1
|
Petersen-Jones SM, Komáromy AM. Canine and Feline Models of Inherited Retinal Diseases. Cold Spring Harb Perspect Med 2024; 14:a041286. [PMID: 37217283 PMCID: PMC10835616 DOI: 10.1101/cshperspect.a041286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Naturally occurring inherited retinal diseases (IRDs) in cats and dogs provide a rich source of potential models for human IRDs. In many cases, the phenotypes between the species with mutations of the homologous genes are very similar. Both cats and dogs have a high-acuity retinal region, the area centralis, an equivalent to the human macula, with tightly packed photoreceptors and higher cone density. This and the similarity in globe size to that of humans means these large animal models provide information not obtainable from rodent models. The established cat and dog models include those for Leber congenital amaurosis, retinitis pigmentosa (including recessive, dominant, and X-linked forms), achromatopsia, Best disease, congenital stationary night blindness and other synaptic dysfunctions, RDH5-associated retinopathy, and Stargardt disease. Several of these models have proven to be important in the development of translational therapies such as gene-augmentation therapies. Advances have been made in editing the canine genome, which necessitated overcoming challenges presented by the specifics of canine reproduction. Feline genome editing presents fewer challenges. We can anticipate the generation of specific cat and dog IRD models by genome editing in the future.
Collapse
Affiliation(s)
- Simon M Petersen-Jones
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan 48824, USA
| | - András M Komáromy
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
2
|
Bortolini M, Winkler PA, Moreno JCD, Sato MT, Guareschi BLV, Petersen-Jones SM, Montiani-Ferreira F. Preliminary characterization of a novel form of progressive retinal atrophy in the German Spitz dog associated with a frameshift mutation in GUCY2D. Vet Ophthalmol 2023; 26:532-547. [PMID: 36872573 DOI: 10.1111/vop.13079] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 03/07/2023]
Abstract
OBJECTIVE To describe the clinical, preliminary electroretinographic and optical coherence tomography features of a newly identified form of progressive retinal atrophy (PRA) in German Spitzes, and identify the causal gene mutation. ANIMALS Thirty-three client-owned German Spitz dogs were included. PROCEDURES All animals underwent a full ophthalmic examination, including vision testing. In addition, fundus photography, ERG, and OCT were performed. A DNA-marker-based association analysis was performed to screen potential candidate genes and the whole genomes of four animals were sequenced. RESULTS Initial fundus changes were pale papilla and mild vascular attenuation. Oscillatory nystagmus was noted in 14 of 16 clinically affected puppies. Vision was impaired under both scotopic and photopic conditions. Rod-mediated ERGs were unrecordable in all affected dogs tested, reduced cone-mediated responses were present in one animal at 3 months of age and unrecordable in the other affected animals tested. Multiple small retinal bullae were observed in three clinically affected animals (two with confirmed genetic diagnosis). OCT showed that despite loss of function, retinal structure was initially well-preserved, although a slight retinal thinning developed in older animals with the ventral retina being more severely affected. Pedigree analysis supported an autosomal recessive inheritance. A mutation was identified in GUCY2D, which segregated with the disease (NM_001003207.1:c.1598_1599insT; p.(Ser534GlufsTer20)). Human subjects with GUCY2D mutations typically show an initial disconnect between loss of function and loss of structure, a feature recapitulated in the affected dogs in this study. CONCLUSION We identified early-onset PRA in the German Spitz associated with a frameshift mutation in GUCY2D.
Collapse
Affiliation(s)
- Mariza Bortolini
- Department of Veterinary Medicine, Federal University of Paraná, Curitiba, Puerto Rico, Brazil
| | - Paige A Winkler
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | | | - Mario Teruo Sato
- Department of Ophthalmology, Federal University of Paraná, Curitiba, Paraná, USA
| | | | - Simon M Petersen-Jones
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | | |
Collapse
|
3
|
Takahashi K, Kwok JC, Sato Y, Aguirre GD, Miyadera K. Extended functional rescue following AAV gene therapy in a canine model of LRIT3-congenital stationary night blindness. Vision Res 2023; 209:108260. [PMID: 37220680 PMCID: PMC10524691 DOI: 10.1016/j.visres.2023.108260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 05/25/2023]
Abstract
Congenital stationary night blindness (CSNB) is a group of inherited retinal diseases in which either rod-to-ON-bipolar cell (ON-BC) signaling, or rod function is affected leading to impaired vision under low light conditions. One type of CSNB is associated with defects in genes (NYX, GRM6, TRPM1, GPR179, and LRIT3) involved in the mGluR6 signaling cascade at the ON-BC dendritic tips. We have previously characterized a canine model of LRIT3-CSNB and demonstrated short-term safety and efficacy of an ON-BC targeting AAV-LRIT3 (AAVK9#4-shGRM6-cLRIT3-WPRE) gene therapy. Herein, we demonstrate long-term functional recovery and molecular restoration following subretinal injection of the ON-BC targeting AAV-LRIT3 vector in all eight treated eyes for up to 32 months. Following subretinal administration of the therapeutic vector, expression of the LRIT3 transgene, as well as restoration of mGluR6 signaling cascade member TRPM1, were confirmed in the outer plexiform layer (OPL) of the treated area. However, further investigation of the transgene LRIT3 transcript expression by RNA in situ hybridization (RNA-ISH) revealed off-target expression in non-BCs including the photoreceptors, inner nuclear, and ganglion cell layers, despite the use of a mutant AAVK9#4 capsid and an improved mGluR6 promoter designed to specifically transduce and promote expression in ON-BCs. While the long-term therapeutic potential of AAVK9#4-shGRM6-cLRIT3-WPRE is promising, we highlight the necessity for further optimization of AAV-LRIT3 therapy in the canine CSNB model prior to its clinical application.
