1
|
Herrera C, Pinto MA, Leza M, Alemany I, Jurado‐Rivera JA. Niche modelling and landscape genetics of the yellow-legged hornet ( Vespa velutina): An integrative approach for evaluating central-marginal population dynamics in Europe. Ecol Evol 2024; 14:e70029. [PMID: 39050656 PMCID: PMC11267635 DOI: 10.1002/ece3.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 06/21/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024] Open
Abstract
Genetic diversity is an important biological trait for a successful invasion. During the expansion across a new territory, an invasive species may face unprecedented ecological conditions that will determine its demography and genetic diversity. The first record of the yellow-legged hornet (Vespa velutina) in Europe dates back to 2004 in France, from where it has successfully spread through a large territory in the continent, including Italy, Spain and Portugal. Integrative approaches offer a powerful strategy to detect and understand patterns of genetic variation in central and marginal populations. Here, we have analysed the relationship between genetic diversity parameters inferred from 15 V. velutina nuclear DNA microsatellite loci, and geographical and environmental drivers, such as the distance to the introduction focus, environmental suitability and distance to native and invasive niche centroids. Our results revealed a central-marginal dynamic, where allelic richness decreased towards the edge of the expansion range. The low environmental suitability of the territories invaded by marginal populations could prevent a diverse population from establishing and reducing the genetic diversity in populations at the expansion edge. Moreover, Markov chain Monte Carlo analysis showed both geographical and environmental distances were influencing population genetic differentiation. This study highlights the importance of combining genetic analysis with geographical and environmental drivers to understand genetic trends of invasive species to new environment.
Collapse
Affiliation(s)
- Cayetano Herrera
- Department of Biology (Zoology)University of the Balearic IslandsPalmaBalearic IslandsSpain
| | - M. Alice Pinto
- Centro de Investigação de MontanhaInstituto Politécnico de BragançaBragançaPortugal
- Laboratório Associado Para a Sustentabilidade e Tecnologia Em Regiões de Montanha (SusTEC)Instituto Politécnico de BragançaBragançaPortugal
| | - Mar Leza
- Department of Biology (Zoology)University of the Balearic IslandsPalmaBalearic IslandsSpain
| | - Iris Alemany
- Department of Biology (Genetics)University of the Balearic IslandsPalmaBalearic IslandsSpain
| | - José A. Jurado‐Rivera
- Department of Biology (Genetics)University of the Balearic IslandsPalmaBalearic IslandsSpain
| |
Collapse
|
2
|
Do Y, Park WB, Park JK, Kim CJ, Choi MB. Gut bacterial diversity in Vespa velutina and implications for potential adaptation in South Korea. PEST MANAGEMENT SCIENCE 2023; 79:5180-5185. [PMID: 37575071 DOI: 10.1002/ps.7721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/06/2023] [Accepted: 08/14/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND Invasive species such as the yellow-legged hornet (Vespa velutina), along with four other Vespa species - Vespa analis, Vespa crabro, Vespa ducalis, and Vespa mandarinia - pose significant threats to the environment, economy, and human health. This study focuses on understanding the key factors contributing to the successful invasion of these species, particularly V. velutina, in South Korea. The analysis encompasses the gut bacterial communities and stable isotopes of carbon and nitrogen of the queen hornets, aiming to identify variances in gut microbial composition and food resource utilization. RESULTS The gut bacterial communities in the five Vespa species were primarily composed of Proteobacteria, with Firmicutes and Bacteroidetes present. Vespa velutina and V. mandarinia had higher Firmicutes abundance at the phylum level, possibly indicating an increased capacity for dietary fiber breakdown and short-chain fatty acid production, providing them with a competitive edge. No significant differences in nitrogen and carbon stable isotope values were found among the five Vespa species, suggesting that they fed on similar food sources. However, V. velutina had a higher number of unique gut bacterial operational taxonomic units (OTUs), implying adaptation through the acquisition of a distinct gut bacterial set. Significant correlations were found between the observed index and the Shannon index, and between δ15 N and the observed index, suggesting that the food source diversity may influence the gut bacterial community diversity. CONCLUSION Our study offered valuable insights regarding the adaptation of V. velutina to its new environment in South Korea. The potential role of gut microbiota in the success of invasive species was elucidated. This information is crucial for the management of invasive species, targeted control methods, and implementing preventive regulations. Further studies with larger sample sizes and comprehensive sampling are required to gain a complete understanding of the gut microbiota of Vespa species and their adaptation to new environments. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuno Do
- Department of Biological Sciences, Kongju National University, Gongju, Republic of Korea
| | - Woong-Bae Park
- Department of Biological Sciences, Kongju National University, Gongju, Republic of Korea
| | - Jun-Kyu Park
- Department of Biological Sciences, Kongju National University, Gongju, Republic of Korea
| | - Chang-Jun Kim
- Division of Gardens and Education, Korea National Arboretum, Pocheon, Republic of Korea
| | - Moon Bo Choi
- Institute of Plant Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
3
|
Otis GW, Taylor BA, Mattila HR. Invasion potential of hornets (Hymenoptera: Vespidae: Vespa spp.). FRONTIERS IN INSECT SCIENCE 2023; 3:1145158. [PMID: 38469472 PMCID: PMC10926419 DOI: 10.3389/finsc.2023.1145158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/30/2023] [Indexed: 03/13/2024]
Abstract
Hornets are large, predatory wasps that have the potential to alter biotic communities and harm honey bee colonies once established in non-native locations. Mated, diapausing females (gynes) can easily be transported to new habitats, where their behavioral flexibility allows them to found colonies using local food and nest materials. Of the 22 species in the genus Vespa, five species are now naturalized far from their endemic populations and another four have been detected either in nature or during inspections at borders of other countries. By far the most likely pathway of long-distance dispersal is the transport of gynes in transoceanic shipments of goods. Thereafter, natural dispersal of gynes in spring and accidental local transport by humans cause shorter-range expansions and contribute to the invasion process. Propagule pressure of hornets is unquantified, although it is likely low but unrelenting. The success of introduced populations is limited by low propagule size and the consequences of genetic founder effects, including the extinction vortex linked to single-locus, complementary sex determination of most hymenopterans. Invasion success is enhanced by climatic similarity between source locality and introduction site, as well as genetic diversity conferred by polyandry in some species. These and other factors that may have influenced the successful establishment of invasive populations of V. velutina, V. tropica, V. bicolor, V. orientalis, and V. crabro are discussed. The highly publicized detections of V. mandarinia in North America and research into its status provide a real-time example of an unfolding hornet invasion.
