1
|
Hou P, Zhang H, Min D, Wu J, Chen C, Wang J, Lu Y, Yao Y, Li L, Liu Y. Evaluation of the Potential Targets of Shenxian-Shengmai Oral Liquid in Treating Sick Sinus Syndrome Based on Network Pharmacology and Molecular Docking. Food Sci Nutr 2024; 12:10517-10534. [PMID: 39723092 PMCID: PMC11666830 DOI: 10.1002/fsn3.4587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/31/2024] [Accepted: 10/22/2024] [Indexed: 12/28/2024] Open
Abstract
Shenxian-Shengmai (SXSM) is a Chinese patent medicine used in the treatment of sick sinus syndrome (SSS). However, its active chemical compounds and the underlying molecular mechanisms remain unclear. In this study, we researched the underlying mechanisms of SXSM in treating SSS. We conducted network analysis and molecular docking to identify the small molecules and core targets responsible for the therapeutic efficacy of SXSM on SSS. In vitro experiments were performed to verify the potential therapeutic mechanism. Network pharmacological analysis identified 17 core targets. Among these, BMP4, KCNH2, KCNMA1, and KCNQ1 were identified to be involved in various biological processes, such as the formation and regulation of the cardiac pacemaking system and potassium ion transmembrane transport. The experimental analysis revealed that SXSM could upregulate the expression of the Bmp4/Tbx3/Hcn4 pathway and the expression of Kcnh2, Kcnma1, and Kcnq1 channels, which protected and improved the pacemaking function of pacemaker cells (P cells) and increased the heart rate. These findings provide a scientific basis in the study of the mechanism of traditional Chinese medicine in the treatment of SSS.
Collapse
Affiliation(s)
- Ping Hou
- Graduate SchoolLiaoning University of Traditional Chinese MedicineShenyangLiaoningChina
| | - Heng Zhang
- Department of Rehabilitation MedicineShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Dong‐Yu Min
- Experimental Center of Traditional Chinese MedicineAffiliated Hospital of Liaoning University of Traditional Chinese MedicineShenyangLiaoningChina
| | - Jie Wu
- School of Public HealthShenyang Medical CollegeShenyangLiaoningChina
| | - Chen Chen
- Graduate SchoolLiaoning University of Traditional Chinese MedicineShenyangLiaoningChina
| | - Jie Wang
- School of Traditional Chinese MedicineShenyang Medical CollegeShenyangLiaoningChina
| | - Yong‐Ping Lu
- Department of NHC Key Laboratory of Reproductive Health and Medical GeneticsLiaoning Research Institute of Family Planning (The Affiliated Reproductive Hospital of China Medical University)ShenyangLiaoningChina
| | - Ying‐Jia Yao
- College of Life and Health SciencesNortheastern UniversityShenyangLiaoningChina
| | - Ling‐Kang Li
- Graduate SchoolLiaoning University of Traditional Chinese MedicineShenyangLiaoningChina
| | - Yue Liu
- School of Traditional Chinese MedicineShenyang Medical CollegeShenyangLiaoningChina
| |
Collapse
|
2
|
Lin Z, Lin B, Hang C, Lu R, Xiong H, Liu J, Wang S, Gong Z, Zhang M, Li D, Fang G, Ding J, Su X, Guo H, Shi D, Xie D, Liu Y, Liang D, Yang J, Chen YH. A new paradigm for generating high-quality cardiac pacemaker cells from mouse pluripotent stem cells. Signal Transduct Target Ther 2024; 9:230. [PMID: 39237509 PMCID: PMC11377569 DOI: 10.1038/s41392-024-01942-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 07/23/2024] [Accepted: 07/31/2024] [Indexed: 09/07/2024] Open
Abstract
Cardiac biological pacing (BP) is one of the future directions for bradyarrhythmias intervention. Currently, cardiac pacemaker cells (PCs) used for cardiac BP are mainly derived from pluripotent stem cells (PSCs). However, the production of high-quality cardiac PCs from PSCs remains a challenge. Here, we developed a cardiac PC differentiation strategy by adopting dual PC markers and simulating the developmental route of PCs. First, two PC markers, Shox2 and Hcn4, were selected to establish Shox2:EGFP; Hcn4:mCherry mouse PSC reporter line. Then, by stepwise guiding naïve PSCs to cardiac PCs following naïve to formative pluripotency transition and manipulating signaling pathways during cardiac PCs differentiation, we designed the FSK method that increased the yield of SHOX2+; HCN4+ cells with typical PC characteristics, which was 12 and 42 folds higher than that of the embryoid body (EB) and the monolayer M10 methods respectively. In addition, the in vitro cardiac PCs differentiation trajectory was mapped by single-cell RNA sequencing (scRNA-seq), which resembled in vivo PCs development, and ZFP503 was verified as a key regulator of cardiac PCs differentiation. These PSC-derived cardiac PCs have the potential to drive advances in cardiac BP technology, help with the understanding of PCs (patho)physiology, and benefit drug discovery for PC-related diseases as well.
