1
|
Ishizuka Y, Horimoto Y, Yuan M, Ueki Y, Onagi H, Saeki H, Hayashi T, Saito T, Kawate T, Ishikawa T, Eguchi H, Watanabe J, Kutomi G. Characterization of breast cancer tumors in older patients who show de novo resistance to endocrine therapy. Sci Rep 2024; 14:32116. [PMID: 39738567 DOI: 10.1038/s41598-024-83895-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 12/18/2024] [Indexed: 01/02/2025] Open
Abstract
The standard treatment for hormone receptor-positive breast cancer in good general condition is curative surgery followed by endocrine therapy. However, for older patients, endocrine therapy alone is sometimes chosen instead of curative surgery due to health conditions or personal preference, though this is not yet a standard approach. It is crucial to develop elderly-specific treatment strategies, potentially establishing endocrine therapy alone as a standard option. While endocrine therapy is generally effective, some patients show disease progression from the beginning due to de novo resistance. Hence, identifying such tumors is essential to determine who may benefit from endocrine therapy alone. Fifty-one patients aged over 70 years with estrogen receptor-positive and human epidermal growth factor receptor 2-negative invasive breast cancer who were treated with endocrine therapy instead of curative surgery were retrospectively investigated. Genes possibly related to de novo resistance to endocrine therapy were analyzed using a gene expression panel. Of the 51 patients, three patients showed progressive disease (PD) within 6 months of starting endocrine therapy. Gene expression analysis revealed that some genes, including those related to the cell cycle, such as CDKN3, were expressed at higher levels in the PD group compared with the non-PD group. Among these, CDKN3 retained significantly high expression in the PD group, even after analyzing more samples (log2 fold change, 1.99; P = 0.005). Public mRNA microarray data analysis revealed that patients with high CDKN3 tumors had worse outcomes. We identified several genes possibly involved in the de novo resistance to endocrine therapy. Our data indicate CDKN3 to be a predictive marker for de novo endocrine therapy resistance in older patients with breast cancer. We hope that our data will contribute to further research to establish tailored treatments for elderly breast cancer patients.
Collapse
Affiliation(s)
- Yumiko Ishizuka
- Department of Breast Oncology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yoshiya Horimoto
- Department of Breast Oncology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
- Department of Human Pathology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
- Department of Breast Surgery and Oncology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 1600023, Japan.
| | - Men Yuan
- Department of Human Pathology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yuko Ueki
- Department of Breast Oncology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroko Onagi
- Department of Human Pathology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Harumi Saeki
- Department of Human Pathology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takuo Hayashi
- Department of Human Pathology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tsuyoshi Saito
- Department of Human Pathology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takahiko Kawate
- Department of Breast Surgery and Oncology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 1600023, Japan
| | - Takashi Ishikawa
- Department of Breast Surgery and Oncology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 1600023, Japan
| | - Hidetaka Eguchi
- Diagnostics and Therapeutics of Intractable Disease, Intractable Disease Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Junichiro Watanabe
- Department of Breast Oncology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Goro Kutomi
- Department of Breast Oncology, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
2
|
Ni C, Guo Z, Bu H, Zhao X, Bao M, Ding L, Liang C, Tang Q, Li J. The role of cyclin-dependent kinase inhibitor 3 in the proliferation and migration of renal cell carcinoma. Chem Biol Interact 2024; 397:111092. [PMID: 38825053 DOI: 10.1016/j.cbi.2024.111092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
The cyclin-dependent kinase inhibitor 3 (CDKN3) gene, is over expressed in renal cell carcinoma (RCC). However, the cell biology functions of RCC are not well understood. The present study aimed to verify the ability of CDKN3 to promote the proliferation and migration of RCC through in vitro experiments. Subsequently, the clinical prognostic effects were analyzed using The Cancer Genome Atlas (TCGA; https://www.cancer.gov/) and Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/). The chelators, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), an analogue of the anti-tumor agent, were screened through bioinformatics analysis. The expression of CDKN3 is positively correlated with the IC50 of Dp44mT. In two RCC cell lines, 786-0 and Caki-1, we conducted small interfering RNA (siRNA) knockdown of CDKN3 and overexpression of CDKN3 by transfection plasmid. Subsequently, we administered Dp44mT to examine the resulting alterations in cell proliferation, migration, and apoptosis, thereby elucidating the role of CDKN3 and Dp44mT in these processes. The results of the experiment revealed a positive association between CDKN3 expression and the proliferation of RCC cell lines. Down-regulating CDKN3 significantly increased the apoptosis rate and inhibited cell migration in 786-0 and Caki-1 cells. Furthermore, bioinformatics analysis revealed a high expression of CDKN3 in RCC and a negative association between CDKN3 expression and survival. Gene set enrichment analysis (GSEA) revealed a significant association between high CDKN3 expression and the cell cycle pathway. Furthermore, we identified Dp44mT as a drug highly correlated with CDKN3 through the database. Subsequent addition of Dp44mT resulted in similar findings to those observed upon CDKN3 knockdown. Our findings have important implications for the diagnosis and treatment of CDKN3 in RCC. Additionally, Dp44mT is likely to be a promising candidate for future clinical applications.
Collapse
Affiliation(s)
- Chenbo Ni
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Zhisheng Guo
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Hengtao Bu
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Xusong Zhao
- Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210029, China
| | - Meiling Bao
- Department of Pathology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Lei Ding
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Chao Liang
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Qingsheng Tang
- Department of Urology, The Affiliated Dongtai Hospital of Nantong University, Yancheng, 224200, China.
| | - Jie Li
- Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
3
|
Zhang C, Shen Q, Gao M, Li J, Pang B. The role of Cyclin Dependent Kinase Inhibitor 3 ( CDKN3) in promoting human tumors: Literature review and pan-cancer analysis. Heliyon 2024; 10:e26061. [PMID: 38380029 PMCID: PMC10877342 DOI: 10.1016/j.heliyon.2024.e26061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/22/2024] Open
Abstract
Background Although many experiments and clinical studies have proved the link between the expression of CDKN3 and human tumors, we have not been able to identify any bioinformatics study in which the extensive tumor-promoting effect of CDKN3 was systematically analyzed. Objective Explore the extensive tumor-promoting effects of CDKN3 and review the research progress of CDKN3 in cancer. Methods We systematically reviewed the literature on CDKN3 and tumors. We explored the potential tumor-promoting effects of CDKN3 on different tumors in the TCGA database and the GTEx database using multiple platforms and websites. We studied the expression level of CDKN3, survival, prognosis, diagnosis, genetic variation, immune infiltration, and enrichment analysis using databases such as TIMER 2.0, GEPIA2, cBioPortal, and STRING. Results We found that CDKN3 is highly expressed in most tumors. The expression of CDKN3 is closely related to the prognosis of some tumors. And CDKN3 may have diagnostic value. The conclusion of our literature review is roughly the same, but there are differences, which are worthy of further study. Moreover, CDKN3 may be related to immune cell infiltration in tumor tissues. The genetic alteration of LUAD, STAD, SARC, PCPG, and ESCA with "Amplification" as the main type. In addition, through enrichment analysis, we found that CDKN3 affects tumors mainly through the control of the cell cycle and mitosis. Conclusion CDKN3 is highly expressed in most tumor tissues and has a statistical correlation with survival prognosis. It has extensive tumor-promoting effects that may be related to mechanisms such as immune infiltration.
Collapse
Affiliation(s)
- Chuanlong Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Qian Shen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Mengqi Gao
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Junchen Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300000, China
| | - Bo Pang
- International Medical Department of Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| |
Collapse
|
4
|
Gao C, Fan X, Liu Y, Han Y, Liu S, Li H, Zhang Q, Wang Y, Xue F. Comprehensive Analysis Reveals the Potential Roles of CDKN3 in Pancancer and Verification in Endometrial Cancer. Int J Gen Med 2023; 16:5817-5839. [PMID: 38106976 PMCID: PMC10723185 DOI: 10.2147/ijgm.s438479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/29/2023] [Indexed: 12/19/2023] Open
Abstract
Background Cyclin-dependent kinase inhibitor 3 (CDKN3) has been studied in many cancers. However, the comprehensive and systematic pancancer analysis of CDKN3 genes is still lacking. Methods Data were downloaded from online databases. R was used for analysis of the differential expression and gene alteration of CDKN3 and of the associations between CDKN3 expression and survival, signaling pathways, and drug sensitivity. Clinical samples and in vitro experiments were selected for verification. Results CDKN3 expression was higher in most types of cancers, and this phenotype was significantly correlated with poor survival. CDKN3 showed gene alterations and copy number alterations in many cancers and associated with some immune-related pathways and factors. Drug sensitivity analysis elucidated that CDKN3 could be a useful marker for therapy selection. Clinical samples elucidated CDKN3 expressed high in endometrial cancer tissue. In vitro studies showed that CDKN3 induced pro-tumor effect in immune environment and facilitated endometrial cancer cell proliferation and G1/S phase transition. Conclusion CDKN3 has been shown to be highly expressed in most types of cancers and promoted cancer cell progression. CDKN3 may serve as a novel marker in clinical diagnosis, treatment, and prognosis prediction in future.