Collapse
Affiliation(s)
- Gard W. Otis
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
- Institute of Bee Health, Vetsuisse Faculty, University of Bern and Agroscope, Bern, Switzerland
| | - Benjamin A. Taylor
- Department of Entomology, Purdue University, West Lafayette, IN, United States
| | - Heather R. Mattila
- Department of Biological Sciences, Wellesley College, Wellesley, MA, United States
| |
Collapse
|
4
|
Herrera C, Williams M, Encarnação J, Roura‐Pascual N, Faulhaber B, Jurado‐Rivera JA, Leza M. Automated detection of the yellow-legged hornet (Vespa velutina) using an optical sensor with machine learning. PEST MANAGEMENT SCIENCE 2023; 79:1225-1233. [PMID: 36416795 PMCID: PMC10107170 DOI: 10.1002/ps.7296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/09/2022] [Accepted: 11/23/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The yellow-legged hornet (Vespa velutina) is native to Southeast Asia and is an invasive alien species of concern in many countries. More effective management of populations of V. velutina could be achieved through more widespread and intensive monitoring in the field, however current methods are labor intensive and costly. To address this issue, we have assessed the performance of an optical sensor combined with a machine learning model to classify V. velutina and native wasps/hornets and bees. Our aim is to use the results of the present work as a step towards the development of a monitoring solution for V. velutina in the field. RESULTS We recorded a total 935 flights from three bee species: Apis mellifera, Bombus terrestris and Osmia bicornis; and four wasp/hornet species: Polistes dominula, Vespula germanica, Vespa crabro and V. velutina. The machine learning model achieved an average accuracy for species classification of 80.1 ± 13.9% and 74.5 ± 7.0% for V. velutina. V. crabro had the highest level of misclassification, confused mainly with V. velutina and P. dominula. These results were obtained using a 14-value peak and valley feature derived from the wingbeat power spectral density. CONCLUSION This study demonstrates that the wingbeat recordings from a flying insect sensor can be used with machine learning methods to differentiate V. velutina from six other Hymenoptera species in the laboratory and this knowledge could be used to help develop a tool for use in integrated invasive alien species management programs. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Cayetano Herrera
- Department of Biology (Zoology)University of the Balearic IslandsPalmaSpain
| | | | | | | | | | | | - Mar Leza
- Department of Biology (Zoology)University of the Balearic IslandsPalmaSpain
| |
Collapse
|
5
|
Molecular Identification of Asian Hornet Vespa velutina nigrithorax Prey from Larval Gut Contents: A Promising Method to Study the Diet of an Invasive Pest. Animals (Basel) 2023; 13:ani13030511. [PMID: 36766400 PMCID: PMC9913685 DOI: 10.3390/ani13030511] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
The Asian hornet, Vespa velutina nigrithorax (Hymenoptera: Vespidae), is an invasive hornet that was accidentally introduced into Europe in 2004. It mainly preys on other invertebrates and arthropod species, and often targets honey bee (Apis mellifera) colonies. The introduction of these hornets may damage indigenous fauna and apiculture. Knowledge of V. velutina prey preference and the species composition of their diet is relatively limited. In this study, we assessed methodologies for the molecular identification of prey using dissected larvae from destroyed nests. Ten larval samples were taken from five nests in areas where the hornets had not yet established: two from the Channel Islands and three in the mainland UK. DNA was extracted from the gut contents and sequenced and analysed by metabarcoding with Oxford Nanopore Technologies' Flongle and MinION devices. Numerous taxa were detected in each larval sample with the species composition varying by individual and by nest. Between 15 and 26 species were found per nest, with wasps (Vespula spp.), spiders, honey bees and blow flies being the most abundant taxa. These results demonstrate that metabarcoding larval gut contents can be used to study the Asian hornet diet and give a first snapshot of the prey items captured by V. v. nigrithorax in the UK. This method could be used for future large-scale testing of the gut contents of hornet nests, in order to provide a greater insight into the foraging behaviour of this predator across Europe and elsewhere.
Collapse
|
6
|
Meiborg AB, Faber NR, Taylor BA, Harpur BA, Gorjanc G. The suppressive potential of a gene drive in populations of invasive social wasps is currently limited. Sci Rep 2023; 13:1640. [PMID: 36717606 PMCID: PMC9886928 DOI: 10.1038/s41598-023-28867-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
Social insects are very successful invasive species, and the continued increase of global trade and transportation has exacerbated this problem. The yellow-legged hornet, Vespa velutina nigrithorax (henceforth Asian hornet), is drastically expanding its range in Western Europe. As an apex insect predator, this hornet poses a serious threat to the honey bee industry and endemic pollinators. Current suppression methods have proven too inefficient and expensive to limit its spread. Gene drives might be an effective tool to control this species, but their use has not yet been thoroughly investigated in social insects. Here, we built a model that matches the hornet's life history and modelled the effect of different gene drive scenarios on an established invasive population. To test the broader applicability and sensitivity of the model, we also incorporated the invasive European paper wasp Polistes dominula. We find that, due to the haplodiploidy of social hymenopterans, only a gene drive targeting female fertility is promising for population control. Our results show that although a gene drive can suppress a social wasp population, it can only do so under fairly stringent gene drive-specific conditions. This is due to a combination of two factors: first, the large number of surviving offspring that social wasp colonies produce make it possible that, even with very limited formation of resistance alleles, such alleles can quickly spread and rescue the population. Second, due to social wasp life history, infertile individuals do not compete with fertile ones, allowing fertile individuals to maintain a large population size even when drive alleles are widespread. Nevertheless, continued improvements in gene drive technology may make it a promising method for the control of invasive social insects in the future.
