1
|
Alshahrani S, Al-Majid AM, Ali M, Alamary AS, Abu-Serie MM, Dömling A, Shafiq M, Ul-Haq Z, Barakat A. Rational Design, Synthesis, Separation, and Characterization of New Spiroxindoles Combined with Benzimidazole Scaffold as an MDM2 Inhibitor. SEPARATIONS 2023. [DOI: 10.3390/separations10040225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Rational design for a new spiroxindoles, combined with a benzimidazole scaffold to identify a new murine double minute two (MDM2) inhibitor was synthesized and characterized. The desired spiroxindoles were achieved via a [3+2] cycloaddition reaction approach which afforded the cycloadducts with four asymmetric centers separated in an excellent regioselective and diastereoselective compound. The separated spiroxindoles were subjected to a set of biochemical assays including an NCI cell panel assay, MTT assay, and MDM2 binding analysis by a microscale thermophoresis assay. The anticancer reactivity for the tested compounds showed IC50 (µM) in the range between 3.797–6.879 µM, and compound 7d with IC50 = 3.797 ± 0.205 µM was the most active candidate between the series. The results showed promising results that identified that compound 7a could be inhibited the MDM2 with KD = 2.38 μm. Compound 7a developed a network of interactions with the MDM2 receptor studied in silico by molecular docking.
Collapse
|
2
|
Faheem MM, Rahim JU, Ahmad SM, Mir KB, Kaur G, Bhagat M, Rai R, Goswami A. Heterochiral dipeptide d-phenylalanyl- l-phenylalanine (H- D Phe- L Phe-OH) as a potential inducer of metastatic suppressor NM23H1 in p53 wild-type and mutant cells. Mol Carcinog 2022; 61:1143-1160. [PMID: 36239557 DOI: 10.1002/mc.23465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/29/2022] [Accepted: 09/08/2022] [Indexed: 12/24/2022]
Abstract
In recent years, significant progress has been made to the use-case of small peptides because of their diversified edifice and hence their versatile application scope in cancer therapy. Here we identify the heterochiral dipeptide H-D Phe-L Phe-OH (F1) as a potent inducer of the metastatic suppressor NM23H1. We divulge the effect of F1 on the major EMT/metastasis-associated genes and the implications on the invasion and migration ability of cancer cells. The anti-invasive potential of F1 was directly correlated with NM23H1 expression. Mechanistically, F1 treatment elevated p53 levels as validated by localization and transcriptional studies. In the NM23H1 knockdown condition, F1 failed to induce any p53 expression/nuclear localization, indicating that the upregulation in p53 expression by F1 is NM23H1 dependent. We also demonstrate how the antimetastatic potential of F1 is primarily mediated through NM23H1 irrespective of the p53 status of the cell. However, both NM23H1 and a functional p53 protein in conjunction govern the apoptotic and cytostatic potential of F1. Coimmunoprecipitation studies unraveled the augmentation of the p53 and NM23H1 interaction in p53 wild-type cells. However, in p53 mutated cells, no such enrichment was evidenced. We employed mouse isogenic cell lines (4T-1 and 4T-1 p53) to determine the in vivo efficacy of F1 (spontaneous and experimental models). Decreased tumor volume in the cohort injected with 4T-1 p53 cells demonstrated that while the antimetastatic potential of F1 was reliant on NM23H1, p53 activation was required for ablation of primary tumor burden. Our findings unravel that F1 treatment induces significant abrogation of the migration, invasion and metastatic potential of both p53 wild-type and p53 deficient cancers mediated through NM23H1.