Collapse
Affiliation(s)
- Zheyi Lin
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Bowen Lin
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Chengwen Hang
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Renhong Lu
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Hui Xiong
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
- Department of Cell Biology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Junyang Liu
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
- Department of Cell Biology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Siyu Wang
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Zheng Gong
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Mingshuai Zhang
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
- Department of Cell Biology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Desheng Li
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Guojian Fang
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Jie Ding
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Xuling Su
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Huixin Guo
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Dan Shi
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Duanyang Xie
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Yi Liu
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Dandan Liang
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, 200092, China
| | - Jian Yang
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China.
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China.
- Department of Cell Biology, School of Medicine, Tongji University, Shanghai, 200092, China.
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, 200092, China.
| | - Yi-Han Chen
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China.
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China.
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China.
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, 200092, China.
| |
Collapse
|
3
|
Sleiman Y, Reisqs JB, Boutjdir M. Differentiation of Sinoatrial-like Cardiomyocytes as a Biological Pacemaker Model. Int J Mol Sci 2024; 25:9155. [PMID: 39273104 PMCID: PMC11394733 DOI: 10.3390/ijms25179155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/15/2024] Open
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are widely used for disease modeling and pharmacological screening. However, their application has mainly focused on inherited cardiopathies affecting ventricular cardiomyocytes, leading to extensive knowledge on generating ventricular-like hiPSC-CMs. Electronic pacemakers, despite their utility, have significant disadvantages, including lack of hormonal responsiveness, infection risk, limited battery life, and inability to adapt to changes in heart size. Therefore, developing an in vitro multiscale model of the human sinoatrial node (SAN) pacemaker using hiPSC-CM and SAN-like cardiomyocyte differentiation protocols is essential. This would enhance the understanding of SAN-related pathologies and support targeted therapies. Generating SAN-like cardiomyocytes offers the potential for biological pacemakers and specialized conduction tissues, promising significant benefits for patients with conduction system defects. This review focuses on arrythmias related to pacemaker dysfunction, examining protocols' advantages and drawbacks for generating SAN-like cardiomyocytes from hESCs/hiPSCs, and discussing therapeutic approaches involving their engraftment in animal models.
Collapse
Affiliation(s)
- Yvonne Sleiman
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY 11209, USA
| | - Jean-Baptiste Reisqs
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY 11209, USA
| | - Mohamed Boutjdir
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY 11209, USA
- Department of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Health Sciences University, New York, NY 11203, USA
- Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
4
|
Benzoni P, Arici M, Giannetti F, Cospito A, Prevostini R, Volani C, Fassina L, Rosato-Siri MD, Metallo A, Gennaccaro L, Suffredini S, Foco L, Mazzetti S, Calogero A, Cappelletti G, Leibbrandt A, Elling U, Broso F, Penninger JM, Pramstaller PP, Piubelli C, Bucchi A, Baruscotti M, Rossini A, Rocchetti M, Barbuti A. Striatin knock out induces a gain of function of I Na and impaired Ca 2+ handling in mESC-derived cardiomyocytes. Acta Physiol (Oxf) 2024; 240:e14160. [PMID: 38747650 DOI: 10.1111/apha.14160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 07/16/2024]
Abstract
AIM Striatin (Strn) is a scaffold protein expressed in cardiomyocytes (CMs) and alteration of its expression are described in various cardiac diseases. However, the alteration underlying its pathogenicity have been poorly investigated. METHODS We studied the role(s) of cardiac Strn gene (STRN) by comparing the functional properties of CMs, generated from Strn-KO and isogenic WT mouse embryonic stem cell lines. RESULTS The spontaneous beating rate of Strn-KO CMs was faster than WT cells, and this correlated with a larger fast INa conductance and no changes in If. Paced (2-8 Hz) Strn-KO CMs showed prolonged action potential (AP) duration in comparison with WT CMs and this was not associated with changes in ICaL and IKr. Motion video tracking analysis highlighted an altered contraction in Strn-KO CMs; this was associated with a global increase in intracellular Ca2+, caused by an enhanced late Na+ current density (INaL) and a reduced Na+/Ca2+ exchanger (NCX) activity and expression. Immunofluorescence analysis confirmed the higher Na+ channel expression and a more dynamic microtubule network in Strn-KO CMs than in WT. Indeed, incubation of Strn-KO CMs with the microtubule stabilizer taxol, induced a rescue (downregulation) of INa conductance toward WT levels. CONCLUSION Loss of STRN alters CMs electrical and contractile profiles and affects cell functionality by a disarrangement of Strn-related multi-protein complexes. This leads to impaired microtubules dynamics and Na+ channels trafficking to the plasma membrane, causing a global Na+ and Ca2+ enhancement.