Collapse
Affiliation(s)
- Chao Gao
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Xiangqin Fan
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
- Department of Obstetrics and Gynecology, Zaozhuang Municipal Hospital, Shandong, People’s Republic of China
| | - Yanyan Liu
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Yanyan Han
- Department of Pathology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, People’s Republic of China
| | - Shiqi Liu
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Huanrong Li
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Qiaoling Zhang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Yingmei Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Fengxia Xue
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| |
Collapse
|
5
|
Shi J, Peng B, Zhou X, Wang C, Xu R, Lu T, Chang X, Shen Z, Wang K, Xu C, Zhang L. An anoikis-based gene signature for predicting prognosis in malignant pleural mesothelioma and revealing immune infiltration. J Cancer Res Clin Oncol 2023; 149:12089-12102. [PMID: 37421452 DOI: 10.1007/s00432-023-05128-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/04/2023] [Indexed: 07/10/2023]
Abstract
INTRODUCTION Malignant pleural mesothelioma (MPM) is an aggressive, treatment-resistant tumor. Anoikis is a particular type of programmed apoptosis brought on by the separation of cell-cell or extracellular matrix (ECM). Anoikis has been recognized as a crucial element in the development of tumors. However, few studies have comprehensively examined the role of anoikis-related genes (ARGs) in malignant mesothelioma. METHODS ARGs were gathered from the GeneCard database and the Harmonizome portals. We obtained differentially expressed genes (DEGs) using the GEO database. Univariate Cox regression analysis, and the least absolute shrinkage and selection operator (LASSO) algorithm were utilized to select ARGs associated with the prognosis of MPM. We then developed a risk model, and time-dependent receiver operating characteristic (ROC) analysis and calibration curves were employed to confirm the ability of the model. The patients were divided into various subgroups using consensus clustering analysis. Based on the median risk score, patients were divided into low- and high-risk groups. Functional analysis and immune cell infiltration analysis were conducted to estimate molecular mechanisms and the immune infiltration landscape of patients. Finally, drug sensitivity analysis and tumor microenvironment landscape were further explored. RESULTS A novel risk model was constructed based on the six ARGs. The patients were successfully divided into two subgroups by consensus clustering analysis, with a striking difference in the prognosis and landscape of immune infiltration. The Kaplan-Meier survival analysis indicated that the OS rate of the low-risk group was significantly higher than the high-risk group. Functional analysis, immune cell infiltration analysis, and drug sensitivity analysis showed that high- and low-risk groups had different immune statuses and drug sensitivity. CONCLUSIONS In summary, we developed a novel risk model to predict MPM prognosis based on six selected ARGs, which could broaden comprehension of personalized and precise therapy approaches for MPM.
Collapse
Affiliation(s)
- Jiaxin Shi
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Bo Peng
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Xiang Zhou
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Chenghao Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Ran Xu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Tong Lu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Xiaoyan Chang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Zhiping Shen
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Kaiyu Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Chengyu Xu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Linyou Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China.
| |
Collapse
|
6
|
Al Sharie AH, Abu Zahra AM, El-Elimat T, Darweesh RF, Al-Khaldi AK, Abu Mousa BM, Amer MSB, Al Zu’bi YO, Al-Kammash K, Abu Lil A, Al Malkawi AA, Alazzeh Z, Alali FQ. Cyclin dependent kinase inhibitor 3 (CDKN3) upregulation is associated with unfavorable prognosis in clear cell renal cell carcinoma and shapes tumor immune microenvironment: A bioinformatics analysis. Medicine (Baltimore) 2023; 102:e35004. [PMID: 37682177 PMCID: PMC10489202 DOI: 10.1097/md.0000000000035004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/08/2023] [Indexed: 09/09/2023] Open
Abstract
Cell cycle regulatory proteins plays a pivotal role in the development and progression of many human malignancies. Identification of their biological functions as well as their prognostic utility presents an active field of research. As a continuation of the ongoing efforts to elucidate the molecular characteristics of clear cell renal cell carcinoma (ccRCC); we present a comprehensive bioinformatics study targeting the prognostic and mechanistic role of cyclin-dependent kinase inhibitor 3 (CDKN3) in ccRCC. The ccRCC cohort from the Cancer Genome Atlas Program was accessed through the UCSC Xena browser to obtain CDKN3 mRNA expression data and their corresponding clinicopathological variables. The independent prognostic signature of CDKN3 was evaluated using univariate and multivariate Cox logistic regression analysis. Gene set enrichment analysis and co-expression gene functional annotations were used to discern CDKN3-related altered molecular pathways. The tumor immune microenvironment was evaluated using TIMER 2.0 and gene expression profiling interactive analysis. CDKN3 upregulation is associated with shortened overall survival (hazard ratio [HR] = 2.325, 95% confident interval [CI]: 1.703-3.173, P < .0001) in the Cancer Genome Atlas Program ccRCC cohort. Univariate (HR: 0.426, 95% CI: 0.316-0.576, P < .001) and multivariate (HR: 0.560, 95% CI: 0.409-0.766, P < .001) Cox logistic regression analyses indicate that CDKN3 is an independent prognostic variable of the overall survival. High CDKN3 expression is associated with enrichment within the following pathways including allograph rejection, epithelial-mesenchymal transition, mitotic spindle, inflammatory response, IL-6/JAK/STAT3 signaling, spermatogenesis, TNF-α signaling via NF-kB pathway, complement activation, KRAS signaling, and INF-γ signaling. CDKN3 is also associated with significant infiltration of a wide spectrum of immune cells and correlates remarkably with immune-related genes. CDKN3 is a poor prognostic biomarker in ccRCC that alters many molecular pathways and impacts the tumor immune microenvironment.
Collapse
Affiliation(s)
- Ahmed H. Al Sharie
- Faculty of Medicine, Jordan University of Science & Technology, Irbid, Jordan
| | - Abdulmalek M. Abu Zahra
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Tamam El-Elimat
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Reem F. Darweesh
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Ayah K. Al-Khaldi
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Balqis M. Abu Mousa
- Faculty of Medicine, Jordan University of Science & Technology, Irbid, Jordan
| | | | - Yazan O. Al Zu’bi
- Faculty of Medicine, Jordan University of Science & Technology, Irbid, Jordan
| | - Kinda Al-Kammash
- Faculty of Medicine, Jordan University of Science & Technology, Irbid, Jordan
| | - Alma Abu Lil
- Faculty of Medicine, Jordan University of Science & Technology, Irbid, Jordan
| | | | - Zainab Alazzeh
- Faculty of Medicine, Jordan University of Science & Technology, Irbid, Jordan
| | - Feras Q. Alali
- College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
7
|
Ma J, Zhou W, Yuan Y, Wang B, Meng X. PSMD12 interacts with CDKN3 and facilitates pancreatic cancer progression. Cancer Gene Ther 2023; 30:1072-1083. [PMID: 37037907 DOI: 10.1038/s41417-023-00609-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 03/07/2023] [Accepted: 03/21/2023] [Indexed: 04/12/2023]
Abstract
Proteasome 26S subunit, non-ATPase 12 (PSMD12) genes have been implicated in several types of malignancies but the role of PSMD12 in pancreatic cancer (PC) remains elusive. Bioinformatics analysis showed that PSMD12 was highly expressed in PC patients and was associated with shorter overall survival. PSMD12 was also shown to be highly expressed in PC tissues and cell lines. Upregulated PSMD12 showed enhanced cell viability, increased colony formation rate and upregulated levels of PCNA and c-Myc, while the inhibition of PSMD12 abated these levels. PSMD12 knockdown promoted cell apoptosis. The results of xenografts in nude mice confirmed that PSMD12 promoted PC tumor growth in vivo. Protein‒protein interaction network and functional enrichment analyses implied that PSMD12 may have a connection with cyclin-dependent kinase inhibitor 3 (CDKN3). Co‑immunoprecipitation and western blot results confirmed that PSMD12 could interact with and abate the ubiquitination level of CDKN3, thus stabilizing the CDKN3 protein. Rescue assays showed that PSMD12 overexpression caused cell proliferation and that knockdown-induced cell apoptosis could be reversed by CDKN3 regulation. This work reveals the essential roles of PSMD12 in the proliferation and apoptosis of PC development. PSMD12 may regulate CDKN3 expression by interacting with and abating the ubiquitination level of CDKN3, thereby participating in the malignant behavior of PC.