Collapse
Affiliation(s)
- Adriaan B Meiborg
- HighlanderLab, The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK. .,Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany.
| | - Nicky R Faber
- HighlanderLab, The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK.,Laboratory of Genetics, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Benjamin A Taylor
- Department of Entomology, Purdue University, West Lafayette, IN, 47907, USA
| | - Brock A Harpur
- Department of Entomology, Purdue University, West Lafayette, IN, 47907, USA
| | - Gregor Gorjanc
- HighlanderLab, The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| |
Collapse
|
7
|
Embryo, Relocation and Secondary Nests of the Invasive Species Vespa velutina in Galicia (NW Spain). Animals (Basel) 2022; 12:ani12202781. [PMID: 36290167 PMCID: PMC9597825 DOI: 10.3390/ani12202781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/12/2022] Open
Abstract
Invasive species become established in non-native areas due to their intrinsic characteristics and the ability to adapt to new environments. This work describes the characteristics of the nesting behavior of the invasive yellow-legged hornet (Vespa velutina nigrithorax) in Galicia (Northwest Spain). The first nest was detected in the area in 2012 and after that, the distribution pattern shows a species-invasion curve with slow progress at first but followed by rapid expansion. The nesting places for this hornet differ between the kinds of nests, while embryo nests are mainly found in buildings in spring, secondary nests are observed in vegetation in summer, autumn, and winter. The annual life cycle starts when the queen builds the embryo nests and starts to lay eggs. This leads to the emergence of the first workers, usually small in size, and sometimes a few males. After this stage, large nests called secondary nests are normally observed in most exposed sites. Relocation nests can also be observed; these are nests in the first stage of development presenting adults insects but without brood or meconium. The period of decline is characterized by the emergence of new queens and males, that are distinguishable even in the pupal stage, the appearance of two eggs per cell, and an irregular brood pattern.
Collapse
|
8
|
Lima CG, Sofia Vaz A, Honrado JP, Aranha J, Crespo N, Vicente JR. The invasion by the Yellow-legged hornet: a systematic review. J Nat Conserv 2022. [DOI: 10.1016/j.jnc.2022.126173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
|
10
|
Díaz SS, Carisio L, Manino A, Biella P, Porporato M. Nesting, Sex Ratio and Natural Enemies of the Giant Resin Bee in Relation to Native Species in Europe. INSECTS 2021; 12:545. [PMID: 34208066 PMCID: PMC8230627 DOI: 10.3390/insects12060545] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 11/16/2022]
Abstract
Megachile sculpturalis (Smith, 1853) is the first exotic bee species in Europe. Its remarkably fast expansion across this continent is leading to a growing concern on the extent of negative impacts to the native fauna. To evaluate the interactions of exotic bees with local wild bees, we set up trap nests for above-ground nesting bees on a semi-urban area of north-western Italy. We aimed to investigate the interaction in artificial traps between the exotic and native wild bees and to assess offspring traits accounting for exotic bee fitness: progeny sex ratio and incidence of natural enemies. We found that the tunnels occupied by exotic bees were already cohabited by O. cornuta, and thus the cells of later nesting alien bees may block the native bee emergence for the next year. The progeny sex ratio of M. sculpturalis was strongly unbalanced toward males, indicating a temporary adverse population trend in the local invaded area. In addition, we documented the presence of three native natural enemies affecting the brood of the exotic bee. Our results bring out new insights on how the M. sculpturalis indirectly competes with native species and on its performance in new locations.
Collapse
Affiliation(s)
- Sara Straffon Díaz
- Department of Agricultural Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (Turin), Italy; (L.C.); (A.M.); (M.P.)
| | - Luca Carisio
- Department of Agricultural Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (Turin), Italy; (L.C.); (A.M.); (M.P.)
| | - Aulo Manino
- Department of Agricultural Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (Turin), Italy; (L.C.); (A.M.); (M.P.)
| | - Paolo Biella
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy;
| | - Marco Porporato
- Department of Agricultural Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (Turin), Italy; (L.C.); (A.M.); (M.P.)
| |
Collapse
|
11
|
Yun HS, Oh J, Lim JS, Kim HJ, Kim JS. Anti-Inflammatory Effect of Wasp Venom in BV-2 Microglial Cells in Comparison with Bee Venom. INSECTS 2021; 12:insects12040297. [PMID: 33805372 PMCID: PMC8066097 DOI: 10.3390/insects12040297] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/14/2022]
Abstract
Simple Summary As the population of the yellow-legged hornet (Vespa velutina) spreads, this study investigated ways to utilize this resource of abundant invasive wasp species. Hymenoptera venoms, including bee venom and wasp venom, have therapeutic potential. Although the venoms are toxic to humans, the elucidation of their composition and working mechanisms has led to discoveries about their potential applications in treatment modalities for a variety of disorders. Therefore, we examined the anti-inflammatory effect of wasp venom from V. velutina in comparison with that of bee venom from honey bee on BV-2 murine microglial cells. Treatment with wasp venom reduced the secretion of nitric oxide and pro-inflammatory cytokines, including interleukin-6 and tumor necrosis factor alpha, from BV-2 cells activated by lipopolysaccharide (LPS). Western blot analysis revealed that wasp venom and bee venom decreased the expression levels of inflammation markers, including inducible nitric oxide synthase and cyclooxygenase-2. In addition, wasp venom decreased the nuclear translocation of nuclear factor κB (NF-κB), which is a key transcription factor in the regulation of cellular inflammatory response. Overall, the findings demonstrated that wasp venom inhibited LPS-induced inflammation in microglial cells by suppressing the NF-κB-mediated signaling pathway, which warrants further studies to confirm its therapeutic potential for neurodegenerative diseases. Abstract The aim of this study was to compare the anti-inflammatory effect of wasp venom (WV) from the yellow-legged hornet (Vespa velutina) with that of bee venom (BV) on BV-2 murine microglial cells. WV was collected from the venom sac, freeze-dried, and used for in vitro examinations. WV and BV were non-toxic to BV-2 cells at concentrations of 160 and 12 µg/mL or lower, respectively. Treatment with WV reduced the secretion of nitric oxide and proinflammatory cytokines, including interleukin-6 and tumor necrosis factor alpha, from BV-2 cells activated by lipopolysaccharide (LPS). Western blot analysis revealed that WV and BV decreased the expression levels of inflammation markers, including inducible nitric oxide synthase and cyclooxygenase-2. In addition, WV decreased the nuclear translocation of nuclear factor κB (NF-κB), which is a key transcription factor in the regulation of cellular inflammatory response. Cumulatively, the results demonstrated that WV inhibited LPS-induced neuroinflammation in microglial cells by suppressing the NF-κB-mediated signaling pathway, which warrants further studies to confirm its therapeutic potential for neurodegenerative diseases.
