reciprocal MLL fusions (X-MLL alleles). The reason for the higher amount of reciprocal MLL fusions is that the excess is caused by 3-way translocations with known direct fusion partners. This review is aiming to propose a solution for an obvious problem, namely why so many and completely different MLL fusion alleles are always leading to the same leukemia phenotypes (ALL, AML, or MLL). This review is aiming to explain the molecular consequences of MLL translocations, and secondly, the contribution of the different fusion partners. A new hypothesis will be posed that can be used for future research, aiming to find new avenues for the treatment of this particular leukemia entity.
Collapse
Affiliation(s)
- Rolf Marschalek
- Institute of Pharmaceutical Biology/DCAL, Goethe-University of Frankfurt, Biocenter, Frankfurt/Main, Germany.
| |
Collapse
|
16
|
Castaño J, Herrero AB, Bursen A, González F, Marschalek R, Gutiérrez NC, Menendez P. Expression of MLL-AF4 or AF4-MLL fusions does not impact the efficiency of DNA damage repair. Oncotarget 2016; 7:30440-52. [PMID: 27119507 PMCID: PMC5058691 DOI: 10.18632/oncotarget.8938] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 04/13/2016] [Indexed: 11/30/2022] Open
Abstract
The most frequent rearrangement of the human MLL gene fuses MLL to AF4 resulting in high-risk infant B-cell acute lymphoblastic leukemia (B-ALL). MLL fusions are also hallmark oncogenic events in secondary acute myeloid leukemia. They are a direct consequence of mis-repaired DNA double strand breaks (DNA-DSBs) due to defects in the DNA damage response associated with exposure to topoisomerase-II poisons such as etoposide. It has been suggested that MLL fusions render cells susceptible to additional chromosomal damage upon exposure to etoposide. Conversely, the genome-wide mutational landscape in MLL-rearranged infant B-ALL has been reported silent. Thus, whether MLL fusions compromise the recognition and/or repair of DNA damage remains unanswered. Here, the fusion proteins MLL-AF4 (MA4) and AF4-MLL (A4M) were CRISPR/Cas9-genome edited in the AAVS1 locus of HEK293 cells as a model to study MLL fusion-mediated DNA-DSB formation/repair. Repair kinetics of etoposide- and ionizing radiation-induced DSBs was identical in WT, MA4- and A4M-expressing cells, as revealed by flow cytometry, by immunoblot for γH2AX and by comet assay. Accordingly, no differences were observed between WT, MA4- and A4M-expressing cells in the presence of master proteins involved in non-homologous end-joining (NHEJ; i.e.KU86, KU70), alternative-NHEJ (Alt-NHEJ; i.e.LigIIIa, WRN and PARP1), and homologous recombination (HR, i.e.RAD51). Moreover, functional assays revealed identical NHEJ and HR efficiency irrespective of the genotype. Treatment with etoposide consistently induced cell cycle arrest in S/G2/M independent of MA4/A4M expression, revealing a proper activation of the DNA damage checkpoints. Collectively, expression of MA4 or A4M does neither influence DNA signaling nor DNA-DSB repair.
Collapse
Affiliation(s)
- Julio Castaño
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Ana B. Herrero
- Hematology Department, University Hospital of Salamanca, IBSAL, IBMCC (USAL-CSIC), Salamanca, Spain
| | - Aldeheid Bursen
- Institute Pharmaceutical Biology, Goethe-University, Frankfurt/Main, Germany
| | | | - Rolf Marschalek
- Institute Pharmaceutical Biology, Goethe-University, Frankfurt/Main, Germany
| | - Norma C. Gutiérrez
- Hematology Department, University Hospital of Salamanca, IBSAL, IBMCC (USAL-CSIC), Salamanca, Spain
| | - Pablo Menendez
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
17
|
Abstract
Genome editing is the process of precisely modifying the nucleotide sequence of the genome. It has provided a powerful approach to research questions but, with the development of a new set of tools, it is now possible to achieve frequencies of genome editing that are high enough to be useful therapeutically. Genome editing is being developed to treat not only monogenic diseases but also infectious diseases and diseases that have both a genetic and an environmental component.
Collapse
Affiliation(s)
- Matthew H Porteus
- Department of Pediatrics, Stanford University, Welch Road, Stanford, CA, 94305, USA.
| |
Collapse
|
18
|
MLL leukemia induction by genome editing of human CD34+ hematopoietic cells. Blood 2015; 126:1683-94. [PMID: 26311362 DOI: 10.1182/blood-2015-05-646398] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/23/2015] [Indexed: 01/01/2023] Open
Abstract
Chromosomal rearrangements involving the mixed-lineage leukemia (MLL) gene occur in primary and treatment-related leukemias and confer a poor prognosis. Studies based primarily on mouse models have substantially advanced our understanding of MLL leukemia pathogenesis, but often use supraphysiological oncogene expression with uncertain implications for human leukemia. Genome editing using site-specific nucleases provides a powerful new technology for gene modification to potentially model human disease, however, this approach has not been used to re-create acute leukemia in human cells of origin comparable to disease observed in patients. We applied transcription activator-like effector nuclease-mediated genome editing to generate endogenous MLL-AF9 and MLL-ENL oncogenes through insertional mutagenesis in primary human hematopoietic stem and progenitor cells (HSPCs) derived from human umbilical cord blood. Engineered HSPCs displayed altered in vitro growth potentials and induced acute leukemias following transplantation in immunocompromised mice at a mean latency of 16 weeks. The leukemias displayed phenotypic and morphologic similarities with patient leukemia blasts including a subset with mixed phenotype, a distinctive feature seen in clinical disease. The leukemic blasts expressed an MLL-associated transcriptional program with elevated levels of crucial MLL target genes, displayed heightened sensitivity to DOT1L inhibition, and demonstrated increased oncogenic potential ex vivo and in secondary transplant assays. Thus, genome editing to create endogenous MLL oncogenes in primary human HSPCs faithfully models acute MLL-rearranged leukemia and provides an experimental platform for prospective studies of leukemia initiation and stem cell biology in a genetic subtype of poor prognosis leukemia.
Collapse
|