Collapse
Affiliation(s)
- Kei Takahashi
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jennifer C Kwok
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yu Sato
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gustavo D Aguirre
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Keiko Miyadera
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
4
|
Zeitz C, Roger JE, Audo I, Michiels C, Sánchez-Farías N, Varin J, Frederiksen H, Wilmet B, Callebert J, Gimenez ML, Bouzidi N, Blond F, Guilllonneau X, Fouquet S, Léveillard T, Smirnov V, Vincent A, Héon E, Sahel JA, Kloeckener-Gruissem B, Sennlaub F, Morgans CW, Duvoisin RM, Tkatchenko AV, Picaud S. Shedding light on myopia by studying complete congenital stationary night blindness. Prog Retin Eye Res 2023; 93:101155. [PMID: 36669906 DOI: 10.1016/j.preteyeres.2022.101155] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 01/20/2023]
Abstract
Myopia is the most common eye disorder, caused by heterogeneous genetic and environmental factors. Rare progressive and stationary inherited retinal disorders are often associated with high myopia. Genes implicated in myopia encode proteins involved in a variety of biological processes including eye morphogenesis, extracellular matrix organization, visual perception, circadian rhythms, and retinal signaling. Differentially expressed genes (DEGs) identified in animal models mimicking myopia are helpful in suggesting candidate genes implicated in human myopia. Complete congenital stationary night blindness (cCSNB) in humans and animal models represents an ON-bipolar cell signal transmission defect and is also associated with high myopia. Thus, it represents also an interesting model to identify myopia-related genes, as well as disease mechanisms. While the origin of night blindness is molecularly well established, further research is needed to elucidate the mechanisms of myopia development in subjects with cCSNB. Using whole transcriptome analysis on three different mouse models of cCSNB (in Gpr179-/-, Lrit3-/- and Grm6-/-), we identified novel actors of the retinal signaling cascade, which are also novel candidate genes for myopia. Meta-analysis of our transcriptomic data with published transcriptomic databases and genome-wide association studies from myopia cases led us to propose new biological/cellular processes/mechanisms potentially at the origin of myopia in cCSNB subjects. The results provide a foundation to guide the development of pharmacological myopia therapies.
Collapse
Affiliation(s)
- Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.
| | - Jérome E Roger
- Paris-Saclay Institute of Neuroscience, CERTO-Retina France, CNRS, Université Paris-Saclay, Saclay, France
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France; CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, Paris, France
| | | | | | - Juliette Varin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Helen Frederiksen
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Baptiste Wilmet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Jacques Callebert
- Service of Biochemistry and Molecular Biology, INSERM U942, Hospital Lariboisière, APHP, Paris, France
| | | | - Nassima Bouzidi
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Frederic Blond
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Stéphane Fouquet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Vasily Smirnov
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Ajoy Vincent
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, ON, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Elise Héon
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, ON, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France; CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, Paris, France; Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Florian Sennlaub
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Catherine W Morgans
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | - Robert M Duvoisin
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | - Andrei V Tkatchenko
- Oujiang Laboratory, Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health, Wenzhou, China; Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University, New York, NY, USA
| | - Serge Picaud
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
5
|
Pasmanter N, Petersen-Jones SM. Characterization of scotopic and mesopic rod signaling pathways in dogs using the On-Off electroretinogram. BMC Vet Res 2022; 18:422. [PMID: 36463174 PMCID: PMC9719241 DOI: 10.1186/s12917-022-03505-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/07/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND The On-Off, or long flash, full field electroretinogram (ERG) separates retinal responses to flash onset and offset. Depending on degree of dark-adaptation and stimulus strength the On and Off ERG can be shaped by rod and cone photoreceptors and postreceptoral cells, including ON and OFF bipolar cells. Interspecies differences have been shown, with predominantly positive Off-response in humans and other primates and a negative Off-response in rodents and dogs. However, the rod signaling pathways that contribute to these differential responses have not been characterized. In this study, we designed a long flash protocol in the dog that varied in background luminance and stimulus strength allowing for some rod components to be present to better characterize how rod pathways vary from scotopic to mesopic conditions. RESULTS With low background light the rod a-wave remains while the b-wave is significantly reduced resulting in a predominantly negative waveform in mesopic conditions. Through modeling and subtraction of the rod-driven response, we show that rod bipolar cells saturate with dimmer backgrounds than rod photoreceptors, resulting in rod hyperpolarization contributing to a large underlying negativity with mesopic backgrounds. CONCLUSIONS Reduction in rod bipolar cell responses in mesopic conditions prior to suppression of rod photoreceptor responses may reflect the changes in signaling pathway of rod-driven responses needed to extend the range of lighting conditions over which the retina functions.