Collapse
Affiliation(s)
- Hyun Seok Yun
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea;
| | - Jisun Oh
- Institute of Agriculture Science and Technology, Kyungpook National University, Daegu 41566, Korea; (J.O.); (J.S.L.)
| | - Ji Sun Lim
- Institute of Agriculture Science and Technology, Kyungpook National University, Daegu 41566, Korea; (J.O.); (J.S.L.)
| | - Hyo Jung Kim
- National Institute for Korean Medicine Development, Gyeongsan 38540, Korea;
| | - Jong-Sang Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea;
- Institute of Agriculture Science and Technology, Kyungpook National University, Daegu 41566, Korea; (J.O.); (J.S.L.)
- Correspondence: ; Tel.: +82-53-950-5752; Fax: +82-53-950-6750
| |
Collapse
|
12
|
Nest structures display specific hydrocarbon profiles: insights into the chemical ecology of the invasive yellow-legged hornet Vespa velutina nigrithorax. CHEMOECOLOGY 2021. [DOI: 10.1007/s00049-021-00343-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Brock RE, Crowther LP, Wright DJ, Richardson DS, Carvell C, Taylor MI, Bourke AFG. No severe genetic bottleneck in a rapidly range-expanding bumblebee pollinator. Proc Biol Sci 2021; 288:20202639. [PMID: 33563116 PMCID: PMC7893223 DOI: 10.1098/rspb.2020.2639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Genetic bottlenecks can limit the success of populations colonizing new ranges. However, successful colonizations can occur despite bottlenecks, a phenomenon known as the genetic paradox of invasion. Eusocial Hymenoptera such as bumblebees (Bombus spp.) should be particularly vulnerable to genetic bottlenecks, since homozygosity at the sex-determining locus leads to costly diploid male production (DMP). The Tree Bumblebee (Bombus hypnorum) has rapidly colonized the UK since 2001 and has been highlighted as exemplifying the genetic paradox of invasion. Using microsatellite genotyping, combined with the first genetic estimates of DMP in UK B. hypnorum, we tested two alternative genetic hypotheses ('bottleneck' and 'gene flow' hypotheses) for B. hypnorum's colonization of the UK. We found that the UK population has not undergone a recent severe genetic bottleneck and exhibits levels of genetic diversity falling between those of widespread and range-restricted Bombus species. Diploid males occurred in 15.4% of reared colonies, leading to an estimate of 21.5 alleles at the sex-determining locus. Overall, the findings show that this population is not bottlenecked, instead suggesting that it is experiencing continued gene flow from the continental European source population with only moderate loss of genetic diversity, and does not exemplify the genetic paradox of invasion.
Collapse
Affiliation(s)
- Ryan E Brock
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| | - Liam P Crowther
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| | - David J Wright
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK.,Earlham Institute, Norwich Research Park, Colney Lane, Norwich, Norfolk NR4 7UZ, UK
| | - David S Richardson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| | - Claire Carvell
- UK Centre for Ecology and Hydrology, Maclean Building, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, UK
| | - Martin I Taylor
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| | - Andrew F G Bourke
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| |
Collapse
|
14
|
Managing incursions of Vespa velutina nigrithorax in the UK: an emerging threat to apiculture. Sci Rep 2020; 10:19553. [PMID: 33177635 PMCID: PMC7658989 DOI: 10.1038/s41598-020-76690-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/05/2020] [Indexed: 11/24/2022] Open
Abstract
Vespa velutina nigrithorax is an invasive species of hornet accidentally introduced into Europe in 2004. It feeds on invertebrates, including honey bees, and represents a threat to European apiculture. In 2016, the first nest of this hornet was detected and destroyed on mainland UK. A further 8 nests were discovered between 2016 and 2019. Nest dissection was performed on all nests together with microsatellite analyses of different life stages found in the nests to address the reproductive output and success of nests found in the UK. None of the nests had produced the next generation of queens. Follow-up monitoring in those regions detected no new nests in the following years. Diploid males were found in many UK nests, while microsatellite analysis showed that nests had low genetic diversity and the majority of queens had mated with one or two males. All UK nests derived from the European zone of secondary colonisation, rather than from the native range of the species. None of the nests discovered so far have been direct offspring of another UK nest. The evidence suggests that these nests were separate incursions from a continental population rather than belonging to a single established UK population of this pest.
