1
|
Kellner AV, Hunter R, Do P, Eggert J, Jaffe M, Geitgey DK, Lee M, Hamilton JAG, Ross AJ, Ank RS, Bender RL, Ma R, Porter CC, Dreaden EC, Au-Yeung BB, Haynes KA, Henry CJ, Salaita K. The T-cell niche tunes immune function through modulation of the cytoskeleton and TCR-antigen forces. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578101. [PMID: 38352441 PMCID: PMC10862838 DOI: 10.1101/2024.01.31.578101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Obesity is a major public health crisis given its rampant growth and association with an increased risk for cancer. Interestingly, patients with obesity tend to have an increased tumor burden and decreased T-cell function. It remains unclear how obesity compromises T-cell mediated immunity. To address this question, we modeled the adipocyte niche using the secretome released from adipocytes as well as the niche of stromal cells and investigated how these factors modulated T-cell function. We found that the secretomes altered antigen-specific T-cell receptor (TCR) triggering and activation. RNA-sequencing analysis identified thousands of gene targets modulated by the secretome including those associated with cytoskeletal regulation and actin polymerization. We next used molecular force probes to show that T-cells exposed to the adipocyte niche display dampened force transmission to the TCR-antigen complex and conversely, stromal cell secreted factors lead to significantly enhanced TCR forces. These results were then validated in diet-induced obese mice. Importantly, secretome-mediated TCR force modulation mirrored the changes in T-cell functional responses in human T-cells using the FDA-approved immunotherapy, blinatumomab. Thus, this work shows that the adipocyte niche contributes to T-cell dysfunction through cytoskeletal modulation and reduces TCR triggering by dampening TCR forces consistent with the mechanosensor model of T-cell activation.
Collapse
|
2
|
Poloni C, Schonhofer C, Ivison S, Levings MK, Steiner TS, Cook L. T-cell activation-induced marker assays in health and disease. Immunol Cell Biol 2023; 101:491-503. [PMID: 36825901 PMCID: PMC10952637 DOI: 10.1111/imcb.12636] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 02/25/2023]
Abstract
Activation-induced marker (AIM) assays have proven to be an accessible and rapid means of antigen-specific T-cell detection. The method typically involves short-term incubation of whole blood or peripheral blood mononuclear cells with antigens of interest, where autologous antigen-presenting cells process and present peptides in complex with major histocompatibility complex (MHC) molecules. Recognition of peptide-MHC complexes by T-cell receptors then induces upregulation of activation markers on the T cells that can be detected by flow cytometry. In this review, we highlight the most widely used activation markers for assays in the literature while identifying nuances and potential downfalls associated with the technique. We provide a summary of how AIM assays have been used in both discovery science and clinical studies, including studies of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunity. This review primarily focuses on AIM assays using human blood or peripheral blood mononuclear cell samples, with some considerations noted for tissue-derived T cells and nonhuman samples. AIM assays are a powerful tool that enables detailed analysis of antigen-specific T-cell frequency, phenotype and function without needing to know the precise antigenic peptides and their MHC restriction elements, enabling a wider analysis of immunity generated following infection and/or vaccination.