Collapse
Affiliation(s)
- P Benzoni
- Department of Biosciences, The Cell Physiology MiLab, Università Degli Studi Di Milano, Milan, Italy
| | - M Arici
- Department of Biotecnologie e Bioscienze, Università degli Studi di Milano Bicocca Milano, Milan, Italy
| | - F Giannetti
- Department of Biosciences, The Cell Physiology MiLab, Università Degli Studi Di Milano, Milan, Italy
| | - A Cospito
- Department of Biosciences, The Cell Physiology MiLab, Università Degli Studi Di Milano, Milan, Italy
| | - R Prevostini
- Department of Biosciences, The Cell Physiology MiLab, Università Degli Studi Di Milano, Milan, Italy
| | - C Volani
- Department of Biosciences, The Cell Physiology MiLab, Università Degli Studi Di Milano, Milan, Italy
- Institute for Biomedicine, Eurac Research, Bolzano, Italy
| | - L Fassina
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | | | - A Metallo
- Department of Biotecnologie e Bioscienze, Università degli Studi di Milano Bicocca Milano, Milan, Italy
| | - L Gennaccaro
- Institute for Biomedicine, Eurac Research, Bolzano, Italy
| | - S Suffredini
- Institute for Biomedicine, Eurac Research, Bolzano, Italy
| | - L Foco
- Institute for Biomedicine, Eurac Research, Bolzano, Italy
| | - S Mazzetti
- Department of Biosciences, Università Degli Studi Di Milano, Milan, Italy
| | - A Calogero
- Department of Biosciences, Università Degli Studi Di Milano, Milan, Italy
| | - G Cappelletti
- Department of Biosciences, Università Degli Studi Di Milano, Milan, Italy
| | - A Leibbrandt
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - U Elling
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - F Broso
- Institute for Biomedicine, Eurac Research, Bolzano, Italy
| | - J M Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
- Department of Medical Genetics, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | - C Piubelli
- Institute for Biomedicine, Eurac Research, Bolzano, Italy
| | - A Bucchi
- Department of Biosciences, The Cell Physiology MiLab, Università Degli Studi Di Milano, Milan, Italy
| | - M Baruscotti
- Department of Biosciences, The Cell Physiology MiLab, Università Degli Studi Di Milano, Milan, Italy
| | - A Rossini
- Institute for Biomedicine, Eurac Research, Bolzano, Italy
| | - M Rocchetti
- Department of Biotecnologie e Bioscienze, Università degli Studi di Milano Bicocca Milano, Milan, Italy
| | - A Barbuti
- Department of Biosciences, The Cell Physiology MiLab, Università Degli Studi Di Milano, Milan, Italy
| |
Collapse
|
5
|
Zhang ZH, Barajas-Martinez H, Jiang H, Huang CX, Antzelevitch C, Xia H, Hu D. Gene and stem cell therapy for inherited cardiac arrhythmias. Pharmacol Ther 2024; 256:108596. [PMID: 38301770 DOI: 10.1016/j.pharmthera.2024.108596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/11/2023] [Accepted: 01/13/2024] [Indexed: 02/03/2024]
Abstract
Inherited cardiac arrhythmias are a group of genetic diseases predisposing to sudden cardiac arrest, mainly resulting from variants in genes encoding cardiac ion channels or proteins involved in their regulation. Currently available therapeutic options (pharmacotherapy, ablative therapy and device-based therapy) can not preclude the occurrence of arrhythmia events and/or provide complete protection. With growing understanding of the genetic background and molecular mechanisms of inherited cardiac arrhythmias, advancing insight of stem cell technology, and development of vectors and delivery strategies, gene therapy and stem cell therapy may be promising approaches for treatment of inherited cardiac arrhythmias. Recent years have witnessed impressive progress in the basic science aspects and there is a clear and urgent need to be translated into the clinical management of arrhythmic events. In this review, we present a succinct overview of gene and cell therapy strategies, and summarize the current status of gene and cell therapy. Finally, we discuss future directions for implementation of gene and cell therapy in the therapy of inherited cardiac arrhythmias.