Collapse
Affiliation(s)
- Mir Mohd Faheem
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India.,School of Biotechnology, University of Jammu, Jammu, Jammu and Kashmir, India
| | - Junaid Ur Rahim
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Syed Mudabir Ahmad
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Khalid Bashir Mir
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Gursimar Kaur
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Madhulika Bhagat
- School of Biotechnology, University of Jammu, Jammu, Jammu and Kashmir, India
| | - Rajkishor Rai
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Anindya Goswami
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
3
|
Wang Y, Ji B, Cheng Z, Zhang L, Cheng Y, Li Y, Ren J, Liu W, Ma Y. Synthesis and Biological Evaluation of Novel Synthetic Indolone Derivatives as Anti-Tumor Agents Targeting p53-MDM2 and p53-MDMX. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123721. [PMID: 35744849 PMCID: PMC9230548 DOI: 10.3390/molecules27123721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022]
Abstract
A series of novel indolone derivatives were synthesized and evaluated for their binding affinities toward MDM2 and MDMX. Some compounds showed potent MDM2 and moderate MDMX activities. Among them, compound A13 exhibited the most potent affinity toward MDM2 and MDMX, with a Ki of 0.031 and 7.24 μM, respectively. A13 was also the most potent agent against HCT116, MCF7, and A549, with IC50 values of 6.17, 11.21, and 12.49 μM, respectively. Western blot analysis confirmed that A13 upregulated the expression of MDM2, MDMX, and p53 by Western blot analysis. These results indicate that A13 is a potent dual p53-MDM2 and p53-MDMX inhibitor and deserves further investigation.
Collapse
Affiliation(s)
- Yali Wang
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, China; (B.J.); (Z.C.); (L.Z.); (Y.C.); (Y.L.); (J.R.); (W.L.)
- Correspondence:
| | - Bo Ji
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, China; (B.J.); (Z.C.); (L.Z.); (Y.C.); (Y.L.); (J.R.); (W.L.)
| | - Zhongshui Cheng
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, China; (B.J.); (Z.C.); (L.Z.); (Y.C.); (Y.L.); (J.R.); (W.L.)
| | - Lianghui Zhang
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, China; (B.J.); (Z.C.); (L.Z.); (Y.C.); (Y.L.); (J.R.); (W.L.)
| | - Yingying Cheng
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, China; (B.J.); (Z.C.); (L.Z.); (Y.C.); (Y.L.); (J.R.); (W.L.)
| | - Yingying Li
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, China; (B.J.); (Z.C.); (L.Z.); (Y.C.); (Y.L.); (J.R.); (W.L.)
| | - Jin Ren
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, China; (B.J.); (Z.C.); (L.Z.); (Y.C.); (Y.L.); (J.R.); (W.L.)
| | - Wenbo Liu
- School of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, China; (B.J.); (Z.C.); (L.Z.); (Y.C.); (Y.L.); (J.R.); (W.L.)
| | - Yuanyuan Ma
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China;
| |
Collapse
|
4
|
Ligand-Based and Docking-Based Virtual Screening of MDM2 Inhibitors as Potent Anticancer Agents. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:3195957. [PMID: 34413896 PMCID: PMC8369186 DOI: 10.1155/2021/3195957] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/08/2021] [Accepted: 07/20/2021] [Indexed: 11/17/2022]
Abstract
A ligand-based and docking-based virtual screening was carried out to identify novel MDM2 inhibitors. A pharmacophore model with four features was used for virtual screening, followed by molecular docking. Seventeen compounds were selected for an in vitro MDM2 inhibition assay, and compounds AO-476/43250177, AG-690/37072075, AK-968/15254441, AO-022/43452814, and AF-399/25108021 showed promising MDM2 inhibition activities with Ki values of 9.5, 8.5, 23.4, 3.2, and 23.1 μM, respectively. Four compounds also showed antiproliferative activity, and compound AO-022/43452814 was the most potent hit with IC50 values of 19.35, 26.73, 12.63, and 24.14 μM against MCF7 (p53 +/+), MCF7 (p53 -/-), HCT116 (p53 +/+), and HCT116 (p53 -/-) cell lines, respectively. Compound AO-022/43452814 could be used as a scaffold for the development of anticancer agents targeting MDM2.