Collapse
Affiliation(s)
- Chad Poloni
- Division of Infectious Diseases, Department of MedicineUniversity of British ColumbiaVancouverBCCanada
- BC Children's Hospital Research InstituteVancouverBCCanada
| | - Cole Schonhofer
- Division of Infectious Diseases, Department of MedicineUniversity of British ColumbiaVancouverBCCanada
- BC Children's Hospital Research InstituteVancouverBCCanada
| | - Sabine Ivison
- BC Children's Hospital Research InstituteVancouverBCCanada
- Department of SurgeryUniversity of British ColumbiaVancouverBCCanada
| | - Megan K Levings
- BC Children's Hospital Research InstituteVancouverBCCanada
- Department of SurgeryUniversity of British ColumbiaVancouverBCCanada
| | - Theodore S Steiner
- Division of Infectious Diseases, Department of MedicineUniversity of British ColumbiaVancouverBCCanada
- BC Children's Hospital Research InstituteVancouverBCCanada
| | - Laura Cook
- Division of Infectious Diseases, Department of MedicineUniversity of British ColumbiaVancouverBCCanada
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
- Department of Critical Care, Melbourne Medical SchoolUniversity of MelbourneMelbourneAustralia
| |
Collapse
|
3
|
Altosole T, Rotta G, Uras CRM, Bornheimer SJ, Fenoglio D. An optimized flow cytometry protocol for simultaneous detection of T cell activation induced markers and intracellular cytokines: Application to SARS-CoV-2 immune individuals. J Immunol Methods 2023; 515:113443. [PMID: 36842524 PMCID: PMC9957341 DOI: 10.1016/j.jim.2023.113443] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 02/28/2023]
Abstract
Antigen (ag)-specific T cell analysis is an important step for investigation of cellular immunity in many settings, such as infectious diseases, cancer and vaccines. Multiparameter flow cytometry has advantages in studying both the rarity and heterogeneity of these cells. In the cellular immunologist's toolbox, the expression of activation-induced markers (AIM) following antigen exposure has made possible the study and sorting of ag-specific T cells without using human leukocyte antigen (HLA)-multimers. In parallel, assessing the cytokine profile of responding T cells would support a more comprehensive description of the ongoing immune response by providing information related to cell function, such as polarization and effector activity. Here, a method and flow cytometry panel were optimized to combine the detection of activated CD4+ and CD8+ T cells in a TCR-dependent manner with the evaluation of cytokine production by intracellular staining, without affecting the positivity of activation markers. In particular, the expression of CD134 (OX40) and CD69 have been tested in conjunction with intracellular (ic) CD137 (4-1BB) to detect SARS-CoV-2 Spike protein-specific activated T cells. In our setting, CD134 provided minimal contribution to detect the pool of AIM+ T cells, whereas a key role was described for ic-CD69 which was co-expressed with ic-CD137 in both CD4+ and CD8+ lymphocytes. Moreover, the analysis of TCR-triggered cytokine-producing T cells (IFNγ, TNFα and IL-2 were assessed) further confirmed the capacity of ic-CD69 to identify functionally responsive antigen-specific T cells which were often largely negative or weakly positive for CD134 expression. In parallel, the use of CD45RA, CCR7 and CXCR5 allowed us to describe the T cell matuarion curve and detect T follicular helper (Tfh) CD4+ cells, including the antigen specific activated subsets. In conclusion, we optimized a method and flow cytometry panel combining assessment of activation induced markers and intracellular cytokines that will be useful for measuring TCR stimulation-dependent activation of CD4+ and CD8+ T cells.
Collapse
Affiliation(s)
| | | | - Chiara R M Uras
- Department of Experimental Medicine, Centre of Excellence for Biomedical Research, University of Genoa, Italy
| | | | - Daniela Fenoglio
- Department of Internal Medicine, University of Genoa, Italy; Biotherapy Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| |
Collapse
|
4
|
Mesenchymal stem cells transfer mitochondria to allogeneic Tregs in an HLA-dependent manner improving their immunosuppressive activity. Nat Commun 2022; 13:856. [PMID: 35165293 PMCID: PMC8844425 DOI: 10.1038/s41467-022-28338-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/18/2022] [Indexed: 12/15/2022] Open
Abstract
Cell-based immunotherapies can provide safe and effective treatments for various disorders including autoimmunity, cancer, and excessive proinflammatory events in sepsis or viral infections. However, to achieve this goal there is a need for deeper understanding of mechanisms of the intercellular interactions. Regulatory T cells (Tregs) are a lymphocyte subset that maintain peripheral tolerance, whilst mesenchymal stem cells (MSCs) are multipotent nonhematopoietic progenitor cells. Despite coming from different origins, Tregs and MSCs share immunoregulatory properties that have been tested in clinical trials. Here we demonstrate how direct and indirect contact with allogenic MSCs improves Tregs’ potential for accumulation of immunosuppressive adenosine and suppression of conventional T cell proliferation, making them more potent therapeutic tools. Our results also demonstrate that direct communication between Tregs and MSCs is based on transfer of active mitochondria and fragments of plasma membrane from MSCs to Tregs, an event that is HLA-dependent and associates with HLA-C and HLA-DRB1 eplet mismatch load between Treg and MSC donors. Regulatory T (Treg) cells and mesenchymal stem cells (MSCs) are both cell populations capable of immune tolerance induction. Here the authors show that the transfer of mitochondria from mesenchymal stem cells to allogeneic Treg cells in an HLA-dependent manner results in enhanced immunosuppressive functions of Treg cells.