Collapse
|
15
|
Influence of reproductive biology on establishment capacity in introduced Hymenoptera species. Biol Invasions 2020. [DOI: 10.1007/s10530-020-02375-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Viruses in the Invasive Hornet Vespa velutina. Viruses 2019; 11:v11111041. [PMID: 31717432 PMCID: PMC6893812 DOI: 10.3390/v11111041] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/16/2019] [Accepted: 10/25/2019] [Indexed: 12/22/2022] Open
Abstract
The Asian yellow-legged hornet Vespa velutina nigrithorax, a major predator of honeybees, is spreading in Europe in part due to a lack of efficient control methods. In this study, as a first step to identify biological control agents, we characterized viral RNA sequences present in asymptomatic or symptomatic hornets. Among 19 detected viruses, the honey bee virus Deformed wing virus-B was predominant in all the samples, particularly in muscles from the symptomatic hornet, suggesting a putative cause of the deformed wing symptom. Interestingly, two new viruses closely related to Acyrthosiphon pisumvirus and Himetobi Pvirus and viruses typically associated with honey bees, Acute bee paralysis virus and Black queen cell virus, were detected in the brain and muscles, and may correspond to the circulation and possible replication forms of these viruses in the hornet. Aphid lethal paralysis virus, Bee Macula-like virus, and Moku virus, which are known to infect honey bees, were also identified in the gut virus metagenome of hornets. Therefore, our study underlined the urgent need to study the host range of these newly discovered viruses in hornets to determine whether they represent a new threat for honey bees or a hope for the biocontrol of V. velutina.
Collapse
|
17
|
Cappa F, Cini A, Pepiciello I, Petrocelli I, Inghilesi AF, Anfora G, Dani FR, Bortolotti L, Wen P, Cervo R. Female volatiles as sex attractants in the invasive population of Vespa velutina nigrithorax. JOURNAL OF INSECT PHYSIOLOGY 2019; 119:103952. [PMID: 31568763 DOI: 10.1016/j.jinsphys.2019.103952] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 09/18/2019] [Accepted: 09/26/2019] [Indexed: 06/10/2023]
Abstract
Due to its huge invasion potential and specialization in honeybee predation, the invasive hornet Vespa velutina nigrithorax represents a high-concern species under both an ecological and economical perspective. In light of the development of specific odorant attractants to be used in sustainable control strategies, we carried out both behavioural assays and chemical analyses to investigate the possibility that, in the invasive population of V. velutina nigrithorax, reproductive females emit volatile pheromones to attract males, as demonstrated in a Chinese non-invasive population. We focused on the secretions produced by sternal and venom glands; because of the volatility and complexity of their composition, both of them could potentially allow an attraction and a species-specific response, decreasing therefore non-target species by-catches. Results of chemical analyses and behavioural assays showed that venom volatiles, although population-specific, are unlikely candidates as male attractants since they do not differ in composition or in quantity between reproductive females and workers and do not attract males. Conversely, sternal gland secretion differs between female castes for the presence of some ketoacids exclusive of gynes already reported as sex pheromones for the non-invasive subspecies V. velutina auraria. Despite such a difference, males are attracted by the sternal gland secretion of both workers and gynes. These results provide a first step to understand the reproductive biology of V. velutina nigrithorax in its invasive range and to develop effective and sustainable management strategies for the species.
Collapse
Affiliation(s)
- Federico Cappa
- Dipartimento di Biologia, Università di Firenze, Via Madonna del Piano, 50019 Sesto F.no (Firenze), Italy.
| | - A Cini
- Dipartimento di Biologia, Università di Firenze, Via Madonna del Piano, 50019 Sesto F.no (Firenze), Italy; Centre for Biodiversity and Environment Research, University College London, Gower Street, London WC1E 6BT, UK
| | - I Pepiciello
- Dipartimento di Biologia, Università di Firenze, Via Madonna del Piano, 50019 Sesto F.no (Firenze), Italy
| | - I Petrocelli
- Dipartimento di Biologia, Università di Firenze, Via Madonna del Piano, 50019 Sesto F.no (Firenze), Italy
| | - A F Inghilesi
- Dipartimento di Biologia, Università di Firenze, Via Madonna del Piano, 50019 Sesto F.no (Firenze), Italy
| | - G Anfora
- Center Agriculture Food Environment (C3A), Università di Trento, Via E. Mach 1, 38010 San Michele a/A, Trento, Italy; Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele a/A, Trento, Italy
| | - F R Dani
- Dipartimento di Biologia, Università di Firenze, Via Madonna del Piano, 50019 Sesto F.no (Firenze), Italy
| | - L Bortolotti
- CREA - Centro di ricerca Agricoltura e Ambiente, Unità di ricerca di apicoltura e bachicoltura (API), Via di Saliceto 80, 40128 Bologna, Italy
| | - P Wen
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Science, Qinsong Road 21, Panlong, Kunming, Yunnan 650223, China
| | - R Cervo
- Dipartimento di Biologia, Università di Firenze, Via Madonna del Piano, 50019 Sesto F.no (Firenze), Italy
| |
Collapse
|
18
|
Dobelmann J, Alexander A, Baty JW, Gemmell NJ, Gruber MAM, Quinn O, Wenseleers T, Lester PJ. The association between mitochondrial genetic variation and reduced colony fitness in an invasive wasp. Mol Ecol 2019; 28:3324-3338. [PMID: 31233636 DOI: 10.1111/mec.15159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 05/27/2019] [Accepted: 05/31/2019] [Indexed: 12/13/2022]
Abstract
Despite the mitochondrion's long-recognized role in energy production, mitochondrial DNA (mtDNA) variation commonly found in natural populations was assumed to be effectively neutral. However, variation in mtDNA has now been increasingly linked to phenotypic variation in life history traits and fitness. We examined whether the relative fitness in native and invasive common wasp (Vespula vulgaris) populations in Belgium and New Zealand (NZ), respectively, can be linked to mtDNA variation. Social wasp colonies in NZ were smaller with comparatively fewer queen cells, indicating a reduced relative fitness in the invaded range. Interestingly, queen cells in this population were significantly larger leading to larger queen offspring. By sequencing 1,872 bp of the mitochondrial genome, we determined mitochondrial haplotypes and detected reduced genetic diversity in NZ. Three common haplotypes in NZ frequently produced many queens, whereas the four rare haplotypes produced significantly fewer or no queens. The entire mitochondrial genome for each of these haplotypes was sequenced to identify polymorphisms associated with fitness reduction. We found 16 variable sites; however, no nonsynonymous mutation that was clearly causing impaired mitochondrial function was detected. We discuss how detected variants may alter secondary structures, gene expression or mito-nuclear interactions, or could be associated with nuclear-encoded variation. Whatever the ultimate mechanism, we show reduced fitness and mtDNA variation in an invasive wasp population as well as specific mtDNA variants associated with fitness variation within this population. Ours is one of only a few studies that confirm fitness impacts of mtDNA variation in wild nonmodel populations.