Collapse
Affiliation(s)
- Zhong-He Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China
| | - Hector Barajas-Martinez
- Lankenau Institute for Medical Research, Lankenau Heart Institute, Wynnwood, PA, 19096, USA; Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China
| | - Cong-Xin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China
| | - Charles Antzelevitch
- Lankenau Institute for Medical Research, Lankenau Heart Institute, Wynnwood, PA, 19096, USA; Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Hao Xia
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China.
| | - Dan Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China.
| |
Collapse
|
6
|
Sun X, Jin K, Ding X, Ruan Z, Xu P. DNA methylation cooperates with H3K9me2 at HCN4 promoter to regulate the differentiation of bone marrow mesenchymal stem cells into pacemaker-like cells. PLoS One 2023; 18:e0289510. [PMID: 37643180 PMCID: PMC10464974 DOI: 10.1371/journal.pone.0289510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/19/2023] [Indexed: 08/31/2023] Open
Abstract
Sick sinus syndrome (SSS) is a a life-threatening disease, and biological pacemakers derived from bone marrow mesenchymal stem cells (BMSCs) have practical clinical applications. Previous studies demonstrated that epigenetics plays an important role in the differentiation of BMSCs into pacemaker-like cells. However, the underlying mechanisms remain unclear. In the present study, we investigated the role of DNA methylation and histone methylation in pacemaker cells formation and found that changes in DNA and H3K9 methylation occur in the promoter region of the pacemaker cell-specific gene HCN4. In addition, the combined addition of methylation inhibitors was able to improve the efficiency of transduction of Tbx18 in inducing the differentiation of BMSCs into pacemaker-like cells. In vitro experiments have shown that inhibition of DNA methylation and H3K9 methylation can enhance the activity of the HCN4 promoter activity, and both can affect the binding of the transcription factor NKx2.5to the HCN4 promoter region. Further research on the interaction mechanism between DNA methylation and H3K9me2 in the HCN4 promoter region revealed that the two may be coupled, and that the methylesterase G9a and DNMT1 may directly interact to bind as a complex that affects DNA methylation and H3K9me2 regulation of HCN4 transcription. In conclusion, our studies suggest that the mutual coupling of DNA and H3K9 methylation plays a critical role in regulating the differentiation of BMSCs into pacemaker-like cells from the perspective of interactions between epigenetic modifications, and combined methylation is a promising strategy to optimise pacemaker-like cells for in vitro applications.
Collapse
Affiliation(s)
- XiaoLin Sun
- Department of Cardiology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, Jiangsu, The People’s Republic of China
| | - Kai Jin
- Department of Cardiology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, Jiangsu, The People’s Republic of China
| | - Xiangwei Ding
- Department of Cardiology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, Jiangsu, The People’s Republic of China
| | - Zhongbao Ruan
- Department of Cardiology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, Jiangsu, The People’s Republic of China
| | - Pei Xu
- Department of Haematology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, Jiangsu, The People’s Republic of China
| |
Collapse
|
7
|
Karimi T, Pan Z, Potaman VN, Alt EU. Conversion of Unmodified Stem Cells to Pacemaker Cells by Overexpression of Key Developmental Genes. Cells 2023; 12:1381. [PMID: 37408215 PMCID: PMC10216671 DOI: 10.3390/cells12101381] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 07/07/2023] Open
Abstract
Arrhythmias of the heart are currently treated by implanting electronic pacemakers and defibrillators. Unmodified adipose tissue-derived stem cells (ASCs) have the potential to differentiate into all three germ layers but have not yet been tested for the generation of pacemaker and Purkinje cells. We investigated if-based on overexpression of dominant conduction cell-specific genes in ASCs-biological pacemaker cells could be induced. Here we show that by overexpression of certain genes that are active during the natural development of the conduction system, the differentiation of ASCs to pacemaker and Purkinje-like cells is feasible. Our study revealed that the most effective procedure consisted of short-term upregulation of gene combinations SHOX2-TBX5-HCN2, and to a lesser extent SHOX2-TBX3-HCN2. Single-gene expression protocols were ineffective. Future clinical implantation of such pacemaker and Purkinje cells, derived from unmodified ASCs of the same patient, could open up new horizons for the treatment of arrythmias.