Collapse
|
5
|
Kobayashi T, Hosoya T, Yoshida S. Facile Synthetic Methods for Diverse N-Arylphenylalanine Derivatives via Transformations of Aryne Intermediates and Cross-Coupling Reactions. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tsuneyuki Kobayashi
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Suguru Yoshida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| |
Collapse
|
6
|
Design, synthesis and biological evaluation of novel 5-(4-chlorophenyl)-4-phenyl-4H-1,2,4-triazole-3-thiols as an anticancer agent. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130000] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Patel KR, Patel HD. p53: An Attractive Therapeutic Target for Cancer. Curr Med Chem 2020; 27:3706-3734. [PMID: 31223076 DOI: 10.2174/1573406415666190621094704] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 02/28/2019] [Accepted: 04/16/2019] [Indexed: 02/08/2023]
Abstract
Cancer is a leading cause of death worldwide. It initiates when cell cycle regulatory genes lose their function either by environmental and/or by internal factors. Tumor suppressor protein p53, known as "Guardian of genome", plays a central role in maintaining genomic stability of the cell. Mutation of TP53 is documented in more than 50% of human cancers, usually by overexpression of negative regulator protein MDM2. Hence, reactivation of p53 by blocking the protein-protein interaction between the murine double minute 2 (MDM2) and the tumor suppressor protein p53 has become the most promising therapeutic strategy in oncology. Several classes of small molecules have been identified as potent, selective and efficient p53-MDM2 inhibitors. Herein, we review the druggability of p53-MDM2 inhibitors and their optimization approaches as well as clinical candidates categorized by scaffold type.
Collapse
Affiliation(s)
- Krupa R Patel
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Hitesh D Patel
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India
| |
Collapse
|
8
|
Shankar S, Faheem MM, Nayak D, Wani NA, Farooq S, Koul S, Goswami A, Rai R. Cyclodipeptide c(Orn-Pro) Conjugate with 4-Ethylpiperic Acid Abrogates Cancer Cell Metastasis through Modulating MDM2. Bioconjug Chem 2017; 29:164-175. [DOI: 10.1021/acs.bioconjchem.7b00670] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sudha Shankar
- Academy of Scientific and Innovative Research, New Delhi-201 002, India
| | | | - Debasis Nayak
- Academy of Scientific and Innovative Research, New Delhi-201 002, India
| | | | | | | | - Anindya Goswami
- Academy of Scientific and Innovative Research, New Delhi-201 002, India
| | - Rajkishor Rai
- Academy of Scientific and Innovative Research, New Delhi-201 002, India
| |
Collapse
|
9
|
Gollner A, Rudolph D, Arnhof H, Bauer M, Blake SM, Boehmelt G, Cockroft XL, Dahmann G, Ettmayer P, Gerstberger T, Karolyi-Oezguer J, Kessler D, Kofink C, Ramharter J, Rinnenthal J, Savchenko A, Schnitzer R, Weinstabl H, Weyer-Czernilofsky U, Wunberg T, McConnell DB. Discovery of Novel Spiro[3H-indole-3,2'-pyrrolidin]-2(1H)-one Compounds as Chemically Stable and Orally Active Inhibitors of the MDM2-p53 Interaction. J Med Chem 2016; 59:10147-10162. [PMID: 27775892 DOI: 10.1021/acs.jmedchem.6b00900] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Scaffold modification based on Wang's pioneering MDM2-p53 inhibitors led to novel, chemically stable spiro-oxindole compounds bearing a spiro[3H-indole-3,2'-pyrrolidin]-2(1H)-one scaffold that are not prone to epimerization as observed for the initial spiro[3H-indole-3,3'-pyrrolidin]-2(1H)-one scaffold. Further structure-based optimization inspired by natural product architectures led to a complex fused ring system ideally suited to bind to the MDM2 protein and to interrupt its protein-protein interaction (PPI) with TP53. The compounds are highly selective and show in vivo efficacy in a SJSA-1 xenograft model even when given as a single dose as demonstrated for 4-[(3S,3'S,3'aS,5'R,6'aS)-6-chloro-3'-(3-chloro-2-fluorophenyl)-1'-(cyclopropylmethyl)-2-oxo-1,2,3',3'a,4',5',6',6'a-octahydro-1'H-spiro[indole-3,2'-pyrrolo[3,2-b]pyrrole]-5'-yl]benzoic acid (BI-0252).