Collapse
Affiliation(s)
- Jia Ma
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Wenyang Zhou
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yifeng Yuan
- Pancreatic Endocrinology Ward, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Baosheng Wang
- Pancreatic Endocrinology Ward, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xiangpeng Meng
- Pancreatic Endocrinology Ward, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
8
|
Demir Karaman E, Işık Z. Multi-Omics Data Analysis Identifies Prognostic Biomarkers across Cancers. Med Sci (Basel) 2023; 11:44. [PMID: 37489460 PMCID: PMC10366886 DOI: 10.3390/medsci11030044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 07/26/2023] Open
Abstract
Combining omics data from different layers using integrative methods provides a better understanding of the biology of a complex disease such as cancer. The discovery of biomarkers related to cancer development or prognosis helps to find more effective treatment options. This study integrates multi-omics data of different cancer types with a network-based approach to explore common gene modules among different tumors by running community detection methods on the integrated network. The common modules were evaluated by several biological metrics adapted to cancer. Then, a new prognostic scoring method was developed by weighting mRNA expression, methylation, and mutation status of genes. The survival analysis pointed out statistically significant results for GNG11, CBX2, CDKN3, ARHGEF10, CLN8, SEC61G and PTDSS1 genes. The literature search reveals that the identified biomarkers are associated with the same or different types of cancers. Our method does not only identify known cancer-specific biomarker genes, but also proposes new potential biomarkers. Thus, this study provides a rationale for identifying new gene targets and expanding treatment options across cancer types.
Collapse
Affiliation(s)
- Ezgi Demir Karaman
- Department of Computer Engineering, Institute of Natural and Applied Sciences, Dokuz Eylul University, Izmir 35390, Turkey
| | - Zerrin Işık
- Department of Computer Engineering, Faculty of Engineering, Dokuz Eylul University, Izmir 35390, Turkey
| |
Collapse
|
9
|
Tan M, Xu H, Li J, Jia Z, Zhang X, Shao S, Zhang W, Wang W, Sun Y. PU.1 interacts with KLF7 to suppress differentiation and promote proliferation in chicken preadipocytes. Acta Biochim Biophys Sin (Shanghai) 2023; 55:143-153. [PMID: 36647727 PMCID: PMC10157628 DOI: 10.3724/abbs.2022202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
<p indent="0mm">Krüppel-like factor 7 (KLF7) is a negative regulator of preadipocyte differentiation. Our previous KLF7 ChIP-seq analysis showed that the binding motif of PU.1 was found among the KLF7 binding peaks, indicating that an interaction between KLF7 and PU.1 at preadipocyte gene promoters and other regulatory elements might be common. Here, Co-IP and FRET assays are used to confirm that PU.1 can directly bind to KLF7 and enhance the transcription activity of cyclin-dependent kinase inhibitor 3 ( <italic>CDKN3</italic>), which is a downstream target gene of KLF7. We show that the PU.1 expression level is decreased during preadipocyte differentiation. Furthermore, PU.1 overexpression and knockdown experiments reveal that PU.1 negatively regulates chicken preadipocyte differentiation, as evidenced by appropriate changes in lipid droplet accumulation and altered expressions of PPARγ, FAS, and PLIN. In addition, PU.1 overexpression promotes preadipocyte proliferation, while knockdown of <italic>PU</italic>. <italic>1</italic> inhibits preadipocyte proliferation. We further demonstrate that PU.1 inhibits differentiation and promotes proliferation in preadipocytes, in part by directly interacting with KLF7. </p>.
Collapse
|
10
|
Identification of cell cycle-associated and -unassociated regulators for expression of a hepatocellular carcinoma oncogene cyclin-dependent kinase inhibitor 3. Biochem Biophys Res Commun 2022; 625:46-52. [DOI: 10.1016/j.bbrc.2022.07.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022]
|
11
|
Li M, Che N, Jin Y, Li J, Yang W. CDKN3 Overcomes Bladder Cancer Cisplatin Resistance via LDHA-Dependent Glycolysis Reprogramming. Onco Targets Ther 2022; 15:299-311. [PMID: 35388272 PMCID: PMC8977226 DOI: 10.2147/ott.s358008] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/17/2022] [Indexed: 01/04/2023] Open
Abstract
Background Aerobic glycolysis plays an important role in bladder cancer (BLCA) progression and chemoresistance. Cyclin-dependent kinase inhibitor-3 (CDKN3), a dual-specificity protein tyrosine phosphatase, has aberrant upregulation in multiple cancer types and is associated with tumorigenesis. However, the role of CDKN3 in BLCA progression and glycolysis has not been elucidated. Purpose In this study, we investigated the effect and underlying mechanisms of CDKN3 on bladder cancer chemoresistance. Results This study confirmed that CDKN3 was overexpressed in BLCA tissues and promoted proliferation and migration. Additionally, our results showed a CDKN3-dependent mechanism on chemoresistance; chemoresistance cells were transformed into chemosensitivity cells by CDKN3 knockdown. Additionally, we showed that CDKN3 knockdown decreased glycolysis by inhibiting LDHA expression in BLCA chemoresistance cells. The results also proved that LDHA was an important mediator of CDKN3-regulated BLCA resistance. LDHA overexpression reversed glycolysis inhibition and chemosensitivity induced by CDKN3 downregulation. Conclusion These data collectively identified a vital role of CDKN3 in glycolysis and chemoresistance by regulating LDHA expression in BLCA cells, providing a possible therapeutic strategy for treating BLCA.
Collapse
Affiliation(s)
- Mengxuan Li
- Human Anatomy and Histoembryology, Yanbian University College of Medicine, Yanji, People’s Republic of China
| | - Nan Che
- Department of Pathology, Yanbian University College of Medicine, Yanji, People’s Republic of China
| | - Yu Jin
- Human Anatomy and Histoembryology, Yanbian University College of Medicine, Yanji, People’s Republic of China
| | - Jinhua Li
- Department of Drug and Device Clinical Trials Institution, Affiliated Hospital of Yanbian University, Yanji, People’s Republic of China
- Jinhua Li, Department of Drug and Device Clinical Trials Institution, Affiliated Hospital of Yanbian University, No. 1827, Juzi Road, Yanji City, 133000, People’s Republic of China, Tel +8613843360437, Email
| | - Wanshan Yang
- Department of Pathology, Yanbian University College of Medicine, Yanji, People’s Republic of China
- Correspondence: Wanshan Yang, Department of Pathology, Yanbian University College of Medicine, No. 977, Gongyuan Road, Yanji City, 133002, People’s Republic of China, Tel +8613944390633, Email
| |
Collapse
|
12
|
Dai W, Fang S, Cai G, Dai J, Lin G, Ye Q, Miao H, Chen M, Tan X, Chen N, Liu X, Li M. CDKN3 expression predicates poor prognosis and regulates adriamycin sensitivity in hepatocellular carcinoma in vitro. J Int Med Res 2021; 48:300060520936879. [PMID: 32721244 PMCID: PMC7388118 DOI: 10.1177/0300060520936879] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Objective Hepatocellular carcinoma (HCC) is one of the most common causes of
cancer-related deaths worldwide. This study investigated the relationship
between cyclin-dependent kinase inhibitor (CDKN)3 and prognosis and
pathological characteristics in HCC patients to determine whether it could
be used as a prognostic factor and/or therapeutic target for HCC drug
development. Methods We previously showed that CDKN3 is deregulated in HCC tumor samples. Here,
bioinformatics analysis was used to assess the relationship between CDKN3
gene expression and the characteristics of HCC patients from Gene Expression
Omnibus and The Cancer Genome Atlas databases. Additionally, CDKN3
expression was silenced by small interfering RNA to determine its effect on
HCC cell proliferation and on HCC cell sensitivity to adriamycin
chemotherapy. Results Bioinformatics analysis showed a negative correlation between CDKN3
expression and both disease-free survival and overall survival. CDKN3
silencing did not significantly suppress the proliferation of HCC cells, but
did decrease their sensitivity to adriamycin. Conclusions CDKN3 may have a dual role during the development of HCC, and could be used
as an independent prognostic factor and therapeutic target for HCC
treatment.