Collapse
Affiliation(s)
- Tahereh Karimi
- Heart and Vascular Institute, Department of Medicine, Tulane University Health Science Center, 1430 Tulane Ave, New Orleans, LA 70112, USA;
- Alliance of Cardiovascular Researchers, 2211 Augusta Dr #10, Houston, TX 77057, USA
| | - Zhizhong Pan
- University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vladimir N. Potaman
- Alliance of Cardiovascular Researchers, 2211 Augusta Dr #10, Houston, TX 77057, USA
- InGeneron Inc., 8205 El Rio Street, Houston, TX 77054, USA
| | - Eckhard U. Alt
- Heart and Vascular Institute, Department of Medicine, Tulane University Health Science Center, 1430 Tulane Ave, New Orleans, LA 70112, USA;
- Alliance of Cardiovascular Researchers, 2211 Augusta Dr #10, Houston, TX 77057, USA
- InGeneron Inc., 8205 El Rio Street, Houston, TX 77054, USA
- Sanford Health, University of South Dakota, Sioux Falls, SD 57104, USA
- Isar Klinikum Munich, Sonnenstr 24-26, 80331 Munich, Germany
| |
Collapse
|
8
|
Hou X, Ma S, Fan W, Li F, Xu M, Yang C, Liu F, Yan Y, Wan J, Lan F, Liao B. Chemically defined and small molecules-based generation of sinoatrial node-like cells. Stem Cell Res Ther 2022; 13:158. [PMID: 35410454 PMCID: PMC8996538 DOI: 10.1186/s13287-022-02834-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/25/2022] [Indexed: 11/10/2022] Open
Abstract
Background Existing methods for in vitro differentiation of human pluripotent stem cells (hPSCs) into sinoatrial node-like cells (SANLCs) require complex and undefined medium constituents. This might hinder the elucidation of the molecular mechanisms involved in cardiac subtype specification and prevent translational application. In our study, we aimed to establish a chemically defined differentiation methods to generate SANLCs effectively and stably. Methods We induced human embryonic stem cells (hESCs)/induced PSCs (hiPSCs) to pan-cardiomyocytes by temporal modulation of the WNT/β-catenin (WNT) signaling pathway with GSK3 inhibitor and WNT inhibitor. During cardiac mesoderm stage of the differentiation process, signaling of WNT, retinoid acid (RA), and fibroblast growth factor (FGF) was manipulated by three specific molecules. Moreover, metabolic selection was designed to improve the enrichment of SANLCs. Finally, RT-PCR, immunofluorescence, flow cytometry, and whole cell patch clamp were used to identify the SANLCs.
Results WNT, RA, and FGF signaling promote the differentiation of hPSCs into SANLCs in a concentration- and time window-sensitive manner, respectively. Synergetic modulation of WNT, FGF, and RA signaling pathways enhance the pacemaker phenotype and improve the differentiation efficiency of SANLCs (up to 45%). Moreover, the purification based on lactate metabolism and glucose starvation further reached approximately 50% of SANLCs. Finally, the electrophysiological data demonstrate that cells differentiated with the proposed protocol produce a considerable number of SANLCs that display typical electrophysiological characteristics of pacemaker cells in vitro. Conclusion We provide an optimized and chemically defined protocol to generate SANLCs by combined modulation of WNT, RA, and FGF signaling pathways and metabolic selection by lactate enrichment and glucose starvation. This chemically defined method for generating SANLCs might provide a platform for disease modeling, drug discovery, predictive toxicology, and biological pacemaker construction. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02834-y.
Collapse
Affiliation(s)
- Xiaojie Hou
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.,Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, 646000, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases) Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Shuhong Ma
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, State Key Laboratory of Cardiovascular Disease, Key Laboratory of Pluripotent Stem Cells in Cardiac Repair and Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518057, China
| | - Wei Fan
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.,Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, 646000, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases) Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Fang Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases) Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China.,Department of Cardiology, Jianyang City People's Hospital, Jianyang, 641499, China
| | - Miaomiao Xu
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, State Key Laboratory of Cardiovascular Disease, Key Laboratory of Pluripotent Stem Cells in Cardiac Repair and Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518057, China
| | - Chao Yang
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.,Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, 646000, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases) Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Feng Liu
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.,Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, 646000, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases) Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Ying Yan
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.,Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, 646000, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases) Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Juyi Wan
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China. .,Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, 646000, China. .,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases) Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China.
