1
|
Vicente-Ferreira GS, Martins GS, Chaves NA, Silva DGH, Bonini-Domingos CR. Oxidative and osmotolerant effects in Salvator merianae (Squamata: Teiidae) red blood cells during hibernation. BRAZ J BIOL 2021; 84:e249617. [PMID: 34730698 DOI: 10.1590/1519-6984.249617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/04/2021] [Indexed: 11/22/2022] Open
Abstract
Hibernation is a natural condition of animals that lives in the temperate zone, although some tropical lizards also experience hibernation annually, such as the lizard native from South America, Salvator merianae, or "tegu" lizard. Even though physiological and metabolic characteristic associated with hibernation have been extensively studied, possible alterations in the red blood cells (RBC) integrity during this period remains unclear. Dehydration and fasting are natural consequences of hibernating for several months and it could be related to some cellular modifications. In this study, we investigated if the osmotic tolerance of RBCs of tegu lizard under hibernation is different from the cells obtained from animals while normal activity. Additionally, we indirectly investigated if the RBCs membrane of hibernating tegus could be associated with oxidation by quantifying oxidized biomolecules and the activity of antioxidant enzymes. Our findings suggest that RBCs are more fragile during the hibernation period, although we did not find evidence of an oxidative stress scenario associated with the accentuated fragility. Even though we did not exclude the possibility of oxidative damage during hibernation, we suggested that an increased RBCs volume as a consequence of hypoosmotic blood during hibernation could also affect RBCs integrity as noted.
Collapse
Affiliation(s)
- G S Vicente-Ferreira
- Universidade Estadual Paulista - UNESP, Instituto de Biologia, Letras e Ciências Exatas, Laboratório de Hemoglobinas e Genética das Doenças Hematológicas, Departamento de Biologia, São José do Rio Preto, SP, Brasil.,Fundação Parque Tecnológico Itaipu (PTI), Foz do Iguaçu, PR, Brasil
| | - G S Martins
- Universidade Estadual Paulista - UNESP, Instituto de Biologia, Letras e Ciências Exatas, Laboratório de Hemoglobinas e Genética das Doenças Hematológicas, Departamento de Biologia, São José do Rio Preto, SP, Brasil
| | - N A Chaves
- Universidade Estadual Paulista - UNESP, Instituto de Biologia, Letras e Ciências Exatas, Laboratório de Hemoglobinas e Genética das Doenças Hematológicas, Departamento de Biologia, São José do Rio Preto, SP, Brasil
| | - D G H Silva
- Universidade Estadual Paulista - UNESP, Instituto de Biologia, Letras e Ciências Exatas, Departamento de Química e Ciências Ambientais, São José do Rio Preto, SP, Brasil.,Universidade Federal de Mato Grosso do Sul - UFMS, Câmpus de Três Lagoas, Três Lagoas, MS, Brasil
| | - C R Bonini-Domingos
- Universidade Estadual Paulista - UNESP, Instituto de Biologia, Letras e Ciências Exatas, Laboratório de Hemoglobinas e Genética das Doenças Hematológicas, Departamento de Biologia, São José do Rio Preto, SP, Brasil
| |
Collapse
|
2
|
Goodchild CG, DuRant SE. Fluorescent Heme Degradation Products Are Biomarkers of Oxidative Stress and Linked to Impaired Membrane Integrity in Avian Red Blood Cells. Physiol Biochem Zool 2020; 93:129-139. [PMID: 32027232 DOI: 10.1086/707920] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Oxidative stress is generally understood to be an important mediator of life-history traits, yet the specific relationships between oxidative stress and life-history traits have been difficult to describe because there is often a lack of covariation among biomarkers of oxidative stress. For instance, although oxidative damage to red blood cell (RBC) membranes can lead to pathological conditions (i.e., anemia), in some cases there is not a clear relationship between lipid oxidation and RBC membrane resistance to pro-oxidants. Alternatively, oxidative damage to hemoglobin may be an indirect mechanism contributing to RBC membrane damage. To better understand the mechanisms contributing to oxidative damage and probe new approaches to measuring oxidative stress, we used a series of in vitro and in vivo procedures in zebra finches (Taeniopygia guttata) to explore (1) whether avian RBCs exposed to a pro-oxidant generate fluorescent heme degradation products (HDPs), (2) whether HDPs interact with RBC membranes, and (3) whether HDPs are linked to impaired RBC integrity. We found that finch RBCs exposed in vitro to hydrogen peroxide produced fluorescent HDPs and HDPs associated with RBC membranes. Exposure to hydrogen peroxide also caused a reduction in hemoglobin and an increase in percent methemoglobin (a hemoglobin oxidation product), further indicating hemoglobin degradation. Moreover, HDP fluorescence correlated with impaired membrane integrity and erythrocyte osmotic fragility in vivo. This study suggests that reactive oxygen species may indirectly impair RBC membrane integrity via hemoglobin degradation products that associate with RBC membranes and that HDPs may be an inexpensive and logistically simple tool for measuring oxidative stress.
Collapse
|
3
|
Taxanes and platinum derivatives impair Schwann cells via distinct mechanisms. Sci Rep 2017; 7:5947. [PMID: 28729624 PMCID: PMC5519765 DOI: 10.1038/s41598-017-05784-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 06/05/2017] [Indexed: 12/31/2022] Open
Abstract
Impairment of peripheral neurons by anti-cancer agents, including taxanes and platinum derivatives, has been considered to be a major cause of chemotherapy-induced peripheral neuropathy (CIPN), however, the precise underlying mechanisms are not fully understood. Here, we examined the direct effects of anti-cancer agents on Schwann cells. Exposure of primary cultured rat Schwann cells to paclitaxel (0.01 μM), cisplatin (1 μM), or oxaliplatin (3 μM) for 48 h induced cytotoxicity and reduced myelin basic protein expression at concentrations lower than those required to induce neurotoxicity in cultured rat dorsal root ganglion (DRG) neurons. Similarly, these anti-cancer drugs disrupted myelin formation in Schwann cell/DRG neuron co-cultures without affecting nerve axons. Cisplatin and oxaliplatin, but not paclitaxel, caused mitochondrial dysfunction in cultured Schwann cells. By contrast, paclitaxel led to dedifferentiation of Schwann cells into an immature state, characterized by increased expression of p75 and galectin-3. Consistent with in vitro findings, repeated injection of paclitaxel increased expression of p75 and galectin-3 in Schwann cells within the mouse sciatic nerve. These results suggest that taxanes and platinum derivatives impair Schwan cells by inducing dedifferentiation and mitochondrial dysfunction, respectively, which may be important in the development of CIPN in conjunction with their direct impairment in peripheral neurons.
Collapse
|