Collapse
Affiliation(s)
- Nate Pasmanter
- grid.17088.360000 0001 2150 1785Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, 736 Wilson Road, D208 East Lansing, MI USA
| | - Simon M. Petersen-Jones
- grid.17088.360000 0001 2150 1785Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, 736 Wilson Road, D208 East Lansing, MI USA
| |
Collapse
|
6
|
Wegg ML, Pollard D, Ofri R. Retrospective evaluation of pre-surgical electroretinography results in a mixed-breed canine population presented for cataract removal surgery. Vet Ophthalmol 2022; 26:145-154. [PMID: 35649104 DOI: 10.1111/vop.13001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Electroretinography (ERG) is used prior to cataract removal surgery to assess retinal function. We aimed to replicate and improve upon previous studies by performing a full ECVO protocol and by examining the retina post-surgery in all patients. ANIMALS STUDIED One hundred twenty-seven eyes from 67 dogs were included in the study. PROCEDURES A full ECVO protocol electroretinography, which includes extensive rod and cone analysis, was performed on all dogs presenting for cataract surgery. RESULTS Our main findings were that amplitudes, but not implicit times of rod responses decreased with advanced cataracts. Amplitudes of the single flash rod and rod flicker responses were significantly lower in eyes with mature cataracts, and the former also decreased in hypermature cataracts. Cone flicker amplitude responses were also significantly lower in eyes with mature and hypermature cataracts. However, mixed single flash rod-cone and cone responses, with the exception of the mixed rod-cone a-wave amplitude in eyes with hypermature cataracts, were unaffected by cataract stage. The b-wave amplitude of the scotopic, mixed rod-cone, and photopic cone responses were affected by age and decreased by an average of 2.9, 7.5, and 1.5 μV/year, retrospectively (p < 0.01). CONCLUSIONS Lower ERG amplitudes in canine cataract patients may result from aging or the presence of advanced cataracts and may not indicate the presence of retinal disease.
Collapse
Affiliation(s)
- Michaela L Wegg
- The Roslin Institute, The University of Edinburgh, Midlothian, UK
| | | | - Ron Ofri
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
7
|
Miyadera K, Santana E, Roszak K, Iffrig S, Visel M, Iwabe S, Boyd RF, Bartoe JT, Sato Y, Gray A, Ripolles-Garcia A, Dufour VL, Byrne LC, Flannery JG, Beltran WA, Aguirre GD. Targeting ON-bipolar cells by AAV gene therapy stably reverses LRIT3-congenital stationary night blindness. Proc Natl Acad Sci U S A 2022; 119:e2117038119. [PMID: 35316139 PMCID: PMC9060458 DOI: 10.1073/pnas.2117038119] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/10/2022] [Indexed: 01/08/2023] Open
Abstract
SignificanceCanine models of inherited retinal diseases have helped advance adeno-associated virus (AAV)-based gene therapies targeting specific cells in the outer retina for treating blinding diseases in patients. However, therapeutic targeting of diseases such as congenital stationary night blindness (CSNB) that exhibit defects in ON-bipolar cells (ON-BCs) of the midretina remains underdeveloped. Using a leucine-rich repeat, immunoglobulin-like and transmembrane domain 3 (LRIT3) mutant canine model of CSNB exhibiting ON-BC dysfunction, we tested the ability of cell-specific AAV capsids and promotors to specifically target ON-BCs for gene delivery. Subretinal injection of one vector demonstrated safety and efficacy with robust and stable rescue of electroretinography signals and night vision up to 1 y, paving the way for clinical trials in patients.
Collapse
Affiliation(s)
- Keiko Miyadera
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Evelyn Santana
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Karolina Roszak
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Sommer Iffrig
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Meike Visel
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Simone Iwabe
- Ophthalmology Services, Charles River Laboratories, Mattawan, MI 49071
| | - Ryan F. Boyd
- Ophthalmology Services, Charles River Laboratories, Mattawan, MI 49071
| | - Joshua T. Bartoe
- Ophthalmology Services, Charles River Laboratories, Mattawan, MI 49071
| | - Yu Sato
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Alexa Gray
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Ana Ripolles-Garcia
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Valérie L. Dufour
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Leah C. Byrne
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - John G. Flannery
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - William A. Beltran
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Gustavo D. Aguirre
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
8
|
de Sousa AA, Todorov OS, Proulx MJ. A natural history of vertebrate vision loss: Insight from mammalian vision for human visual function. Neurosci Biobehav Rev 2022; 134:104550. [PMID: 35074313 DOI: 10.1016/j.neubiorev.2022.104550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 10/08/2021] [Accepted: 01/20/2022] [Indexed: 11/28/2022]
Abstract
Research on the origin of vision and vision loss in naturally "blind" animal species can reveal the tasks that vision fulfills and the brain's role in visual experience. Models that incorporate evolutionary history, natural variation in visual ability, and experimental manipulations can help disentangle visual ability at a superficial level from behaviors linked to vision but not solely reliant upon it, and could assist the translation of ophthalmological research in animal models to human treatments. To unravel the similarities between blind individuals and blind species, we review concepts of 'blindness' and its behavioral correlates across a range of species. We explore the ancestral emergence of vision in vertebrates, and the loss of vision in blind species with reference to an evolution-based classification scheme. We applied phylogenetic comparative methods to a mammalian tree to explore the evolution of visual acuity using ancestral state estimations. Future research into the natural history of vision loss could help elucidate the function of vision and inspire innovations in how to address vision loss in humans.
Collapse
Affiliation(s)
- Alexandra A de Sousa
- Centre for Health and Cognition, Bath Spa University, Bath, United Kingdom; UKRI Centre for Accessible, Responsible & Transparent Artificial Intelligence (ART:AI), University of Bath, United Kingdom.