Collapse
|
5
|
Saggau C, Scheffold A, Bacher P. Flow Cytometric Characterization of Human Antigen-Reactive T-Helper Cells. Methods Mol Biol 2021; 2285:141-152. [PMID: 33928550 DOI: 10.1007/978-1-0716-1311-5_12] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The detection and functional characterization of antigen-reactive T helper (Th) cells has been challenging due to their low frequency and functional heterogeneity. Antigen-reactive T cell enrichment (ARTE) allows the in-depth characterization of antigen-specific Th lymphocytes as a prerequisite for better understanding the role of adaptive immune responses in health and disease. ARTE is based on detection of the activation markers CD154 (CD40L) (expressed on all conventional Th cell subsets, Tcons) and CD137 (4-1BB) (expressed on regulatory T cells, Tregs), which are upregulated on the surface of CD4+ T cells upon short-term (7 h) in vitro stimulation with antigens in the presence of antigen-presenting cells (APCs). To substantially increase the sensitivity for the detection of antigen-specific Th cells, ARTE combines magnetic pre-enrichment of rare antigen-reactive T cells with multiparameter flow cytometry. Using CD154 and CD137 in combination allows the parallel detection of reactive Tcons and Tregs, after stimulation with the antigen. Thus, the ARTE technology now enables to characterize antigen-specific T cells with increased sensitivity of detection allowing even the investigation of antigen-specific Th cells in the naive T cell repertoire and regardless of prior knowledge of MHC alleles or antigenic epitopes.
Collapse
Affiliation(s)
- Carina Saggau
- Institute of Immunology, Christian-Albrechts Universität zu Kiel & Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Alexander Scheffold
- Institute of Immunology, Christian-Albrechts Universität zu Kiel & Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Petra Bacher
- Institute of Immunology, Christian-Albrechts Universität zu Kiel & Universitätsklinikum Schleswig-Holstein, Kiel, Germany.
- Institute of Clinical Molecular Biology, Christian-Albrechts Universität zu Kiel, Kiel, Germany.
| |
Collapse
|
6
|
Kim MS, Lee S, Park S, Kim KE, Park HJ, Cho D. Erythroid Differentiation Regulator 1 Ameliorates Collagen-Induced Arthritis via Activation of Regulatory T Cells. Int J Mol Sci 2020; 21:ijms21249555. [PMID: 33334006 PMCID: PMC7765345 DOI: 10.3390/ijms21249555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/09/2020] [Accepted: 12/13/2020] [Indexed: 11/25/2022] Open
Abstract
Erythroid differentiation regulator 1 (Erdr1) has been identified as an anti-inflammatory factor in several disease models, including collagen-induced arthritis (CIA), but its exact mechanisms are still not fully understood. Here, the involvement of regulatory T (Treg) cells in Erdr1-improved CIA was investigated. In the CIA model, Erdr1 was confirmed to reduce collagen-specific IgM in plasma and plasma cells in draining lymph nodes. Importantly, the downregulated Treg cell ratio in draining lymph nodes from CIA mice was recovered by Erdr1 treatment. In addition, administration of Erdr1 improved the CIA score and joint tissue damage, while it revealed no effect in Treg cell-depleted CIA mice, indicating that Treg cells mediate the therapeutic effects of Erdr1 in the CIA model. Results from in vitro experiments also demonstrated that Erdr1 significantly induced Treg cell differentiation and the expression of Treg activation markers, including CD25, CD69, and CTLA4 in CD4+Foxp3+ cells. Furthermore, Erdr1-activated Treg cells dramatically suppressed the proliferation of responder T cells, suggesting that they are functionally active. Taken together, these results show that Erdr1 induces activation of Treg cells and ameliorates rheumatoid arthritis via Treg cells.