Collapse
Affiliation(s)
- Wei Dai
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Shuo Fang
- Oncology Department, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Guanhe Cai
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jialiang Dai
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Guotai Lin
- Department of Radiology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Qiurong Ye
- Department of Ultrasound, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Huilai Miao
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Ming Chen
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xiaoyu Tan
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Nianping Chen
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xiaoguang Liu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Mingyi Li
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
13
|
Tavakoli F, Khatami SS, Momeni F, Azadbakht J, Ghasemi F. Cervical Cancer Diagnosis: Insights into Biochemical Biomarkers and Imaging Techniques. Comb Chem High Throughput Screen 2021; 24:605-623. [PMID: 32875976 DOI: 10.2174/1386207323666200901101955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/14/2020] [Accepted: 08/06/2020] [Indexed: 11/22/2022]
Abstract
Cervical malignancy is known as one of the important cancers which is originated from cervix. This malignancy has been observed in women infected with papillomavirus who had regular oral contraceptives, multiple pregnancies, and sexual relations. Early and fast cervical cancer diagnosis is known as two important aspects of cervical cancer therapy. Several investigations indicated that early and fast detection of cervical cancer could be associated with better treatment process and increasing survival rate of patients with this malignancy. Imaging techniques are very important diagnosis tools that could be employed for diagnosis and following responses to therapy in various cervical cancer stages. Multiple lines of evidence indicated that utilization of imaging techniques is related to some limitations (i.e. high cost, and invasive effects). Hence, it seems that along with using imaging techniques, finding and developing new biomarkers could be useful in the diagnosis and treatment of subjects with cervical cancer. Taken together, many studies showed that a variety of biomarkers including, several proteins, mRNAs, microRNAs, exosomes and polymorphisms might be introduced as prognostic, diagnostic and therapeutic biomarkers in cervical cancer therapy. In this review article, we highlighted imaging techniques as well as novel biomarkers for the diagnosis of cervical cancer.
Collapse
Affiliation(s)
- Fatemeh Tavakoli
- Department of Biotechnology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Sadat Khatami
- Department of Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Fatemeh Momeni
- Isfahan Research Committee of Multiple Sclerosis, Alzahra Research Institute, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Javid Azadbakht
- Department of Radiology and Imaging, Kashan University of Medical Science, Kashan, Iran
| | - Faezeh Ghasemi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
14
|
Wang J, Peng R, Zhang Z, Zhang Y, Dai Y, Sun Y. Identification and Validation of Key Genes in Hepatocellular Carcinoma by Bioinformatics Analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6662114. [PMID: 33688500 PMCID: PMC7925030 DOI: 10.1155/2021/6662114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/21/2021] [Accepted: 02/17/2021] [Indexed: 12/27/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most frequent primary liver cancer and has poor outcomes. However, the potential molecular biological process underpinning the occurrence and development of HCC is still largely unknown. The purpose of this study was to identify the core genes related to HCC and explore their potential molecular events using bioinformatics methods. HCC-related expression profiles GSE25097 and GSE84005 were selected from the Gene Expression Omnibus (GEO) database, and the differentially expressed genes (DEGs) between 306 HCC tissues and 281 corresponding noncancerous tissues were identified using GEO2R online tools. The protein-protein interaction network (PPIN) was constructed and visualized using the STRING database. Gene Ontology (GO) and KEGG pathway enrichment analyses of the DEGs were carried out using DAVID 6.8 and KOBAS 3.0. Additionally, module analysis and centrality parameter analysis were performed by Cytoscape. The expression differences of key genes in normal hepatocyte cells and HCC cells were verified by quantitative real-time fluorescence polymerase chain reaction (qRT-PCR). Additionally, survival analysis of key genes was performed by GEPIA. Our results showed that a total of 291 DEGs were identified including 99 upregulated genes and 192 downregulated genes. Our results showed that the PPIN of HCC was made up of 287 nodes and 2527 edges. GO analysis showed that these genes were mainly enriched in the molecular function of protein binding. Additionally, KEGG pathway analysis also revealed that DEGs were mainly involved in the metabolic, cell cycle, and chemical carcinogenesis pathways. Interestingly, a significant module with high centrality features including 10 key genes was found. Among these, CDK1, NDC80, HMMR, CDKN3, and PTTG1, which were only upregulated in HCC patients, have attracted much attention. Furthermore, qRT-PCR also confirmed the upregulation of these five key genes in the normal human hepatocyte cell line (HL-7702) and HCC cell lines (SMMC-7721, MHCC-97L, and MHCC-97H); patients with upregulated expression of these five key genes had significantly poorer survival and prognosis. CDK1, NDC80, HMMR, CDKN3, and PTTG1 can be used as molecular markers for HCC. This finding provides potential strategies for clinical diagnosis, accurate treatment, and prognosis analysis of liver cancer.
Collapse
Affiliation(s)
- Jia Wang
- Department of Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Rui Peng
- Department of Bioinformatics, Chongqing Medical University, Chongqing, China
| | - Zheng Zhang
- Department of Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Yixi Zhang
- Department of Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Yuke Dai
- Department of Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Yan Sun
- Department of Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| |
Collapse
|
15
|
Wang W, Zhang C, Yu Q, Zheng X, Yin C, Yan X, Liu G, Song Z. Development of a novel lipid metabolism-based risk score model in hepatocellular carcinoma patients. BMC Gastroenterol 2021; 21:68. [PMID: 33579192 PMCID: PMC7881464 DOI: 10.1186/s12876-021-01638-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 02/08/2023] Open
Abstract
Background Liver cancer is one of the most common malignancies worldwide. HCC (hepatocellular carcinoma) is the predominant pathological type of liver cancer, accounting for approximately 75–85 % of all liver cancers. Lipid metabolic reprogramming has emerged as an important feature of HCC. However, the influence of lipid metabolism-related gene expression in HCC patient prognosis remains unknown. In this study, we performed a comprehensive analysis of HCC gene expression data from TCGA (The Cancer Genome Atlas) to acquire further insight into the role of lipid metabolism-related genes in HCC patient prognosis. Methods We analyzed the mRNA expression profiles of 424 HCC patients from the TCGA database. GSEA(Gene Set Enrichment Analysis) was performed to identify lipid metabolism-related gene sets associated with HCC. We performed univariate Cox regression and LASSO(least absolute shrinkage and selection operator) regression analyses to identify genes with prognostic value and develop a prognostic model, which was tested in a validation cohort. We performed Kaplan-Meier survival and ROC (receiver operating characteristic) analyses to evaluate the performance of the model. Results We identified three lipid metabolism-related genes (ME1, MED10, MED22) with prognostic value in HCC and used them to calculate a risk score for each HCC patient. High-risk HCC patients exhibited a significantly lower survival rate than low-risk patients. Multivariate Cox regression analysis revealed that the 3-gene signature was an independent prognostic factor in HCC. Furthermore, the signature provided a highly accurate prediction of HCC patient prognosis. Conclusions We identified three lipid-metabolism-related genes that are upregulated in HCC tissues and established a 3-gene signature-based risk model that can accurately predict HCC patient prognosis. Our findings support the strong links between lipid metabolism and HCC and may facilitate the development of new metabolism-targeted treatment approaches for HCC.