| | - Feng Lan
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, State Key Laboratory of Cardiovascular Disease, Key Laboratory of Pluripotent Stem Cells in Cardiac Repair and Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518057, China.
| | - Bin Liao
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China. .,Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, 646000, China. .,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases) Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
9
|
Saito Y, Nakamura K, Yoshida M, Sugiyama H, Akagi S, Miyoshi T, Morita H, Ito H. Enhancement of pacing function by HCN4 overexpression in human pluripotent stem cell-derived cardiomyocytes. Stem Cell Res Ther 2022; 13:141. [PMID: 35365232 PMCID: PMC8973792 DOI: 10.1186/s13287-022-02818-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/20/2022] [Indexed: 11/10/2022] Open
Abstract
Background The number of patients with bradyarrhythmia and the number of patients with cardiac pacemakers are increasing with the aging population and the increase in the number of patients with heart diseases. Some patients in whom a cardiac pacemaker has been implanted experience problems such as pacemaker infection and inconvenience due to electromagnetic interference. We have reported that overexpression of HCN channels producing a pacemaker current in mouse embryonic stem cell-derived cardiomyocytes showed enhanced pacing function in vitro and in vivo. The aim of this study was to determine whether HCN4 overexpression in human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) can strengthen the pacing function of the cells. Methods Human HCN4 was transduced in the AAVS1 locus of human induced pluripotent stem cells by nucleofection and HCN4-overexpressing iPSC-CMs were generated. Gene expression profiles, frequencies of spontaneous contraction and pacing abilities of HCN4-overexpressing and non-overexpressing iPSC-CMs in vitro were compared. Results HCN4-overexpressing iPSC-CMs showed higher spontaneous contraction rates than those of non-overexpressing iPSC-CMs. They responded to an HCN channel blocker and β adrenergic stimulation. The pacing rates against parent iPSC line-derived cardiomyocytes were also higher in HCN4-overexpressing iPSC-CMs than in non-overexpressing iPSC-CMs. Conclusions Overexpression of HCN4 showed enhancement of If current, spontaneous firing and pacing function in iPSC-CMs. These data suggest this transgenic cell line may be useful as a cardiac pacemaker. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02818-y.
Collapse
Affiliation(s)
- Yukihiro Saito
- Department of Cardiovascular Medicine, Okayama University Hospital, Okayama, Japan.
| | - Kazufumi Nakamura
- Department of Cardiovascular Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, 700-8558, Kita-ku, Okayama, Japan.
| | - Masashi Yoshida
- Department of Chronic Kidney Disease and Cardiovascular Disease, Dentistry, and Pharmaceutical Science, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Hiroki Sugiyama
- Department of Internal Medicine, Okayama Saiseikai General Hospital, Okayama, Japan
| | - Satoshi Akagi
- Department of Cardiovascular Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, 700-8558, Kita-ku, Okayama, Japan
| | - Toru Miyoshi
- Department of Cardiovascular Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, 700-8558, Kita-ku, Okayama, Japan
| | - Hiroshi Morita
- Department of Cardiovascular Therapeutics, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Hiroshi Ito
- Department of Cardiovascular Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, 700-8558, Kita-ku, Okayama, Japan
| |
Collapse
|
10
|
Li Y, Wang K, Li Q, Hancox JC, Zhang H. Reciprocal interaction between IK1 and If in biological pacemakers: A simulation study. PLoS Comput Biol 2021; 17:e1008177. [PMID: 33690622 PMCID: PMC7984617 DOI: 10.1371/journal.pcbi.1008177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 03/22/2021] [Accepted: 02/17/2021] [Indexed: 11/19/2022] Open
Abstract
Pacemaking dysfunction (PD) may result in heart rhythm disorders, syncope or even death. Current treatment of PD using implanted electronic pacemakers has some limitations, such as finite battery life and the risk of repeated surgery. As such, the biological pacemaker has been proposed as a potential alternative to the electronic pacemaker for PD treatment. Experimentally and computationally, it has been shown that bio-engineered pacemaker cells can be generated from non-rhythmic ventricular myocytes (VMs) by knocking out genes related to the inward rectifier potassium channel current (IK1) or by overexpressing hyperpolarization-activated cyclic nucleotide gated channel genes responsible for the "funny" current (If). However, it is unclear if a bio-engineered pacemaker based on the modification of IK1- and If-related channels simultaneously would enhance the ability and stability of bio-engineered pacemaking action potentials. In this study, the possible mechanism(s) responsible for VMs to generate spontaneous pacemaking activity by regulating IK1 and If density were investigated by a computational approach. Our results showed that there was a reciprocal interaction between IK1 and If in ventricular pacemaker model. The effect of IK1 depression on generating ventricular pacemaker was mono-phasic while that of If augmentation was bi-phasic. A moderate increase of If promoted pacemaking activity but excessive increase of If resulted in a slowdown in the pacemaking rate and even an unstable pacemaking state. The dedicated interplay between IK1 and If in generating stable pacemaking and dysrhythmias was evaluated. Finally, a theoretical analysis in the IK1/If parameter space for generating pacemaking action potentials in different states was provided. In conclusion, to the best of our knowledge, this study provides a wide theoretical insight into understandings for generating stable and robust pacemaker cells from non-pacemaking VMs by the interplay of IK1 and If, which may be helpful in designing engineered biological pacemakers for application purposes.