Collapse
Affiliation(s)
- Myun Soo Kim
- Korea University Kine Sciences Research Institute, Kine Sciences, 525, Seolleung-ro, Gangnam-gu, Seoul 06149, Korea; (M.S.K.); (S.L.); (S.P.)
| | - Sora Lee
- Korea University Kine Sciences Research Institute, Kine Sciences, 525, Seolleung-ro, Gangnam-gu, Seoul 06149, Korea; (M.S.K.); (S.L.); (S.P.)
| | - Sunyoung Park
- Korea University Kine Sciences Research Institute, Kine Sciences, 525, Seolleung-ro, Gangnam-gu, Seoul 06149, Korea; (M.S.K.); (S.L.); (S.P.)
| | - Kyung Eun Kim
- Department of Cosmetic Sciences, Sookmyung Women’s University, Cheongpa-ro 47-gil 100 (Cheongpa-dong 2ga), Yongsan-gu, Seoul 04310, Korea;
| | - Hyun Jeong Park
- Institute of Convergence Science, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, Korea;
| | - Daeho Cho
- Korea University Kine Sciences Research Institute, Kine Sciences, 525, Seolleung-ro, Gangnam-gu, Seoul 06149, Korea; (M.S.K.); (S.L.); (S.P.)
- Institute of Convergence Science, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, Korea;
- Correspondence: ; Tel.: +82-2-3290-3739; Fax: +82-2-928-8273
| |
Collapse
|
7
|
Activation-induced surface proteins in the identification of antigen-responsive CD4 T cells. Immunol Lett 2019; 219:1-7. [PMID: 31881234 DOI: 10.1016/j.imlet.2019.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 12/09/2019] [Accepted: 12/22/2019] [Indexed: 02/06/2023]
Abstract
Identification of antigen specificity of CD4 T cells is instrumental in understanding adaptive immune responses in health and disease. The high diversity of CD4 T cell repertoire combined with the functional heterogeneity of the compartment poses a challenge to the assessment of CD4 T cell responses. In spite of that, multiple technologies allow direct or indirect interrogation of antigen specificity of CD4 T cells. In the last decade, multiple surface proteins have been established as cytokine-independent surrogates of in vitro CD4 T cell activation, and have found applications in the live identification and isolation of antigen-responsive CD4 T cells. Here we review the current knowledge of the surface proteins that permit identification of viable antigen-responsive CD4 T cells with high specificity, including those capable of identifying specialized CD4 T subsets such as germinal center follicular helper T cells and CD4 regulatory T cells.