Collapse
Affiliation(s)
- Andreas Gollner
- Boehringer Ingelheim RCV GmbH & Co. KG , Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Dorothea Rudolph
- Boehringer Ingelheim RCV GmbH & Co. KG , Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Heribert Arnhof
- Boehringer Ingelheim RCV GmbH & Co. KG , Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Markus Bauer
- Boehringer Ingelheim RCV GmbH & Co. KG , Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Sophia M Blake
- Boehringer Ingelheim RCV GmbH & Co. KG , Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Guido Boehmelt
- Boehringer Ingelheim RCV GmbH & Co. KG , Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Xiao-Ling Cockroft
- Boehringer Ingelheim RCV GmbH & Co. KG , Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Georg Dahmann
- Boehringer Ingelheim Pharma GmbH & Co. KG , 88400 Biberach, Germany
| | - Peter Ettmayer
- Boehringer Ingelheim RCV GmbH & Co. KG , Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Thomas Gerstberger
- Boehringer Ingelheim RCV GmbH & Co. KG , Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Jale Karolyi-Oezguer
- Boehringer Ingelheim RCV GmbH & Co. KG , Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Dirk Kessler
- Boehringer Ingelheim RCV GmbH & Co. KG , Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Christiane Kofink
- Boehringer Ingelheim RCV GmbH & Co. KG , Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Juergen Ramharter
- Boehringer Ingelheim RCV GmbH & Co. KG , Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Jörg Rinnenthal
- Boehringer Ingelheim RCV GmbH & Co. KG , Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Alexander Savchenko
- Boehringer Ingelheim RCV GmbH & Co. KG , Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Renate Schnitzer
- Boehringer Ingelheim RCV GmbH & Co. KG , Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Harald Weinstabl
- Boehringer Ingelheim RCV GmbH & Co. KG , Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | | | - Tobias Wunberg
- Boehringer Ingelheim RCV GmbH & Co. KG , Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| | - Darryl B McConnell
- Boehringer Ingelheim RCV GmbH & Co. KG , Dr. Boehringer-Gasse 5-11, A-1121 Vienna, Austria
| |
Collapse
|
10
|
Lemos A, Leão M, Soares J, Palmeira A, Pinto M, Saraiva L, Sousa ME. Medicinal Chemistry Strategies to Disrupt the p53-MDM2/MDMX Interaction. Med Res Rev 2016; 36:789-844. [PMID: 27302609 DOI: 10.1002/med.21393] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/16/2016] [Accepted: 03/21/2016] [Indexed: 12/12/2022]
Abstract
The growth inhibitory activity of p53 tumor suppressor is tightly regulated by interaction with two negative regulatory proteins, murine double minute 2 (MDM2) and X (MDMX), which are overexpressed in about half of all human tumors. The elucidation of crystallographic structures of MDM2/MDMX complexes with p53 has been pivotal for the identification of several classes of inhibitors of the p53-MDM2/MDMX interaction. The present review provides in silico strategies and screening approaches used in drug discovery as well as an overview of the most relevant classes of small-molecule inhibitors of the p53-MDM2/MDMX interaction, their progress in pipeline, and highlights particularities of each class of inhibitors. Most of the progress made with high-throughput screening has led to the development of inhibitors belonging to the cis-imidazoline, piperidinone, and spiro-oxindole series. However, novel potent and selective classes of inhibitors of the p53-MDM2 interaction with promising antitumor activity are emerging. Even with the discovery of the 3D structure of complex p53-MDMX, only two small molecules were reported as selective p53-MDMX antagonists, WK298 and SJ-172550. Dual inhibition of the p53-MDM2/MDMX interaction has shown to be an alternative approach since it results in full activation of the p53-dependent pathway. The knowledge of structural requirements crucial to the development of small-molecule inhibitors of the p53-MDMs interactions has enabled the identification of novel antitumor agents with improved in vivo efficacy.
Collapse
Affiliation(s)
- Agostinho Lemos
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Mariana Leão
- UCIBIO/REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Joana Soares
- UCIBIO/REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Andreia Palmeira
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Madalena Pinto
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.,CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua de Bragas, 289, 4050-123, Porto, Portugal
| | - Lucília Saraiva
- UCIBIO/REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Maria Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.,CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua de Bragas, 289, 4050-123, Porto, Portugal
| |
Collapse
|