Collapse
Affiliation(s)
- Wenjie Wang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Chen Zhang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Qihong Yu
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.,Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
| | - Xichuan Zheng
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Chuanzheng Yin
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Xueke Yan
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Gang Liu
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zifang Song
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
16
|
Moaven O, Su J, Jin G, Votanopoulos KI, Shen P, Mangieri C, O'Neill SS, Perry KC, Levine EA, Miller LD. Clinical Implications of Genetic Signatures in Appendiceal Cancer Patients with Incomplete Cytoreduction/HIPEC. Ann Surg Oncol 2020; 27:5016-5023. [PMID: 32705511 DOI: 10.1245/s10434-020-08841-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/27/2020] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Clinical decision-making is challenging in patients who undergo cytoreductive surgery/hyperthermic intraperitoneal chemotherapy (CRS/HIPEC) when complete cytoreduction is not feasible. Nevertheless, some patients still benefit with long-term survival after incomplete CRS/HIPEC. There is currently no robust predictive tool that can assist clinical decision-making in this setting. METHODS We quantified gene expression of 79 appendiceal mucinous neoplasms (AMN) from patients with incomplete CRS/HIPEC (R2 resection) using a custom NanoString gene panel. Using our previously defined, prognostic subtype classification algorithm based on signed nonnegative matrix factorization, we classified AMN cases into three molecular subtypes termed: immune enriched (IE), mixed (M), and oncogene enriched (OE). Kaplan-Meier and Cox proportional hazards analyses were used to associate subtypes and individual genes with overall survival (OS). RESULTS Median overall survival (OS) was 7.7 years for IE, 3.6 years for M, and 1.4 years for OE. Compared with IE, OE was associated with significantly lower survival [hazard ratio (HR) 3.64, 95% confidence interval (CI) 1.63-8.13; p = 0.0017]. The differences were observed in both low-grade and high-grade tumors. While only two genes were identified to be associated with OS in low-grade tumors, multiple genes were identified to be associated with OS in high-grade tumors, particularly genes with functions in cell cycle/proliferation, mucin production, immune pathways, and cell adhesion/migration. CONCLUSION Genetic signatures have prognostic value in patients with incomplete cytoreduction and provide valuable information to assist clinical and operative decision-making. Unraveling genetic alterations and involved pathways can direct efforts to design novel therapeutic modalities.
Collapse
Affiliation(s)
- Omeed Moaven
- Surgical Oncology Service, Department of General Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jing Su
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Guangxu Jin
- Breast Cancer Center of Excellence, Wake Forest Baptist Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Konstantinos I Votanopoulos
- Surgical Oncology Service, Department of General Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Perry Shen
- Surgical Oncology Service, Department of General Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Christopher Mangieri
- Surgical Oncology Service, Department of General Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Stacey S O'Neill
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Kathleen C Perry
- Surgical Oncology Service, Department of General Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Edward A Levine
- Surgical Oncology Service, Department of General Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Lance D Miller
- Breast Cancer Center of Excellence, Wake Forest Baptist Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, USA. .,Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
17
|
Wallbillich JJ, Tran PMH, Bai S, Tran LKH, Sharma AK, Ghamande SA, She JX. Identification of a transcriptomic signature with excellent survival prediction for squamous cell carcinoma of the cervix. Am J Cancer Res 2020; 10:1534-1547. [PMID: 32509396 PMCID: PMC7269782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 02/28/2020] [Indexed: 06/11/2023] Open
Abstract
Survival for patients with newly diagnosed cervical cancer has not significantly improved over the past several decades. We sought to identify a clinically relevant set of prognostic genes for squamous cell carcinoma of the cervix (SCCC), the most common cervical cancer subtype. Using RNA-sequencing data and survival data from 203 patients in The Cancer Genome Atlas (TCGA), we conducted a series of analyses using different decile cutoffs for gene expression to identify genes that could indicate large and consistent survival differences across different decile cutoffs of gene expression. Those analyses identified 42 high-risk genes. A patient's survivability could be estimated by simply counting the number of high-risk genes with extremely high expression (above the 90th percentile) or estimating a transcriptomic risk score (TRS) using a machine learning algorithm with 9 of the 42 genes. On multivariate analysis, the significant predictors of mortality included high TRS (HR = 44.8), stage IV (HR = 28.1), intermediate TRS (HR = 4.75), and positive lymph node status (HR = 2.92). Approximately 18% of earlier-stage patients were identified as a poor-prognosis subgroup with high TRS. In patients with SCCC, transcriptomic risk appears to better predict survival than clinical prognostic factors, including stage.
Collapse
Affiliation(s)
- John J Wallbillich
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia at Augusta UniversityAugusta, GA, USA
- Section of Gynecologic Oncology, Department of Obstetrics and Gynecology, Medical College of Georgia at Augusta UniversityAugusta, GA, USA
- Division of Gynecologic Oncology, Department of Oncology, Karmanos Cancer Institute and Wayne State UniversityDetroit, MI, USA
| | - Paul MH Tran
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia at Augusta UniversityAugusta, GA, USA
| | - Shan Bai
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia at Augusta UniversityAugusta, GA, USA
| | - Lynn KH Tran
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia at Augusta UniversityAugusta, GA, USA
| | - Ashok K Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia at Augusta UniversityAugusta, GA, USA
| | - Sharad A Ghamande
- Section of Gynecologic Oncology, Department of Obstetrics and Gynecology, Medical College of Georgia at Augusta UniversityAugusta, GA, USA
| | - Jin-Xiong She
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia at Augusta UniversityAugusta, GA, USA
- Section of Gynecologic Oncology, Department of Obstetrics and Gynecology, Medical College of Georgia at Augusta UniversityAugusta, GA, USA
| |
Collapse
|
18
|
Jiang CH, Yuan X, Li JF, Xie YF, Zhang AZ, Wang XL, Yang L, Liu CX, Liang WH, Pang LJ, Zou H, Cui XB, Shen XH, Qi Y, Jiang JF, Gu WY, Li F, Hu JM. Bioinformatics-based screening of key genes for transformation of liver cirrhosis to hepatocellular carcinoma. J Transl Med 2020; 18:40. [PMID: 32000807 PMCID: PMC6993496 DOI: 10.1186/s12967-020-02229-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/14/2020] [Indexed: 02/06/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the most common type of liver tumour, and is closely related to liver cirrhosis. Previous studies have focussed on the pathogenesis of liver cirrhosis developing into HCC, but the molecular mechanism remains unclear. The aims of the present study were to identify key genes related to the transformation of cirrhosis into HCC, and explore the associated molecular mechanisms. Methods GSE89377, GSE17548, GSE63898 and GSE54236 mRNA microarray datasets from Gene Expression Omnibus (GEO) were analysed to obtain differentially expressed genes (DEGs) between HCC and liver cirrhosis tissues, and network analysis of protein–protein interactions (PPIs) was carried out. String and Cytoscape were used to analyse modules and identify hub genes, Kaplan–Meier Plotter and Oncomine databases were used to explore relationships between hub genes and disease occurrence, development and prognosis of HCC, and the molecular mechanism of the main hub gene was probed using Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway analysis. Results In total, 58 DEGs were obtained, of which 12 and 46 were up- and down-regulated, respectively. Three hub genes (CDKN3, CYP2C9 and LCAT) were identified and associated prognostic information was obtained. CDKN3 may be correlated with the occurrence, invasion, and recurrence of HCC. Genes closely related to changes in the CDKN3 hub gene were screened, and Kyoto Encyclopedia of Genes and Genomes (KEGGs) pathway analysis identified numerous cell cycle-related genes. Conclusion CDKN3 may affect the transformation of liver cirrhosis into HCC, and represents a new candidate molecular marker of the occurrence and progression of HCC.
Collapse
Affiliation(s)
- Chen Hao Jiang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Xinjiang, 832002, China.,Department of Pathology, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang, 832002, China
| | - Xin Yuan
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Xinjiang, 832002, China.,Department of Pathology, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang, 832002, China
| | - Jiang Fen Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Xinjiang, 832002, China.,Department of Pathology, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang, 832002, China
| | - Yu Fang Xie
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Xinjiang, 832002, China.,Department of Pathology, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang, 832002, China
| | - An Zhi Zhang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Xinjiang, 832002, China.,Department of Pathology, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang, 832002, China
| | - Xue Li Wang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Xinjiang, 832002, China.,Department of Pathology, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang, 832002, China
| | - Lan Yang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Xinjiang, 832002, China.,Department of Pathology, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang, 832002, China
| | - Chun Xia Liu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Xinjiang, 832002, China.,Department of Pathology, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang, 832002, China
| | - Wei Hua Liang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Xinjiang, 832002, China.,Department of Pathology, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang, 832002, China
| | - Li Juan Pang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Xinjiang, 832002, China.,Department of Pathology, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang, 832002, China
| | - Hong Zou
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Xinjiang, 832002, China.,Department of Pathology, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang, 832002, China
| | - Xiao Bin Cui
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Xinjiang, 832002, China.,Department of Pathology, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang, 832002, China
| | - Xi Hua Shen
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Xinjiang, 832002, China.,Department of Pathology, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang, 832002, China
| | - Yan Qi
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Xinjiang, 832002, China.,Department of Pathology, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang, 832002, China
| | - Jin Fang Jiang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Xinjiang, 832002, China.,Department of Pathology, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang, 832002, China
| | - Wen Yi Gu
- Australian Institute of Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Feng Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Xinjiang, 832002, China.,Department of Pathology, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang, 832002, China.,Department of Pathology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jian Ming Hu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Xinjiang, 832002, China. .,Department of Pathology, The First Affiliated Hospital, Shihezi University School of Medicine, Xinjiang, 832002, China.