| | - Orlin S Todorov
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Michael J Proulx
- UKRI Centre for Accessible, Responsible & Transparent Artificial Intelligence (ART:AI), University of Bath, United Kingdom; Department of Psychology, REVEAL Research Centre, University of Bath, Bath, United Kingdom
| |
Collapse
|
9
|
Varin J, Bouzidi N, Gauvain G, Joffrois C, Desrosiers M, Robert C, De Sousa Dias MM, Neuillé M, Michiels C, Nassisi M, Sahel JA, Picaud S, Audo I, Dalkara D, Zeitz C. Substantial restoration of night vision in adult mice with congenital stationary night blindness. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 22:15-25. [PMID: 34401402 PMCID: PMC8339357 DOI: 10.1016/j.omtm.2021.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 05/13/2021] [Indexed: 11/27/2022]
Abstract
Complete congenital stationary night blindness (cCSNB) due to mutations in TRPM1, GRM6, GPR179, NYX, or leucine-rich repeat immunoglobulin-like transmembrane domain 3 (LRIT3) is an incurable inherited retinal disorder characterized by an ON-bipolar cell (ON-BC) defect. Since the disease is non-degenerative and stable, treatment could theoretically be administrated at any time in life, making it a promising target for gene therapy. Until now, adeno-associated virus (AAV)-mediated therapies lead to significant functional improvements only in newborn cCSNB mice. Here we aimed to restore protein localization and function in adult Lrit3 -/ - mice. LRIT3 localizes in the outer plexiform layer and is crucial for TRPM1 localization at the dendritic tips of ON-BCs and the electroretinogram (ERG)-b-wave. AAV2-7m8-Lrit3 intravitreal injections were performed targeting either ON-BCs, photoreceptors (PRs), or both. Protein localization of LRIT3 and TRPM1 at the rod-to-rod BC synapse, functional rescue of scotopic responses, and ON-responses detection at the ganglion cell level were achieved in a few mice when ON-BCs alone or both PRs and ON-BCs, were targeted. More importantly, a significant number of treated adult Lrit3 -/- mice revealed an ERG b-wave recovery under scotopic conditions, improved optomotor responses, and on-time ON-responses at the ganglion cell level when PRs were targeted. Functional rescue was maintained for at least 4 months after treatment.
Collapse
Affiliation(s)
- Juliette Varin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Nassima Bouzidi
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Gregory Gauvain
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Corentin Joffrois
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Camille Robert
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Marion Neuillé
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Marco Nassisi
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 1423, Paris, France.,Fondation Ophtalmologique Adolphe de Rothschild, Paris, France.,Academie des Sciences, Institut de France, Paris, France.,Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Serge Picaud
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 1423, Paris, France.,Institute of Ophthalmology, University College of London, London, UK
| | - Deniz Dalkara
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
10
|
Hack YL, Crabtree EE, Avila F, Sutton RB, Grahn R, Oh A, Gilger B, Bellone RR. Whole-genome sequencing identifies missense mutation in GRM6 as the likely cause of congenital stationary night blindness in a Tennessee Walking Horse. Equine Vet J 2020; 53:316-323. [PMID: 32654228 DOI: 10.1111/evj.13318] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/01/2020] [Accepted: 06/25/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND The only known genetic cause of congenital stationary night blindness (CSNB) in horses is a 1378 bp insertion in TRPM1. However, an affected Tennessee Walking Horse was found to have no copies of this variant. OBJECTIVES To identify the genetic cause for CSNB in an affected Tennessee Walking Horse. STUDY DESIGN Case report detailing a whole-genome sequencing (WGS) approach to identify a causal variant. METHODS A complete ophthalmic exam, including an electroretinogram (ERG), was performed on suspected CSNB-affected horse. WGS data were generated from the case and compared with data from seven other breeds (n = 29). One hundred candidate genes were evaluated for coding variants homozygous in the case and absent in all other horses. Protein modelling was used to assess the functional effects of the identified variant. A random cohort of 90 unrelated Tennessee Walking Horses and 273 horses from additional breeds were screened to estimate allele frequency of the GRM6 variant. RESULTS ERG results were consistent with CSNB. WGS analysis identified a missense mutation in metabotropic glutamate receptor 6 (GRM6) (c.533C>T p.Thr178Met). This single nucleotide polymorphism (SNP) is predicted to be deleterious and protein modelling supports impaired binding of the neurotransmitter glutamate. This variant was not detected in 273 horses from three additional breeds. The estimated allele frequency in Tennessee Walking Horses is 10%. MAIN LIMITATIONS Limited phenotype information for controls and no additional cases with which to replicate this finding. CONCLUSIONS We identified a likely causal recessive missense variant in GRM6. Based on protein modelling, this variant alters GRM6 binding, and thus signalling from the retinal rod cell to the ON-bipolar cell, impairing vision in low light conditions. Given the 10% population allele frequency, it is likely that additional affected horses exist in this breed and further work is needed to identify and examine these animals.
Collapse
Affiliation(s)
- Yael L Hack
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Elizabeth E Crabtree
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Felipe Avila
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Roger B Sutton
- Cell Physiology and Molecular Biophysics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Robert Grahn
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Annie Oh
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Brian Gilger
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Rebecca R Bellone
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, California, USA.,Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, California, USA
| |
Collapse
|
11
|
Winkler PA, Occelli LM, Petersen-Jones SM. Large Animal Models of Inherited Retinal Degenerations: A Review. Cells 2020; 9:cells9040882. [PMID: 32260251 PMCID: PMC7226744 DOI: 10.3390/cells9040882] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
Studies utilizing large animal models of inherited retinal degeneration (IRD) have proven important in not only the development of translational therapeutic approaches, but also in improving our understanding of disease mechanisms. The dog is the predominant species utilized because spontaneous IRD is common in the canine pet population. Cats are also a source of spontaneous IRDs. Other large animal models with spontaneous IRDs include sheep, horses and non-human primates (NHP). The pig has also proven valuable due to the ease in which transgenic animals can be generated and work is ongoing to produce engineered models of other large animal species including NHP. These large animal models offer important advantages over the widely used laboratory rodent models. The globe size and dimensions more closely parallel those of humans and, most importantly, they have a retinal region of high cone density and denser photoreceptor packing for high acuity vision. Laboratory rodents lack such a retinal region and, as macular disease is a critical cause for vision loss in humans, having a comparable retinal region in model species is particularly important. This review will discuss several large animal models which have been used to study disease mechanisms relevant for the equivalent human IRD.