Collapse
Affiliation(s)
- Jana Dobelmann
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Alana Alexander
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - James W Baty
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Neil J Gemmell
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Monica A M Gruber
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Oliver Quinn
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Tom Wenseleers
- Department of Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Philip J Lester
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
19
|
Cappa F, Cini A, Pepiciello I, Petrocelli I, Cervo R. Female body size, weight and fat storage rather than nestmateship determine male attraction in the invasive yellow-legged hornet Vespa velutina nigrithorax. ETHOL ECOL EVOL 2018. [DOI: 10.1080/03949370.2018.1501437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Federico Cappa
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino (Florence),
| | - Alessandro Cini
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino (Florence),
- Centre for Biodiversity and Environment Research, University College London, Gower Street, London WC1E 6BT, UK
| | - Irene Pepiciello
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino (Florence),
| | - Iacopo Petrocelli
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino (Florence),
| | - Rita Cervo
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino (Florence),
| |
Collapse
|
20
|
Poidatz J, Bressac C, Bonnard O, Thiéry D. Delayed sexual maturity in males of Vespa velutina. INSECT SCIENCE 2018; 25:679-689. [PMID: 28248003 DOI: 10.1111/1744-7917.12452] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/03/2017] [Accepted: 01/24/2017] [Indexed: 06/06/2023]
Abstract
Vespa velutina var nigrithorax (Lepelletier, 1835) is an invasive predator of bees accidentally introduced in France in 2004, and it is having a serious impact on apiculture and ecosystems. Studying the reproduction of an invasive species is key to assess its population dynamic. This study explores the sexual maturation of V. velutina males and the evolution of their fertility. The main studied parameters were physiologic (spermiogenesis, spermatogenesis) and anatomic (testes size and structure, head width). Two populations of males were described based on their emergence period: early males in early summer or classic males in autumn. Each testis has an average of 108 testicular follicles. Spermatogenesis is synchronous, with only 1 sperm production wave, and completed, on average, at 10.3 d after emergence with the degeneration of the testes. The sperm counts in seminal vesicles of mature males are 3 × 106 in October/November and 0.8 × 106 in June. In comparison, females store 0.1 × 106 sperm in their spermathecae. The early males emerged from colonies made by fertilized queens. The reproductive potential of these early males seemed limited, and their function in the colony is discussed. The sperm stock evolution in autumn males suggests the occurrence of a reproductive pattern of male competition for the access to females and a single copulation per male. The synchronicity of male and foundress emergences and sexual maturation is of primary importance for the mating success and the future colony development.
Collapse
Affiliation(s)
- Juliette Poidatz
- INRA, UMR1065 Santé et Agroécologie du Vignoble, ISVV, Bordeaux Sciences Agro, Villenave d'Ornon, France
| | | | - Olivier Bonnard
- INRA, UMR1065 Santé et Agroécologie du Vignoble, ISVV, Bordeaux Sciences Agro, Villenave d'Ornon, France
| | - Denis Thiéry
- INRA, UMR1065 Santé et Agroécologie du Vignoble, ISVV, Bordeaux Sciences Agro, Villenave d'Ornon, France
| |
Collapse
|
21
|
Sauvard D, Imbault V, Darrouzet É. Flight capacities of yellow-legged hornet (Vespa velutina nigrithorax, Hymenoptera: Vespidae) workers from an invasive population in Europe. PLoS One 2018; 13:e0198597. [PMID: 29883467 PMCID: PMC5993251 DOI: 10.1371/journal.pone.0198597] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 05/22/2018] [Indexed: 11/21/2022] Open
Abstract
The invasive yellow-legged hornet, Vespa velutina nigrithorax Lepeletier, 1836 (Hymenoptera: Vespidae), is native to Southeast Asia. It was first detected in France (in the southwest) in 2005. It has since expanded throughout Europe and has caused significant harm to honeybee populations. We must better characterize the hornet’s flight capacity to understand the species’ success and develop improved control strategies. Here, we carried out a study in which we quantified the flight capacities of V. velutina workers using computerized flight mills. We observed that workers were able to spend around 40% of the daily 7-hour flight tests flying. On average, they flew 10km to 30km during each flight test, although there was a large amount of variation. Workers sampled in early summer had lower flight capacities than workers sampled later in the season. Flight capacity decreased as workers aged. However, in the field, workers probably often die before this decrease becomes significant. During each flight test, workers performed several continuous flight phases of variable length that were separated by rest phases. Based on the length of those continuous flight phases and certain key assumptions, we estimated that V. velutina colony foraging radius is at least 700 m (half that in early summer); however, some workers are able to forage much farther. While these laboratory findings remain to be confirmed by field studies, our results can nonetheless help inform V. velutina biology and control efforts.