Collapse
|
8
|
Sayin I, Radtke AJ, Vella LA, Jin W, Wherry EJ, Buggert M, Betts MR, Herati RS, Germain RN, Canaday DH. Spatial distribution and function of T follicular regulatory cells in human lymph nodes. J Exp Med 2018; 215:1531-1542. [PMID: 29769249 PMCID: PMC5987920 DOI: 10.1084/jem.20171940] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 03/02/2018] [Accepted: 05/01/2018] [Indexed: 01/05/2023] Open
Abstract
T follicular regulatory (Tfr) cells are a population of CD4+ T cells that express regulatory T cell markers and have been shown to suppress humoral immunity. However, the precise mechanisms and location of Tfr-mediated suppression in the lymph node (LN) microenvironment are unknown. Using highly multiplexed quantitative imaging and functional assays, we examined the spatial distribution, suppressive function, and preferred interacting partners of Tfr cells in human mesenteric LNs. We find that the majority of Tfr cells express low levels of PD-1 and reside at the border between the T cell zone and B cell follicle, with very few found in the germinal centers (GCs). Although PD-1+ Tfr cells expressed higher levels of CD38, CTLA-4, and GARP than PD-1Neg Tfr cells, both potently suppressed antibody production in vitro. These findings highlight the phenotypic diversity of human Tfr cells and suggest that Tfr-mediated suppression is most efficient at the T-B border and within the follicle, not in the GC.
Collapse
Affiliation(s)
- Ismail Sayin
- Division of Infectious Diseases and HIV Medicine, Case Western Reserve University, Cleveland, OH.,Cleveland Veterans Affairs Geriatric Research Education and Clinical Center, Cleveland, OH.,Department of Biology, Case Western Reserve University, Cleveland, OH
| | - Andrea J Radtke
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Laura A Vella
- Institute for Immunology and Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Wenjie Jin
- Division of Infectious Diseases and HIV Medicine, Case Western Reserve University, Cleveland, OH.,Cleveland Veterans Affairs Geriatric Research Education and Clinical Center, Cleveland, OH
| | - E John Wherry
- Institute for Immunology and Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Marcus Buggert
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Michael R Betts
- Institute for Immunology and Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Ramin S Herati
- Institute for Immunology and Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA.,Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ronald N Germain
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - David H Canaday
- Division of Infectious Diseases and HIV Medicine, Case Western Reserve University, Cleveland, OH .,Cleveland Veterans Affairs Geriatric Research Education and Clinical Center, Cleveland, OH
| |
Collapse
|
9
|
Meinicke H, Bremser A, Brack M, Schrenk K, Pircher H, Izcue A. KLRG1 impairs regulatory T-cell competitive fitness in the gut. Immunology 2017; 152:65-73. [PMID: 28437578 DOI: 10.1111/imm.12749] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 12/25/2022] Open
Abstract
Immune homeostasis requires the tight, tissue-specific control of the different CD4+ Foxp3+ regulatory T (Treg) cell populations. The cadherin-binding inhibitory receptor killer cell lectin-like receptor G1 (KLRG1) is expressed by a subpopulation of Treg cells with GATA3+ effector phenotype. Although such Treg cells are important for the immune balance, especially in the gut, the role of KLRG1 in Treg cells has not been assessed. Using KLRG1 knockout mice, we found that KLRG1 deficiency does not affect Treg cell frequencies in spleen, mesenteric lymph nodes or intestine, or frequencies of GATA3+ Treg cells in the gut. KLRG1-deficient Treg cells were also protective in a T-cell transfer model of colitis. Hence, KLRG1 is not essential for the development or activity of the general Treg cell population. We then checked the effects of KLRG1 on Treg cell activation. In line with KLRG1's reported inhibitory activity, in vitro KLRG1 cross-linking dampened the Treg cell T-cell receptor response. Consistently, lack of KLRG1 on Treg cells conferred on them a competitive advantage in the gut, but not in lymphoid organs. Hence, although absence of KLRG1 is not enough to increase intestinal Treg cells in KLRG1 knockout mice, KLRG1 ligation reduces T-cell receptor signals and the competitive fitness of individual Treg cells in the intestine.