| |
Collapse
|
19
|
Tu H, Wu M, Huang W, Wang L. Screening of potential biomarkers and their predictive value in early stage non-small cell lung cancer: a bioinformatics analysis. Transl Lung Cancer Res 2019; 8:797-807. [PMID: 32010558 PMCID: PMC6976355 DOI: 10.21037/tlcr.2019.10.13] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/12/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) remains the first leading cause of death in malignancies worldwide. Despite the early screening of NSCLC by low-dose spiral computed tomography (CT) in high-risk individuals caused a 20% reduction in the mortality, there still exists imperative needs for the identification of novel biomarkers for the diagnosis and treatment of lung cancer. METHODS mRNA microarray datasets GSE19188, GSE33532, and GSE44077 were searched, and the differentially expressed genes (DEGs) were obtained using GEO2R. Functional and pathway enrichment analyses were performed for the DEGs using DAVID database. Protein-protein interaction (PPI) network was plotted with STRING and visualized by Cytoscape. Module analysis of the PPI network was done through MCODE. The overall survival (OS) analysis of genes from MCODE was performed with the Kaplan Meier-plotter. RESULTS A total of 221 DEGs were obtained, which were mainly enriched in the terms related to cell division, cell proliferation, and signal transduction. A PPI network was constructed, consisting of 221 nodes and 739 edges. A significant module including 27 genes was identified in the PPI network. Elevated expression of these genes was associated with poor OS of NSCLC patients, including UBE2T, UNF2, CDKN3, ANLN, CCNB2, and CKAP2L. The enriched functions and pathways included protein binding, ATP binding, cell cycle, and p53 signaling pathway. CONCLUSIONS The DEGs in NSCLC have the potential to become useful targets for the diagnosis and treatment of NSCLC.
Collapse
Affiliation(s)
- Hongbin Tu
- Department of Integrated TCM & Western Medicine, Shanghai Pulmonary Hospital Affiliated to Tongji University, Shanghai 200433, China
| | - Meihong Wu
- Department of Oncology, Changhai Hospital Affiliated to Second Military Medical University, Shanghai 200438, China
| | - Weiling Huang
- Department of Integrated TCM & Western Medicine, Shanghai Pulmonary Hospital Affiliated to Tongji University, Shanghai 200433, China
| | - Lixin Wang
- Department of Integrated TCM & Western Medicine, Shanghai Pulmonary Hospital Affiliated to Tongji University, Shanghai 200433, China
| |
Collapse
|
20
|
Yu H, Yao J, Du M, Ye J, He X, Yin L. CDKN3 promotes cell proliferation, invasion and migration by activating the AKT signaling pathway in esophageal squamous cell carcinoma. Oncol Lett 2019; 19:542-548. [PMID: 31897169 DOI: 10.3892/ol.2019.11077] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/26/2019] [Indexed: 01/25/2023] Open
Abstract
In China, esophageal squamous cell carcinoma (ESCC), capable of direct invasion and early metastasis, exhibits high mortality. Identification of the molecular basis driving ESCC progression and development of new diagnostic biomarkers are urgently needed. Cyclin-dependent kinase inhibitor 3 (CDKN3) performs crucial roles in the modulation of tumor development. The present study aimed to explore the functions and underlying mechanism of CDKN3 in regulating ESCC cell proliferation and invasion. The expression levels of CDKN3 in ESCC cells were evaluated by reverse transcription-quantitative PCR. Cell counting kit-8 and colony forming assays were used to evaluate cell viability. Wound-healing assay was performed to explore cell migration. Transwell invasion analysis was conducted to investigate the invasive capacity of ESCC cells. Protein levels were detected by western blot assay. The results demonstrated that the expression of CDKN3 was significantly upregulated in ESCC tissues, as predicted using the UALCAN and Gene Expression Omnibus databases. PCR and western blot assays confirmed that CDKN3 was upregulated in ESCC cell lines. Functional assays revealed that CDKN3 knockdown with small interfering RNA decreased the ability of ESCC cells to proliferate, invade and migrate and suppressed G1/S transition. Further mechanistic analyses demonstrated that CDKN3 promoted cell proliferation and invasion by activating the AKT signaling pathway in ESCC cells. To the best of our knowledge, the present study is the first to identify the functions of CDKN3 in ESCC and provide evidence that CDKN3 regulates tumor progression by activating the AKT signaling pathway. Therefore, CDKN3 may serve as a potential effective therapeutic target for ESCC treatment.
Collapse
Affiliation(s)
- Hanxu Yu
- Department of Radiotherapy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210000, P.R. China.,Department of Radiotherapy, Lianshui County People's Hospital, Lianshui, Jiangsu 223001, P.R. China
| | - Jun Yao
- Department of Radiotherapy, Yancheng Second People's Hospital, Yancheng, Jiangsu 22400, P.R. China
| | - Mingyu Du
- Department of Radiotherapy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210000, P.R. China
| | - Jinjun Ye
- Department of Radiotherapy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210000, P.R. China
| | - Xia He
- Department of Radiotherapy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210000, P.R. China
| | - Li Yin
- Department of Radiotherapy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210000, P.R. China
| |
Collapse
|
21
|
Liu J, Min L, Zhu S, Guo Q, Li H, Zhang Z, Zhao Y, Xu C, Zhang S. Cyclin-Dependent Kinase Inhibitor 3 Promoted Cell Proliferation by Driving Cell Cycle from G1 to S Phase in Esophageal Squamous Cell Carcinoma. J Cancer 2019; 10:1915-1922. [PMID: 31205550 PMCID: PMC6547974 DOI: 10.7150/jca.27053] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 01/12/2019] [Indexed: 12/19/2022] Open
Abstract
Background and aims. Cyclin-dependent kinase inhibitor 3 (CDKN3) has been found playing a varying role in carcinogenesis, but its biological function in esophageal squamous cell carcinoma (ESCC) is unclear. The aim of this study was to demonstrate the role of CDKN3 in ESCC. Materials and Methods: Real-time PCR and Western blot was performed in 15 pairs of ESCC tissues and adjacent normal esophageal tissues. Then cell proliferation ability, cloning ability, cell cycle status and migration and invasion ability were explored in CDKN3 overexpressed TE1 cell line and CDKN3 siRNA transfected TE1 and KYSE70 cell lines. Finally, cell cycle related proteins CyclinD1, CDK4, pAKT, P53, P21, and P27 were tested by Western blot. Results: mRNA level was higher in 11 ESCC tissues compared to adjacent normal tissues, and an increased protein expression was further detected in 8 of those 11 ESCC tissues. Functional assays showed that CDKN3 overexpression promoted ESCC cell proliferation, colony formation, migration and invasion, and facilitated G1/S transition. Opposite results were also got after transfected with CDKN3 siRNA. Cell cycle associated protein pAKT, CyclinD1, CDK4 and P27 were upregulated and P53, P21 and were downregulated under CDKN3 overexpression. All the protein levels were found changed in the opposite direction when CDKN3 expression was disturbed by siRNA. Conclusions: Our study suggested that CDKN3 acted as an oncogene in human ESCC and may accelerate the G1/S transition by affecting CyclinD-CDK4 complex via regulating pAKT-p53-p21 axis and p27 independent of AKT.