Collapse
|
12
|
Pasmanter N, Petersen-Jones SM. A review of electroretinography waveforms and models and their application in the dog. Vet Ophthalmol 2020; 23:418-435. [PMID: 32196872 DOI: 10.1111/vop.12759] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 02/04/2023]
Abstract
Electroretinography (ERG) is a commonly used technique to study retinal function in both clinical and research ophthalmology. ERG responses can be divided into component waveforms, analysis of which can provide insight into the health and function of different types and populations of retinal cells. In dogs, ERG has been used in the characterization of normal retinal function, as well as the diagnosis of retinal diseases and measuring effects of treatment. While many components of the recorded waveform are similar across species, dogs have several notable features that should be differentiated from the responses in humans and other animals. Additionally, modifications of standard protocols, such as changing flash frequency and stimulus color, and mathematical models of ERG waveforms have been used in studies of human retinal function but have been infrequently applied to visual electrophysiology in dogs. This review provides an overview of the origins and applications of ERG in addition to potential avenues for further characterization of responses in the dog.
Collapse
Affiliation(s)
- Nathaniel Pasmanter
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Simon M Petersen-Jones
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
13
|
Das RG, Becker D, Jagannathan V, Goldstein O, Santana E, Carlin K, Sudharsan R, Leeb T, Nishizawa Y, Kondo M, Aguirre GD, Miyadera K. Genome-wide association study and whole-genome sequencing identify a deletion in LRIT3 associated with canine congenital stationary night blindness. Sci Rep 2019; 9:14166. [PMID: 31578364 PMCID: PMC6775105 DOI: 10.1038/s41598-019-50573-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 09/05/2019] [Indexed: 01/11/2023] Open
Abstract
Congenital stationary night blindness (CSNB), in the complete form, is caused by dysfunctions in ON-bipolar cells (ON-BCs) which are secondary neurons of the retina. We describe the first disease causative variant associated with CSNB in the dog. A genome-wide association study using 12 cases and 11 controls from a research colony determined a 4.6 Mb locus on canine chromosome 32. Subsequent whole-genome sequencing identified a 1 bp deletion in LRIT3 segregating with CSNB. The canine mutant LRIT3 gives rise to a truncated protein with unaltered subcellular expression in vitro. Genetic variants in LRIT3 have been associated with CSNB in patients although there is limited evidence regarding its apparently critical function in the mGluR6 pathway in ON-BCs. We determine that in the canine CSNB retina, the mutant LRIT3 is correctly localized to the region correlating with the ON-BC dendritic tips, albeit with reduced immunolabelling. The LRIT3-CSNB canine model has direct translational potential enabling studies to help understand the CSNB pathogenesis as well as to develop new therapies targeting the secondary neurons of the retina.
Collapse
Affiliation(s)
- Rueben G Das
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Pennsylvania, United States of America
| | - Doreen Becker
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Pennsylvania, United States of America.,Institute of Genome Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | | | - Orly Goldstein
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Evelyn Santana
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Pennsylvania, United States of America
| | - Kendall Carlin
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Pennsylvania, United States of America
| | - Raghavi Sudharsan
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Pennsylvania, United States of America
| | - Tosso Leeb
- Institute of Genetics, University of Bern, Bern, Switzerland
| | - Yuji Nishizawa
- Department of Biomedical Sciences, Chubu University, Kasugai, Aichi, Japan
| | - Mineo Kondo
- Department of Ophthalmology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Gustavo D Aguirre
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Pennsylvania, United States of America
| | - Keiko Miyadera
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Pennsylvania, United States of America.
| |
Collapse
|
14
|
Comparative localization of cystathionine beta synthases and cystathionine gamma lyase in canine, non-human primate and human retina. Exp Eye Res 2019; 181:72-84. [PMID: 30653965 DOI: 10.1016/j.exer.2019.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/18/2018] [Accepted: 01/03/2019] [Indexed: 12/15/2022]
Abstract
Chronic exposure of the retina to light and high concentrations of polyunsaturated fatty acid in photoreceptor cells make this tissue susceptible to oxidative damage. As retinal degenerative diseases are associated with photoreceptor degeneration, the antioxidant activity of both hydrogen sulfide (H2S) and glutathione (GSH) may play an important role in ameliorating disease progression. H2S production is driven by cystathionine-γ-lyase (CSE) and cystathionine-β-synthase (CBS), the key enzymes that also drive transsulfuration pathway (TSP) necessary for GSH production. As it is currently unclear whether localized production of either H2S or GSH contributes to retinal homeostasis, we undertook a comparative analysis of CBS and CSE expression in canine, non-human primate (NHP) and human retinas to determine if these antioxidants could play a regulatory role in age-related or disease-associated retinal degeneration. Retinas from normal dogs, NHPs and humans were used for the study. Laser capture microdissection (LCM) was performed to isolate individual layers of the canine retina and analyze CBS and CSE gene expression by qRT-PCR. Immunohistochemistry and western blotting were performed for CBS and CSE labeling and protein expression in dog, NHP, and human retina, respectively. Using qRT-PCR, western blot, and immunohistochemistry (IHC), we showed that CBS and CSE are expressed in the canine, NHP, and human retina. IHC results from canine retina demonstrated increased expression levels of CBS but not CSE with post-developmental aging. IHC results also showed non-overlapping localization of both proteins with CBS presenting in rods, amacrine, horizontal, and nerve fiber cell layers while CSE was expressed by RPE, cones and Mϋller cells. Finally, we demonstrated that these enzymes localized to all three layers of canine, NHP and human retina: photoreceptors, outer plexiform layer (OPL) and notably in the ganglion cells layer/nerve fiber layer (GCL/NFL). QRT-PCR performed using RNA extracted from tissues isolated from these cell layers using laser capture microdissection (LCM) confirmed that each of CBS and CSE are expressed equally in these three layers. Together, these findings reveal that CSE and CBS are expressed in the retina, thereby supporting further studies to determine the role of H2S and these proteins in oxidative stress and apoptosis in retinal degenerative diseases.