Collapse
Affiliation(s)
- Yacong Li
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Kuanquan Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
- * E-mail: (KW); (HZ)
| | - Qince Li
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
- Peng Cheng Laboratory, Shenzhen, China
| | - Jules C. Hancox
- School of Physiology, Pharmacology and Neuroscience, Medical Sciences Building, University Walk, Bristol, United Kingdom
- Biological Physics Group, School of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom
| | - Henggui Zhang
- Peng Cheng Laboratory, Shenzhen, China
- Biological Physics Group, School of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- * E-mail: (KW); (HZ)
| |
Collapse
|
11
|
Co ML, Khouzam JP, Pour-Ghaz I, Minhas S, Basu-Ray I. Emerging Technologies in Cardiac Pacing From Leadless Pacers to Stem Cells. Curr Probl Cardiol 2021; 46:100797. [PMID: 33561694 DOI: 10.1016/j.cpcardiol.2021.100797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 01/10/2021] [Indexed: 01/28/2023]
Abstract
Modern pacemakers can sense and pace multiple chambers of the heart. These pacemakers have different modes and features to optimize atrioventricular synchrony and promote intrinsic conduction. Despite recent advancements, current pacemakers have several drawbacks that limit their feasibility. In this review article, we discuss several of these limitations and detail several emerging technologies in cardiac pacing aimed to solve some of these limitations. We present several technological advancements in cardiac pacing, including the use of leadless pacemakers, physiologic pacing, battery improvements, and bioartificial pacemakers. More research still needs to be done in testing the safety and efficacy of these new developments.
Collapse
Affiliation(s)
- Michael Lawren Co
- Department of Cardiology, Loma Linda University Medical Center, Loma Linda, CA
| | | | - Issa Pour-Ghaz
- Department of Cardiology, University of Tennessee Health Science Center, Memphis, TN
| | - Sheharyar Minhas
- Department of Internal Medicine, Baptist Memorial Hospital, Memphis, TN
| | - Indranill Basu-Ray
- Arrythmia Service, Department of Cardiology, Memphis VA Medical Center, The University of Memphis, Memphis, TN.
| |
Collapse
|
12
|
Lee JA, An J, Taniguchi J, Kashiwazaki G, Pandian GN, Parveen N, Kang TM, Sugiyama H, De D, Kim KK. Targeted epigenetic modulation using a DNA-based histone deacetylase inhibitor enhances cardiomyogenesis in mouse embryonic stem cells. J Cell Physiol 2020; 236:3946-3962. [PMID: 33164232 DOI: 10.1002/jcp.30140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/25/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022]
Abstract
The epigenome has an essential role in orchestrating transcriptional activation and modulating key developmental processes. Previously, we developed a library of pyrrole-imidazole polyamides (PIPs) conjugated with suberoylanilide hydroxamic acid (SAHA), a histone deacetylase (HDAC) inhibitor, for the purpose of sequence-specific modification of epigenetics. Based on the gene expression profile of SAHA-PIPs and screening studies using the α-myosin heavy chain promoter-driven reporter and SAHA-PIP library, we identified that SAHA-PIP G activates cardiac-related genes. Studies in mouse ES cells showed that SAHA-PIP G could enhance the generation of spontaneous beating cells, which is consistent with upregulation of several cardiac-related genes. Moreover, ChIP-seq results confirmed that the upregulation of cardiac-related genes is highly correlated with epigenetic activation, relevant to the sequence-specific binding of SAHA-PIP G. This proof-of-concept study demonstrating the applicability of SAHA-PIP not only improves our understanding of epigenetic alterations involved in cardiomyogenesis but also provides a novel chemical-based strategy for stem cell differentiation.