Collapse
Affiliation(s)
- Holger Meinicke
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,Centre for Chronic Immunodeficiency (CCI), University Medical Centre Freiburg and University of Freiburg, Freiburg, Germany.,Department of Pediatrics and Adolescent Medicine, Division of General Pediatrics, University Medical Centre, Freiburg, Germany
| | - Anna Bremser
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,Centre for Chronic Immunodeficiency (CCI), University Medical Centre Freiburg and University of Freiburg, Freiburg, Germany
| | - Maria Brack
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,Centre for Chronic Immunodeficiency (CCI), University Medical Centre Freiburg and University of Freiburg, Freiburg, Germany
| | - Klaudia Schrenk
- Centre for Chronic Immunodeficiency (CCI), University Medical Centre Freiburg and University of Freiburg, Freiburg, Germany.,Institute of Pathology, University of Freiburg, Freiburg, Germany
| | - Hanspeter Pircher
- Institute of Immunology, University Medical Centre Freiburg, Freiburg, Germany
| | - Ana Izcue
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,Centre for Chronic Immunodeficiency (CCI), University Medical Centre Freiburg and University of Freiburg, Freiburg, Germany
| |
Collapse
|
10
|
CD4 + Foxp3 + T-cells contribute to myocardial ischemia-reperfusion injury. J Mol Cell Cardiol 2016; 101:99-105. [PMID: 27771254 DOI: 10.1016/j.yjmcc.2016.10.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/13/2016] [Accepted: 10/18/2016] [Indexed: 01/05/2023]
Abstract
OBJECTIVE The present study analyzed the effect of CD4+ Forkhead box protein 3 negative (Foxp3-) T-cells and Foxp3+ CD4+ T-cells on infarct size in a mouse myocardial ischemia-reperfusion model. APPROACH AND RESULTS We examined the infarct size as a fraction of the area-at-risk as primary study endpoint in mice after 30minutes of coronary ligation followed by 24hours of reperfusion. CD4+ T-cell deficient MHC-II KO mice showed smaller histologically determined infarct size (34.5±4.7% in MHCII KO versus 59.4±4.9% in wildtype (WT)) and better preserved ejection fraction determined by magnetic resonance tomography (56.9±2.8% in MHC II KO versus 39.0±4.2% in WT). MHC-II KO mice also displayed better microvascular perfusion than WT mice after 24hours of reperfusion. Also CD4+ T-cell sufficient OT-II mice, which express an in this context irrelevant T-cell receptor, revealed smaller infarct sizes compared to WT mice. However, MHC-II blocking anti-I-A/I-E antibody treatment was not able to reduce infarct size indicating that autoantigen recognition is not required for the activation of CD4+ T-cells during reperfusion. Flow-cytometric analysis also did not detect CD4+ T-cell activation in heart draining lymph nodes in response to 24hours of ischemia-reperfusion. Adoptive transfer of CD4+ T-cells in CD4 KO mice increased the infarct size only when including the Foxp3+ CD25+ subset. Depletion of CD4+ Foxp3+ T-cells in DEREG mice enabling specific conditional ablation of this subset by treatment with diphtheria toxin attenuated infarct size as compared to diphtheria toxin treated WT mice. CONCLUSIONS CD4+ Foxp3+ T-cells enhance myocardial ischemia-reperfusion injury. CD4+ T-cells exert injurious effects without the need for prior activation by MHC-II restricted autoantigen recognition.
Collapse
|
11
|
Abstract
The immune system has evolved to defend the organism against an almost infinite number of pathogens in a locally confined and antigen-specific manner while at the same time preserving tolerance to harmless antigens and self. Regulatory T (Treg) cells essentially contribute to an immunoregulatory network preventing excessive immune responses and immunopathology. There is emerging evidence that Treg cells not only operate in secondary lymphoid tissue but also regulate immune responses directly at the site of inflammation. Hence, the classification of Treg cells might need to be further extended by Treg cell subsets that are functionally and phenotypically polarized by their residency. In this review, we discuss recent findings on these tissue-resident Treg cell subsets and how these cells may operate in a tissue- and context-dependent manner.
Collapse
|