Collapse
|
15
|
PRESUMED PHOTORECEPTOR DYSPLASIAS IN PEREGRINE FALCONS ( FALCO PEREGRINUS) AND PEREGRINE FALCON HYBRIDS. J Wildl Dis 2018; 55:325-334. [PMID: 30277829 DOI: 10.7589/2018-02-055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We describe a case series of photoreceptor dysplasia with secondary retinal degeneration in juvenile Peregrine Falcons. Six Peregrine Falcons ( Falco peregrinus) and three Peregrine Falcon × Prairie Falcon ( Falco mexicanus) hybrids had early-life visual deficits. Eight birds had visual defects shortly after hatching, and one bird had visual deficits first noticed at 5 mo of age. Complete ophthalmic examinations were performed in each animal. Eight of the animals had electroretinograms, and nine of the animals had their eyes examined histologically after euthanasia. Ophthalmic examinations did not reveal consistent and potentially blinding abnormalities, including an absence of ophthalmoscopic retinal lesions. Electroretinographic findings included subnormal amplitudes (with rod responses more abnormal than cone responses), with a negative b-wave amplitude occurring in one bird. Histologically, a reduction in the number of photoreceptors was present with numerous degenerative changes to the remaining photoreceptors, including frequent blunting and disorganization of photoreceptor outer segments, decreased numbers of cells in the inner nuclear layer, decreased numbers of ganglion cells, decreased thickness of the nerve fiber layer, and decreased myelinated axons within the optic nerve. Ultrastructurally, only minor cone outer segment changes and occasional phagocytic cells were seen. Results strongly suggested a primary retinopathy, characterized by photoreceptor dysplasia and secondary retinal degeneration with loss of cellular elements throughout the retina. The presence of a similar spectrum of findings in related individuals, the early age of onset, and the relative lack of other environmental, ocular, or systemic abnormalities suggested possible heritability.
Collapse
|
16
|
Oh A, Loew ER, Foster ML, Davidson MG, English RV, Gervais KJ, Herring IP, Mowat FM. Phenotypic characterization of complete CSNB in the inbred research beagle: how common is CSNB in research and companion dogs? Doc Ophthalmol 2018; 137:87-101. [PMID: 30051304 DOI: 10.1007/s10633-018-9653-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/23/2018] [Indexed: 01/23/2023]
Abstract
PURPOSE Although congenital stationary night blindness (CSNB) has been described in a Japanese beagle dog research colony, certain clinical correlates with human CSNB have not yet been described, nor has an estimate of frequency of the condition been made in inbred and outbred beagle populations. METHODS A beagle with CSNB obtained from a commercial research dog supplier in the USA and matched control dogs (n = 3) underwent examination, refraction, ocular imaging, assessment of visual navigation ability and detailed electroretinography (ERG). Retrospective review of ERGs in two independent groups of inbred (n = 15 and 537, respectively) and one group of outbred dogs (n = 36) was used to estimate CSNB frequency in these populations. RESULTS In the affected dog, there were absent dark-adapted b-waves in response to dim-light flashes, severely reduced dark-adapted b-waves in response to bright-light flashes, and normal light-adapted b-waves with a-waves that had broadened troughs. Long-flash ERGs confirmed a markedly reduced b-wave with a preserved d-wave, consistent with cone ON-bipolar cell dysfunction. There was evidence of normal rod photoreceptor a-wave dark adaptation, and rapid light adaptation. In the wider beagle populations, five inbred beagles had a b/a wave ratio of < 1 in dark-adapted bright-flash ERG, whereas no outbred beagles had ERGs consistent with CSNB. CONCLUSIONS The identified dog had clinical findings consistent with complete type CSNB, similar to that described in the Japanese colony. CSNB appears to be a rare disorder in the wider beagle population, although its detection could confound studies that use retinal function as an outcome measure in research dogs, necessitating careful baseline studies to be performed prior to experimentation.
Collapse
Affiliation(s)
- Annie Oh
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27606, USA
| | - Ellis R Loew
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Melanie L Foster
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27606, USA
| | - Michael G Davidson
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27606, USA
| | | | - Kristen J Gervais
- Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine, Columbus, OH, 43210, USA
| | - Ian P Herring
- Department of Small Animal Clinical Sciences, Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA, 24061, USA
| | - Freya M Mowat
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27606, USA.
| |
Collapse
|
17
|
Das RG, Marinho FP, Iwabe S, Santana E, McDaid KS, Aguirre GD, Miyadera K. Variabilities in retinal function and structure in a canine model of cone-rod dystrophy associated with RPGRIP1 support multigenic etiology. Sci Rep 2017; 7:12823. [PMID: 28993665 PMCID: PMC5634483 DOI: 10.1038/s41598-017-13112-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 09/13/2017] [Indexed: 01/01/2023] Open
Abstract
Defects in the cilia gene RPGRIP1 cause Leber congenital amaurosis and cone-rod dystrophy in humans. A form of canine cone-rod dystrophy (cord1) was originally associated with a homozygous insertion in RPGRIP1 (RPGRIP1ins/ins) as the primary disease locus while a homozygous deletion in MAP9 (MAP9del/del) was later identified as a modifier associated with the early onset form. However, we find further variability in cone electroretinograms (ERGs) ranging from normal to absent in an extended RPGRIP1ins/ins canine colony, irrespective of the MAP9 genotype. Ophthalmoscopically, cone ERGabsentRPGRIP1ins/ins eyes show discolouration of the tapetal fundus with varying onset and disease progression, while sd-OCT reveals atrophic changes. Despite marked changes in cone ERG and retinal morphology, photopic vision-guided behaviour is comparable between normal and cone ERGabsentRPGRIP1ins/ins littermates. Cone morphology of the dogs lacking cone ERG are truncated with shortened outer and inner segments. Immunohistochemically, cone ERGabsentRPGRIP1ins/ins retinas have extensive L/M-opsin mislocalization, lack CNGB3 labelling in the L/M-cones, and lack GC1 in all cones. Our results indicate that cord1 is a multigenic disease in which mutations in neither RPGRIP1 nor MAP9 alone lead to visual deficits, and additional gene(s) contribute to cone-specific functional and morphologic defects.