Collapse
Affiliation(s)
- Daniel Sauvard
- Institut national de la recherche agronomique, UR 633, Zoologie forestière, 2163 avenue de la pomme de pin, CS 40001 Ardon, 45075 Orléans cedex 2, France
| | - Vanessa Imbault
- Institut national de la recherche agronomique, UR 633, Zoologie forestière, 2163 avenue de la pomme de pin, CS 40001 Ardon, 45075 Orléans cedex 2, France
| | - Éric Darrouzet
- Institut de recherche sur la biologie de l'insecte, UMR CNRS 7261, Université François Rabelais, Faculté des Sciences, Parc de Grandmont, 37200 Tours, France
| |
Collapse
|
22
|
Budge GE, Hodgetts J, Jones EP, Ostojá-Starzewski JC, Hall J, Tomkies V, Semmence N, Brown M, Wakefield M, Stainton K. The invasion, provenance and diversity of Vespa velutina Lepeletier (Hymenoptera: Vespidae) in Great Britain. PLoS One 2017; 12:e0185172. [PMID: 28950004 PMCID: PMC5614577 DOI: 10.1371/journal.pone.0185172] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/07/2017] [Indexed: 11/18/2022] Open
Abstract
The yellow-legged or Asian hornet (Vespa velutina colour form nigrithorax) was introduced into France from China over a decade ago. Vespa velutina has since spread rapidly across Europe, facilitated by suitable climatic conditions and the ability of a single nest to disperse many mated queens over a large area. Yellow-legged hornets are a major concern because of the potential impact they have on populations of many beneficial pollinators, most notably the western honey bee (Apis mellifera), which shows no effective defensive behaviours against this exotic predator. Here, we present the first report of this species in Great Britain. Actively foraging hornets were detected at two locations, the first around a single nest in Gloucestershire, and the second a single hornet trapped 54 km away in Somerset. The foraging activity observed in Gloucestershire was largely restricted to within 700 m of a single nest, suggesting highly localised movements. Genetic analyses of individuals from the Gloucestershire nest and the single hornet from Somerset suggest that these incursions represent an expansion of the European population, rather than a second incursion from Asia. The founding queen of the Gloucestershire nest mated with a single male, suggesting that sexual reproduction may have occurred in an area of low nest density. Whilst the nest contained diploid adult males, haploid ‘true’ males were only present at the egg stage, indicating that the nest was detected and removed before the production of queens. Members of the public reported additional dead hornets associated with camping equipment recently returned from France and imported timber products, highlighting possible pathways of incursion. The utility of microsatellites to inform surveillance during an incursion and the challenge of achieving eradication of this damaging pest are discussed.
Collapse
Affiliation(s)
- Giles E. Budge
- Fera, The National Agrifood Innovation Campus, Sand Hutton, York, United Kingdom
- Institute for Agri-Food Research and Innovation, Newcastle University, Newcastle upon Tyne, United Kingdom
- * E-mail:
| | - Jennifer Hodgetts
- Fera, The National Agrifood Innovation Campus, Sand Hutton, York, United Kingdom
| | - Eleanor P. Jones
- Fera, The National Agrifood Innovation Campus, Sand Hutton, York, United Kingdom
| | | | - Jayne Hall
- Fera, The National Agrifood Innovation Campus, Sand Hutton, York, United Kingdom
| | - Victoria Tomkies
- Fera, The National Agrifood Innovation Campus, Sand Hutton, York, United Kingdom
| | - Nigel Semmence
- National Bee Unit, Animal and Plant Health Agency, The National Agrifood Innovation Campus, Sand Hutton, York, United Kingdom
| | - Mike Brown
- National Bee Unit, Animal and Plant Health Agency, The National Agrifood Innovation Campus, Sand Hutton, York, United Kingdom
| | - Maureen Wakefield
- Fera, The National Agrifood Innovation Campus, Sand Hutton, York, United Kingdom
| | - Kirsty Stainton
- Fera, The National Agrifood Innovation Campus, Sand Hutton, York, United Kingdom
| |
Collapse
|
23
|
Ding G, Xu H, Oldroyd BP, Gloag RS. Extreme polyandry aids the establishment of invasive populations of a social insect. Heredity (Edinb) 2017; 119:381-387. [PMID: 28832579 DOI: 10.1038/hdy.2017.49] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/27/2017] [Accepted: 07/12/2017] [Indexed: 11/09/2022] Open
Abstract
Although monandry is believed to have facilitated the evolution of eusociality, many highly eusocial insects have since evolved extreme polyandry. The transition to extreme polyandry was likely driven by the benefits of within-colony genetic variance to task specialization and/or disease resistance, but the extent to which it confers secondary benefits, once evolved, is unclear. Here we investigate the consequences of extreme polyandry on the invasive potential of the Asian honey bee, Apis cerana. In honey bees and other Hymenoptera, small newly founded invasive populations must overcome the genetic constraint of their sex determination system that requires heterozygosity at a sex-determining locus to produce viable females. We find A. cerana queens in an invasive population mate with an average of 27 males (range 16-42) that would result in the founding queen/s carrying 75% of their source population's sex alleles in stored sperm. This mating frequency is similar to native-range Chinese A. cerana (mean 29 males, range 19-46). Simulations reveal that extreme polyandry reduces the risk, relative to monandry or moderate polyandry, that colonies produce a high incidence of inviable brood in populations that have experienced a founder event, that is, when sex allele diversity is low and/or allele frequencies are unequal. Thus, extreme polyandry aids the invasiveness of A. cerana in two ways: (1) by increasing the sex locus allelic richness carried to new populations with each founder, thereby increasing sex locus heterozygosity; and (2) by reducing the population variance in colony fitness following a founder event.