Collapse
Affiliation(s)
- Juan Liu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, P. R. China
| | - Li Min
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, P. R. China
| | - Shengtao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, P. R. China
| | - Qingdong Guo
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, P. R. China
| | - Hengcun Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, P. R. China
| | - Zheng Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, P. R. China
| | - Yu Zhao
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, P. R. China
| | - Changqin Xu
- Shandong Provincial Hospital affiliated to Shandong university
| | - Shutian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, P. R. China
| |
Collapse
|
22
|
Khan I, Nam M, Kwon M, Seo SS, Jung S, Han JS, Hwang GS, Kim MK. LC/MS-Based Polar Metabolite Profiling Identified Unique Biomarker Signatures for Cervical Cancer and Cervical Intraepithelial Neoplasia Using Global and Targeted Metabolomics. Cancers (Basel) 2019; 11:cancers11040511. [PMID: 30974861 PMCID: PMC6521312 DOI: 10.3390/cancers11040511] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 02/06/2023] Open
Abstract
Cervical cancer remains one of the most prevalent cancers among females worldwide. Therefore, it is important to discover new biomarkers for early diagnosis of cervical intraepithelial neoplasia (CIN) and cervical cancer, preferably non-invasive ones. In the present study, we aimed to identify unique metabolic signatures for CINs and cervical cancers using global and targeted metabolomic profiling. Plasma samples (69 normal, 55 CIN1, 42 CIN2/3, and 60 cervical cancer) were examined by ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-QTOF-MS) coupled with multivariate statistical analysis. Metabolic pathways were analyzed using the integrated web-based tool MetaboAnalyst. A multivariate logistic regression analysis was conducted to evaluate the combined association of metabolites and human papillomavirus (HPV) status with the risk of cervical carcinogenesis. A total of 28 metabolites exhibiting discriminating levels among normal, CIN, and cervical cancer patients (Kruskal–Wallis test p < 0.05) were identified in the global profiling analysis. The pathway analysis showed significantly altered alanine, aspartate, and glutamate metabolic pathways (FDR p-value < 0.05) in both the discovery and validation phases. Seven metabolites (AMP, aspartate, glutamate, hypoxanthine, lactate, proline, and pyroglutamate) were discriminated between CINs and cervical cancer versus normal (area under the curve (AUC) value > 0.8). The levels of these metabolites were significantly high in patients versus normal (p < 0.0001) and were associated with increased risk of developing CIN2/3 and cervical cancer. Additionally, elevated levels of the seven metabolites combined with positive HPV status were correlated with substantial risk of cancer progression. These results demonstrated that metabolomics profiling is capable of distinguishing CINs and cervical cancers from normal and highlighted potential biomarkers for the early detection of cervical carcinogenesis.
Collapse
Affiliation(s)
- Imran Khan
- Division of Cancer Epidemiology and Prevention, National Cancer Center, Madu-dong, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Korea.
| | - Miso Nam
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Korea.
| | - Minji Kwon
- Division of Cancer Epidemiology and Prevention, National Cancer Center, Madu-dong, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Korea.
| | - Sang-Soo Seo
- Center for Uterine Cancer, National Cancer Center, Madu-dong, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Korea.
| | - Sunhee Jung
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Korea.
| | - Ji Soo Han
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Korea.
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Korea.
| | - Mi Kyung Kim
- Division of Cancer Epidemiology and Prevention, National Cancer Center, Madu-dong, Ilsandong-gu, Goyang-si, Gyeonggi-do 10408, Korea.
| |
Collapse
|
23
|
Sommerova L, Anton M, Bouchalova P, Jasickova H, Rak V, Jandakova E, Selingerova I, Bartosik M, Vojtesek B, Hrstka R. The role of miR-409-3p in regulation of HPV16/18-E6 mRNA in human cervical high-grade squamous intraepithelial lesions. Antiviral Res 2019; 163:185-192. [DOI: 10.1016/j.antiviral.2019.01.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 11/14/2018] [Accepted: 01/30/2019] [Indexed: 12/20/2022]
|
24
|
Goyal U, Ta M. p53-NF-κB Crosstalk in Febrile Temperature-Treated Human Umbilical Cord-Derived Mesenchymal Stem Cells. Stem Cells Dev 2018; 28:56-68. [PMID: 30319075 DOI: 10.1089/scd.2018.0115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are successful for their therapeutic application in immune and inflammatory contexts due to their anti-inflammatory, trophic, and immunomodulatory roles. However, though MSCs have the potential to provide regenerative treatment toward a wide range of devastating diseases, massive cell death of transplanted MSCs remains an obstacle to overcome. The relation between MSCs and inflammation is multifactorial and challenging to comprehend. Fever is a critical component of the inflamed microenvironment. Also, the choice of MSC source could be critical in determining the fate of transplanted cells under stress conditions. Here we investigated the thermosensitivity of Wharton's jelly MSCs (WJ-MSCs) to elevated temperature in the physiological fever range. We explored the effect of febrile range temperature on morphology, viability, proliferation kinetics, and cell cycle status of WJ-MSCs. WJ-MSCs adopted a flattened morphology at 40°C, and our data from proliferation kinetics study using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and apoptosis assays showed that WJ-MSCs had reduced proliferation and viability at 40°C compared with control cultures. There was also a G0/G1 cell cycle arrest, which was further confirmed by messenger RNA (mRNA) levels of genes specific for different stages of cell cycle. On evaluating p53 status, we observed an increase in p53 protein expression and its nuclear localization in WJ-MSCs exposed to 40°C. Its downstream effector p21 too was upregulated. Moreover, this temperature-induced p53 induction was inhibited on exposure to 40°C in the presence of NF-κB pathway inhibitor, pyrrolidinedithiocarbamate (PDTC) or endonuclease-prepared small interfering RNA (esiRNA) targeting p65. Febrile temperature exposure did not affect the senescence status of WJ-MSCs. The MSC-specific surface antigen profile at 40°C was similar to control WJ-MSCs. Our findings suggest that under febrile temperature stress conditions, WJ-MSCs exhibit G0/G1 cell cycle arrest and reduction in viable cell count, while retaining their basic characteristics, with an underlying interplay of p53 and NF-κB pathway.
Collapse
Affiliation(s)
- Umesh Goyal
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur Campus, India
| | - Malancha Ta
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur Campus, India
| |
Collapse
|
25
|
Chang SL, Chen TJ, Lee YE, Lee SW, Lin LC, He HL. CDKN3 expression is an independent prognostic factor and associated with advanced tumor stage in nasopharyngeal carcinoma. Int J Med Sci 2018; 15:992-998. [PMID: 30013440 PMCID: PMC6036165 DOI: 10.7150/ijms.25065] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 05/27/2018] [Indexed: 12/12/2022] Open
Abstract
Background: Through data mining from the public transcriptome of NPC, cyclin-dependent kinase inhibitor 3 (CDKN3) was identified as a significantly upregulated gene in NPC. CDKN3 functions as a key factor in cell cycle regulation. This study was aimed to investigate the expression of CDKN3 in NPC tissues and its prognostic significance. Methods: Immunohistochemistry was performed for 124 NPC patients to assess the protein expression of CDKN3. The stainings of CDKN3 were scored by using H-score method. The relationships between CDKN3 expression status and clinicopathological parameters, disease-specific survival (DSS), distant metastasis-free survival (DMeFS), and local recurrence-free survival (LRFS) were statistically analyzed. Results: High expression of CDKN3 was significantly associated with higher primary nodal status (P=0.030) and higher TNM stage (P=0.019). In univariate analysis, high expression of CDKN3 predicted worse DSS (P<0.0001), DMeFS (P<0.0001), and LRFS (P<0.0001). In multivariate analysis, CDKN3 overexpression still acted as an independent prognostic factor for worse DSS (P<0.001; hazard ratio [HR]=11.999, 95% CI: 5.378-26.771), DMeFS (P<0.001; HR=15.069, 95% CI: 5.884-38.592), and LRFS (P<0.001; HR=5.000, 95% CI: 2.312-10.815). Conclusion: High expression of CDKN3 was an independent negative prognostic factor for NPC and was associated with advanced disease status. It might serve as potential therapeutic target and aid in risk stratification for patients with NPC.