Collapse
Affiliation(s)
- Rueben G Das
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Felipe Pompeo Marinho
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Simone Iwabe
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Evelyn Santana
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kendra Sierra McDaid
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Gustavo D Aguirre
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Keiko Miyadera
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
18
|
Broadgate S, Yu J, Downes SM, Halford S. Unravelling the genetics of inherited retinal dystrophies: Past, present and future. Prog Retin Eye Res 2017; 59:53-96. [PMID: 28363849 DOI: 10.1016/j.preteyeres.2017.03.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 02/07/2023]
Abstract
The identification of the genes underlying monogenic diseases has been of interest to clinicians and scientists for many years. Using inherited retinal dystrophies as an example of monogenic disease we describe the history of molecular genetic techniques that have been pivotal in the discovery of disease causing genes. The methods that were developed in the 1970's and 80's are still in use today but have been refined and improved. These techniques enabled the concept of the Human Genome Project to be envisaged and ultimately realised. When the successful conclusion of the project was announced in 2003 many new tools and, as importantly, many collaborations had been developed that facilitated a rapid identification of disease genes. In the post-human genome project era advances in computing power and the clever use of the properties of DNA replication has allowed the development of next-generation sequencing technologies. These methods have revolutionised the identification of disease genes because for the first time there is no need to define the position of the gene in the genome. The use of next generation sequencing in a diagnostic setting has allowed many more patients with an inherited retinal dystrophy to obtain a molecular diagnosis for their disease. The identification of novel genes that have a role in the development or maintenance of retinal function is opening up avenues of research which will lead to the development of new pharmacological and gene therapy approaches. Neither of which can be used unless the defective gene and protein is known. The continued development of sequencing technologies also holds great promise for the advent of truly personalised medicine.
Collapse
Affiliation(s)
- Suzanne Broadgate
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Levels 5 and 6 West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| | - Jing Yu
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Levels 5 and 6 West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| | - Susan M Downes
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford, OX3 9DU, UK
| | - Stephanie Halford
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Levels 5 and 6 West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK.
| |
Collapse
|
19
|
Somma AT, Moreno JCD, Sato MT, Rodrigues BD, Bacellar-Galdino M, Occelli LM, Petersen-Jones SM, Montiani-Ferreira F. Characterization of a novel form of progressive retinal atrophy in Whippet dogs: a clinical, electroretinographic, and breeding study. Vet Ophthalmol 2016; 20:450-459. [PMID: 27896899 DOI: 10.1111/vop.12448] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To describe a form of progressive retinal atrophy (PRA) in Whippets including clinical, electroretinographic, optical coherence tomographic changes and pedigree analysis. ANIMALS STUDIED Client-owned Whippet dogs (n = 51) living in Brazil. PROCEDURES All animals were submitted for routine ophthalmic screening for presumed inherited ocular disease, which included the following: visual tests, such as obstacle course tests, in scotopic and photopic conditions, cotton ball test, dazzle reflex, ocular fundus evaluation by indirect ophthalmoscopy followed by fundus photography. Additionally, electroretinography (ERG) and optical coherence tomography (OCT) were performed in 24 and four dogs, respectively. RESULTS Sixteen dogs were diagnosed with PRA. Vision deficits in dim light were detected in dogs examined at a young age associated with nystagmus. Funduscopic changes included the development of multifocal retinal bullae from 6 months of age. Retinal thinning became apparent later, at which time the bullae were no longer detected. OCT examination of selected young dogs revealed that the retinal bullae were due to separation between photoreceptors and the retinal pigment epithelium, and of dogs with more advanced disease confirmed the development of retinal thinning. Electroretinography in young dogs revealed a negative ERG due to a lack of b-wave in both scotopic and photopic recordings. With progression, the ERG became unrecordable. Pedigree analysis suggested an autosomal recessive mode of inheritance. CONCLUSION The retinal dystrophy reported here in Whippet dogs has a unique phenotype of an initial lack of ERG b-wave, development of retinal bullae then a progressive generalized retinal degeneration.