Collapse
Affiliation(s)
- G Ding
- College of Plant Protection, China Agricultural University, Beijing, China.,Key Laboratory of Pollinating Insect Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - H Xu
- College of Plant Protection, China Agricultural University, Beijing, China
| | - B P Oldroyd
- Behaviour and Genetics of Social Insects Laboratory, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - R S Gloag
- Behaviour and Genetics of Social Insects Laboratory, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
24
|
Gévar J, Bagnères AG, Christidès JP, Darrouzet E. Chemical Heterogeneity in Inbred European Population of the Invasive Hornet Vespa velutina nigrithorax. J Chem Ecol 2017; 43:763-777. [PMID: 28762003 DOI: 10.1007/s10886-017-0874-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/18/2017] [Accepted: 07/21/2017] [Indexed: 11/30/2022]
Abstract
Invasive social insect populations that have been introduced to a new environment through a limited number of introduction events generally exhibit reduced variability in their chemical signatures (cuticular hydrocarbons) compared to native populations of the same species. The reduced variability in these major recognition cues could be caused by a reduction of genetic diversity due to a genetic bottleneck. This hypothesis was tested in an inbred European population of the invasive hornet Vespa velutina nigrithorax. Our results show that, in spite of the limited amount of genetic diversity present in the European population, the chemical signatures of individuals were highly heterogeneous according to their caste, sex, and colony origin. In queens, some specific saturated and unsaturated hydrocarbons were identified. These results suggest that epigenetic and/or environmental factors could play a role in modifying cuticular hydrocarbon profiles in this introduced hornet population despite the observed reduction of genetic diversity.
Collapse
Affiliation(s)
- J Gévar
- IRBI, UMR CNRS 7261, University François Rabelais of Tours, Parc de Grandmont, 37200, Tours, France
| | - A-G Bagnères
- IRBI, UMR CNRS 7261, University François Rabelais of Tours, Parc de Grandmont, 37200, Tours, France
| | - J-P Christidès
- IRBI, UMR CNRS 7261, University François Rabelais of Tours, Parc de Grandmont, 37200, Tours, France
| | - E Darrouzet
- IRBI, UMR CNRS 7261, University François Rabelais of Tours, Parc de Grandmont, 37200, Tours, France.
| |
Collapse
|
25
|
Loope KJ, Lopez-Osorio F, Dvořák L. Convergent Reversion to Single Mating in a Wasp Social Parasite. Am Nat 2017; 189:E138-E151. [PMID: 28514634 DOI: 10.1086/691405] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
While eusociality arose in species with single-mating females, multiple mating by queens has evolved repeatedly across the social ants, bees, and wasps. Understanding the benefits and costs of multiple mating of queens is important because polyandry results in reduced relatedness between siblings, reducing kin-selected benefits of helping while also selecting for secondary social traits that reduce intracolony conflict. The leading hypothesis for the benefits of polyandry in social insects emphasizes advantages of a genetically diverse workforce. Workerless social parasite species (inquilines) provide a unique opportunity to test this hypothesis, since they are derived from social ancestors but do not produce workers of their own. Such parasites are thus predicted to evolve single mating because they would experience the costs of multiple mating but not the benefits if such benefits accrue through the production of a genetically diverse group of workers. Here we show that the workerless social parasite Dolichovespula arctica, a derived parasite of wasps, has reverted to obligate single mating from a facultatively polyandrous ancestor, mirroring a similar reversion from obligate polyandry to approximate monandry in a social parasite of fungus-farming ants. This finding and a comparison with two other cases where inquilinism did not induce reversal to monandry support the hypothesis that facultative polyandry can be costly and may be maintained by benefits of a genetically diverse workforce.
Collapse
|
26
|
Miranda EA, Batalha-Filho H, Congrains C, Carvalho AF, Ferreira KM, Del Lama MA. Phylogeography of Partamona rustica (Hymenoptera, Apidae), an Endemic Stingless Bee from the Neotropical Dry Forest Diagonal. PLoS One 2016; 11:e0164441. [PMID: 27723778 PMCID: PMC5056711 DOI: 10.1371/journal.pone.0164441] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/26/2016] [Indexed: 11/19/2022] Open
Abstract
The South America encompasses the highest levels of biodiversity found anywhere in the world and its rich biota is distributed among many different biogeographical regions. However, many regions of South America are still poorly studied, including its xeric environments, such as the threatened Caatinga and Cerrado phytogeographical domains. In particular, the effects of Quaternary climatic events on the demography of endemic species from xeric habitats are poorly understood. The present study uses an integrative approach to reconstruct the evolutionary history of Partamona rustica, an endemic stingless bee from dry forest diagonal in Brazil, in a spatial-temporal framework. In this sense, we sequenced four mitochondrial genes and genotyped eight microsatellite loci. Our results identified two population groups: one to the west and the other to the east of the São Francisco River Valley (SFRV). These groups split in the late Pleistocene, and the Approximate Bayesian Computation approach and phylogenetic reconstruction indicated that P. rustica originated in the west of the SFRV, subsequently colonising eastern region. Our tests of migration detected reduced gene flow between these groups. Finally, our results also indicated that the inferences both from the genetic data analyses and from the spatial distribution modelling are compatible with historical demographic stability.
Collapse
Affiliation(s)
- Elder Assis Miranda
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
- * E-mail:
| | - Henrique Batalha-Filho
- Departamento de Zoologia, Instituto de Biologia, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Carlos Congrains
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Antônio Freire Carvalho
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | - Kátia Maria Ferreira
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Marco Antonio Del Lama
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| |
Collapse
|
27
|
Robinet C, Suppo C, Darrouzet E. Rapid spread of the invasive yellow-legged hornet in France: the role of human-mediated dispersal and the effects of control measures. J Appl Ecol 2016. [DOI: 10.1111/1365-2664.12724] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Christelle Suppo
- Institut de Recherche sur la Biologie de l'Insecte; UMR 7261; CNRS - Université François-Rabelais de Tours; F-37200 Tours France
| | - Eric Darrouzet
- Institut de Recherche sur la Biologie de l'Insecte; UMR 7261; CNRS - Université François-Rabelais de Tours; F-37200 Tours France
| |
Collapse
|
28
|
Diploid male dynamics under different numbers of sexual alleles and male dispersal abilities. Theory Biosci 2016; 135:111-9. [DOI: 10.1007/s12064-016-0226-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/28/2016] [Indexed: 10/22/2022]
|