Collapse
Affiliation(s)
- Shih-Lun Chang
- Department of Otolaryngology, Chi Mei Medical Center, Tainan, Taiwan.,Department of Optometry, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Tzu-Ju Chen
- Department of Optometry, Chung Hwa University of Medical Technology, Tainan, Taiwan.,Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan
| | - Ying-En Lee
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Sung-Wei Lee
- Department of Radiation Oncology, Chi Mei Medical Center, Liouying, Tainan, Taiwan
| | - Li-Ching Lin
- Department of Radiation Oncology, Chi Mei Medical Center, Tainan, Taiwan
| | - Hong-Lin He
- Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan
| |
Collapse
|
26
|
Meeusen B, Janssens V. Tumor suppressive protein phosphatases in human cancer: Emerging targets for therapeutic intervention and tumor stratification. Int J Biochem Cell Biol 2017; 96:98-134. [PMID: 29031806 DOI: 10.1016/j.biocel.2017.10.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 02/06/2023]
Abstract
Aberrant protein phosphorylation is one of the hallmarks of cancer cells, and in many cases a prerequisite to sustain tumor development and progression. Like protein kinases, protein phosphatases are key regulators of cell signaling. However, their contribution to aberrant signaling in cancer cells is overall less well appreciated, and therefore, their clinical potential remains largely unexploited. In this review, we provide an overview of tumor suppressive protein phosphatases in human cancer. Along their mechanisms of inactivation in defined cancer contexts, we give an overview of their functional roles in diverse signaling pathways that contribute to their tumor suppressive abilities. Finally, we discuss their emerging roles as predictive or prognostic markers, their potential as synthetic lethality targets, and the current feasibility of their reactivation with pharmacologic compounds as promising new cancer therapies. We conclude that their inclusion in clinical practice has obvious potential to significantly improve therapeutic outcome in various ways, and should now definitely be pushed forward.
Collapse
Affiliation(s)
- Bob Meeusen
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, Faculty of Medicine, KU Leuven & Leuven Cancer Institute (LKI), KU Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, Faculty of Medicine, KU Leuven & Leuven Cancer Institute (LKI), KU Leuven, Belgium.
| |
Collapse
|
27
|
Cress WD, Yu P, Wu J. Expression and alternative splicing of the cyclin-dependent kinase inhibitor-3 gene in human cancer. Int J Biochem Cell Biol 2017; 91:98-101. [PMID: 28504190 DOI: 10.1016/j.biocel.2017.05.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 04/27/2017] [Accepted: 05/06/2017] [Indexed: 01/04/2023]
Abstract
The cyclin-dependent kinase inhibitor-3 (CDKN3) gene encodes a dual-specificity protein tyrosine phosphatase that dephosphorylates CDK1/CDK2 and other proteins. CDKN3 is often overexpressed in human cancer, and this overexpression correlates with reduced survival in several types of cancer. CDKN3 transcript variants and mutations have also been reported. The mechanism of CDKN3 overexpression and the role of CDKN3 transcript variants in human cancer are not entirely clear. Here, we review the literature and provide additional data to assess the correlation of CDKN3 expression with patient survival. Besides the full-length CDKN3 encoding transcript and a major transcript that skips exon 2 express in normal and cancer cells, minor aberrant transcript variants have been reported. Aberrant CDKN3 transcripts were postulated to encode dominant-negative inhibitors of CDKN3 as an explanation for overexpression of the perceived tumor suppressor gene in human cancer. However, while CDKN3 is often overexpressed in human cancer, aberrant CDKN3 transcripts occur infrequently and at lower levels. CDKN3 mutations and copy number alternation are rare in human cancer, implying that neither loss of CDKN3 activity nor constitutive gain of CDKN3 expression offer an advantage to tumorigenesis. Recently, it was found that CDKN3 transcript and protein levels fluctuate during the cell cycle, peaking in mitosis. Given that rapidly growing tumors have more mitotic cells, the high level of mitotic CDKN3 expression is the most plausible mechanism of frequent CDKN3 overexpression in human cancer. This finding clarifies the mechanism of CDKN3 overexpression in human cancer and questions the view of CDKN3 as a tumor suppressor.
Collapse
Affiliation(s)
- W Douglas Cress
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Peng Yu
- Department of Electrical and Computer Engineering, and TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, Texas, USA
| | - Jie Wu
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
28
|
Yang K, Xia B, Wang W, Cheng J, Yin M, Xie H, Li J, Ma L, Yang C, Li A, Fan X, Dhillon HS, Hou Y, Lou G, Li K. A Comprehensive Analysis of Metabolomics and Transcriptomics in Cervical Cancer. Sci Rep 2017; 7:43353. [PMID: 28225065 PMCID: PMC5320559 DOI: 10.1038/srep43353] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/24/2017] [Indexed: 12/20/2022] Open
Abstract
Cervical cancer (CC) still remains a common and deadly malignancy among females in developing countries. More accurate and reliable diagnostic methods/biomarkers should be discovered. In this study, we performed a comprehensive analysis of metabolomics (285 samples) and transcriptomics (52 samples) on the potential diagnostic implication and metabolic characteristic description in cervical cancer. Sixty-two metabolites were different between CC and normal controls (NOR), in which 5 metabolites (bilirubin, LysoPC(17:0), n-oleoyl threonine, 12-hydroxydodecanoic acid and tetracosahexaenoic acid) were selected as candidate biomarkers for CC. The AUC value, sensitivity (SE), and specificity (SP) of these 5 biomarkers were 0.99, 0.98 and 0.99, respectively. We further analysed the genes in 7 significantly enriched pathways, of which 117 genes, that were expressed differentially, were mainly involved in catalytic activity. Finally, a fully connected network of metabolites and genes in these pathways was built, which can increase the credibility of our selected metabolites. In conclusion, our biomarkers from metabolomics could set a path for CC diagnosis and screening. Our results also showed that variables of both transcriptomics and metabolomics were associated with CC.
Collapse
Affiliation(s)
- Kai Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, 150086, P.R. China
| | - Bairong Xia
- Department of Gynecology Oncology, the Tumor Hospital, Harbin Medical University, Harbin, 150086, P.R. China
| | - Wenjie Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, 150086, P.R. China
| | - Jinlong Cheng
- Department of Gynecology Oncology, the Tumor Hospital, Harbin Medical University, Harbin, 150086, P.R. China
| | - Mingzhu Yin
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation; Translational Research Department of Complex Prescription of TCM, Pharmaceutical University, 639 Longmian Road, Nanjing 211198, P.R. China
| | - Hongyu Xie
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, 150086, P.R. China
| | - Junnan Li
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, 150086, P.R. China
| | - Libing Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, 150086, P.R. China
| | - Chunyan Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, 150086, P.R. China
| | - Ang Li
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, 150086, P.R. China
| | - Xin Fan
- School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | | | - Yan Hou
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, 150086, P.R. China.,Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Ministry of Education, Harbin, 150086, P.R. China
| | - Ge Lou
- Department of Gynecology Oncology, the Tumor Hospital, Harbin Medical University, Harbin, 150086, P.R. China
| | - Kang Li
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, 150086, P.R. China
| |
Collapse
|
29
|
Wang H, Chen H, Zhou H, Yu W, Lu Z. Cyclin-Dependent Kinase Inhibitor 3 Promotes Cancer Cell Proliferation and Tumorigenesis in Nasopharyngeal Carcinoma by Targeting p27. Oncol Res 2017; 25:1431-1440. [PMID: 28109073 PMCID: PMC7840971 DOI: 10.3727/096504017x14835311718295] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a common malignancy of the head and neck that arises from the nasopharynx epithelium and is highly invasive. Cyclin-dependent kinase inhibitor 3 (CDKN3) belongs to the dual-specificity protein phosphatase family, which plays a key role in regulating cell division. Abnormal expression of CDKN3 has been found in numerous types of cancer. In the current study, we explored the possible role of CDKN3 in cell proliferation, ability to invade, and radiosensitivity in NPC cells. We reported that CDKN3 was upregulated and p27 was downregulated in NPC tissues and is associated with a worse prognosis for patients. In addition, downregulation of CDKN3 and upregulation of p27 decreased cell proliferation, induced cell cycle arrest, increased apoptosis, decreased cell invasion, and enhanced radiosensitivity. Silencing of p27 significantly inhibited the effects of the knockdown of CDKN3. Moreover, downregulation of CDKN3 and upregulation of p27 inhibited the increase in tumor volume and weight in implanted tumors, decreased the phosphorylation of Akt, and increased the expression of cleaved caspase 3 in tumors. CDKN3 expression was also inversely correlated with p27 expression in NPC patients. Knockdown of CDKN3 increased p27 expression. Silencing of p27 markedly inhibited the effects of CDKN3 on cell proliferation, cell cycle progression, apoptosis, invasion, and radiosensitivity. These results demonstrate that upregulation of p27 is involved in the knockdown of CDKN3-induced decrease in cell proliferation, increase in cell cycle arrest and apoptosis, decrease in invasion, and increase in radiosensitivity. The results demonstrate that the CDKN3/p27 axis may be a novel target in the treatment of NPC.
Collapse
|