Collapse
Affiliation(s)
- André Tavares Somma
- Veterinary Medicine Department, Comparative Ophthalmology Laboratory, Rua dos Funcionários, 1540, Curtiba, 80035-050, Brazil
| | - Juan Carlos Duque Moreno
- Veterinary Medicine Department, Comparative Ophthalmology Laboratory, Rua dos Funcionários, 1540, Curtiba, 80035-050, Brazil
| | - Mario Teruo Sato
- Universidade Federal do Parana, R. Padre Camargo, 280, Curtiba, 80060-240, Brazil
| | - Blanche Dreher Rodrigues
- Ophthalmology Service, Centro Integrado de Especialidades Veterinárias, Rua André Zanetti, 144, Curtiba, 808010-280, Brazil
| | - Marianna Bacellar-Galdino
- Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, 736 Wilson Road D-208, East Lansing, MI, 48824, USA
| | - Laurence Mireille Occelli
- Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, 736 Wilson Road D-208, East Lansing, MI, 48824, USA
| | - Simon Michael Petersen-Jones
- Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, 736 Wilson Road D-208, East Lansing, MI, 48824, USA
| | - Fabiano Montiani-Ferreira
- Veterinary Medicine Department, Comparative Ophthalmology Laboratory, Rua dos Funcionários, 1540, Curtiba, 80035-050, Brazil
| |
Collapse
|
20
|
Dinet V, Ciccotosto GD, Delaunay K, Borras C, Ranchon-Cole I, Kostic C, Savoldelli M, El Sanharawi M, Jonet L, Pirou C, An N, Abitbol M, Arsenijevic Y, Behar-Cohen F, Cappai R, Mascarelli F. Amyloid Precursor-Like Protein 2 deletion-induced retinal synaptopathy related to congenital stationary night blindness: structural, functional and molecular characteristics. Mol Brain 2016; 9:64. [PMID: 27267879 PMCID: PMC4897877 DOI: 10.1186/s13041-016-0245-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 05/30/2016] [Indexed: 12/03/2022] Open
Abstract
Background Amyloid precursor protein knockout mice (APP-KO) have impaired differentiation of amacrine and horizontal cells. APP is part of a gene family and its paralogue amyloid precursor-like protein 2 (APLP2) has both shared as well as distinct expression patterns to APP, including in the retina. Given the impact of APP in the retina we investigated how APLP2 expression affected the retina using APLP2 knockout mice (APLP2-KO). Results Using histology, morphometric analysis with noninvasive imaging technique and electron microscopy, we showed that APLP2-KO retina displayed abnormal formation of the outer synaptic layer, accompanied with greatly impaired photoreceptor ribbon synapses in adults. Moreover, APLP2-KO displayed a significant decease in ON-bipolar, rod bipolar and type 2 OFF-cone bipolar cells (36, 21 and 63 %, respectively). Reduction of the number of bipolar cells was accompanied with disrupted dendrites, reduced expression of metabotropic glutamate receptor 6 at the dendritic tips and alteration of axon terminals in the OFF laminae of the inner plexiform layer. In contrast, the APP-KO photoreceptor ribbon synapses and bipolar cells were intact. The APLP2-KO retina displayed numerous phenotypic similarities with the congenital stationary night blindness, a non-progressive retinal degeneration disease characterized by the loss of night vision. The pathological phenotypes in the APLP2-KO mouse correlated to altered transcription of genes involved in pre- and postsynatic structure/function, including CACNA1F, GRM6, TRMP1 and Gα0, and a normal scotopic a-wave electroretinogram amplitude, markedly reduced scotopic electroretinogram b-wave and modestly reduced photopic cone response. This confirmed the impaired function of the photoreceptor ribbon synapses and retinal bipolar cells, as is also observed in congenital stationary night blindness. Since congenital stationary night blindness present at birth, we extended our analysis to retinal differentiation and showed impaired differentiation of different bipolar cell subtypes and an altered temporal sequence of development from OFF to ON laminae in the inner plexiform layer. This was associated with the altered expression patterns of bipolar cell generation and differentiation factors, including MATH3, CHX10, VSX1 and OTX2. Conclusions These findings demonstrate that APLP2 couples retina development and synaptic genes and present the first evidence that APLP2 expression may be linked to synaptic disease. Electronic supplementary material The online version of this article (doi:10.1186/s13041-016-0245-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Virginie Dinet
- Centre de Recherche des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France
| | - Giuseppe D Ciccotosto
- Department of Pathology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
| | - Kimberley Delaunay
- Centre de Recherche des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France
| | - Céline Borras
- Centre de Recherche des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France
| | - Isabelle Ranchon-Cole
- Laboratoire de Biophysique Sensorielle, Université Clermont 1, Clermont-Ferrand, France
| | - Corinne Kostic
- Unit of Gene Therapy & Stem Cell Biology, University of Lausanne, Jules-Gonin Eye Hospital, Lausanne, Switzerland
| | - Michèle Savoldelli
- Centre de Recherche des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France
| | - Mohamed El Sanharawi
- Centre de Recherche des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France
| | - Laurent Jonet
- Centre de Recherche des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France
| | - Caroline Pirou
- Centre de Recherche des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France
| | - Na An
- Centre de Recherche des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France
| | - Marc Abitbol
- Centre de Recherche des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France
| | - Yvan Arsenijevic
- Unit of Gene Therapy & Stem Cell Biology, University of Lausanne, Jules-Gonin Eye Hospital, Lausanne, Switzerland
| | - Francine Behar-Cohen
- Centre de Recherche des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France
| | - Roberto Cappai
- Department of Pathology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
| | - Frédéric Mascarelli
- Centre de Recherche des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France.
| |
Collapse
|
21
|
Palanova A. The genetics of inherited retinal disorders in dogs: implications for diagnosis and management. VETERINARY MEDICINE-RESEARCH AND REPORTS 2016; 7:41-51. [PMID: 30050836 PMCID: PMC6042528 DOI: 10.2147/vmrr.s63537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Dogs are affected by many hereditary diseases just as humans are. One group of these diseases comprises of retinal disorders, which are a growing problem in canine breeding. These disorders are heterogeneous, with diverse causative mutations and modes of inheritance. Some affect only one breed, while others may affect many breeds; some breeds are affected by only one disease, while others can be affected by two or more. Dog breeders should take into account the presence of any deleterious alleles when choosing parents for the next generation.
Collapse
Affiliation(s)
- Anna Palanova
- Department of Tumor Biology, Institute of Animal Physiology and Genetics, v. v. i., Academy of Sciences of the Czech Republic, Libechov, Czech Republic,
| |
Collapse
|