Collapse
Affiliation(s)
- Jin-A Lee
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Jieun An
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Junichi Taniguchi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto, Japan
| | - Gengo Kashiwazaki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto, Japan
| | - Ganesh N Pandian
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto, Japan
| | - Nazia Parveen
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Tong Mook Kang
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto, Japan
| | - Debojyoti De
- Department of Biotechnology, National Institute of Technology, Durgapur, Burdwan, West Bengal, India
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
13
|
Li Y, Wang K, Li Q, Zhang H. Biological pacemaker: from biological experiments to computational simulation. J Zhejiang Univ Sci B 2020; 21:524-536. [PMID: 32633107 DOI: 10.1631/jzus.b1900632] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Pacemaking dysfunction has become a significant disease that may contribute to heart rhythm disorders, syncope, and even death. Up to now, the best way to treat it is to implant electronic pacemakers. However, these have many disadvantages such as limited battery life, infection, and fixed pacing rate. There is an urgent need for a biological pacemaker (bio-pacemaker). This is expected to replace electronic devices because of its low risk of complications and the ability to respond to emotion. Here we survey the contemporary development of the bio-pacemaker by both experimental and computational approaches. The former mainly includes gene therapy and cell therapy, whilst the latter involves the use of multi-scale computer models of the heart, ranging from the single cell to the tissue slice. Up to now, a bio-pacemaker has been successfully applied in big mammals, but it still has a long way from clinical uses for the treatment of human heart diseases. It is hoped that the use of the computational model of a bio-pacemaker may accelerate this process. Finally, we propose potential research directions for generating a bio-pacemaker based on cardiac computational modeling.
Collapse
Affiliation(s)
- Yacong Li
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Kuanquan Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Qince Li
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China.,Peng Cheng Laboratory, Shenzhen 518052, China
| | - Henggui Zhang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China.,School of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK.,Peng Cheng Laboratory, Shenzhen 518052, China
| |
Collapse
|
14
|
Notch1-mediated histone demethylation of HCN4 contributes to aconitine-induced ventricular myocardial dysrhythmia. Toxicol Lett 2020; 327:19-31. [DOI: 10.1016/j.toxlet.2020.03.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/12/2020] [Accepted: 03/23/2020] [Indexed: 12/15/2022]
|
15
|
Rivolta I, Binda A, Masi A, DiFrancesco JC. Cardiac and neuronal HCN channelopathies. Pflugers Arch 2020; 472:931-951. [PMID: 32424620 DOI: 10.1007/s00424-020-02384-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 12/31/2022]
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are expressed as four different isoforms (HCN1-4) in the heart and in the central and peripheral nervous systems. In the voltage range of activation, HCN channels carry an inward current mediated by Na+ and K+, termed If in the heart and Ih in neurons. Altered function of HCN channels, mainly HCN4, is associated with sinus node dysfunction and other arrhythmias such as atrial fibrillation, ventricular tachycardia, and atrioventricular block. In recent years, several data have also shown that dysfunctional HCN channels, in particular HCN1, but also HCN2 and HCN4, can play a pathogenic role in epilepsy; these include experimental data from animal models, and data collected over genetic mutations of the channels identified and characterized in epileptic patients. In the central nervous system, alteration of the Ih current could predispose to the development of neurodegenerative diseases such as Parkinson's disease; since HCN channels are widely expressed in the peripheral nervous system, their dysfunctional behavior could also be associated with the pathogenesis of neuropathic pain. Given the fundamental role played by the HCN channels in the regulation of the discharge activity of cardiac and neuronal cells, the modulation of their function for therapeutic purposes is under study since it could be useful in various pathological conditions. Here we review the present knowledge of the HCN-related channelopathies in cardiac and neurological diseases, including clinical, genetic, therapeutic, and physiopathological aspects.
Collapse
Affiliation(s)
- Ilaria Rivolta
- School of Medicine and Surgery, Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Monza, Italy
| | - Anna Binda
- School of Medicine and Surgery, Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Monza, Italy
| | - Alessio Masi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Jacopo C DiFrancesco
- School of Medicine and Surgery, Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Monza, Italy. .,Department of Neurology, ASST San Gerardo Hospital, University of Milano-Bicocca, Via Pergolesi, 33, 20900, Monza, MB, Italy.
| |
Collapse
|
16
|
Valiunas V, Cohen IS, Brink PR, Clausen C. A study of the outward background current conductance g K1, the pacemaker current conductance g f, and the gap junction conductance g j as determinants of biological pacing in single cells and in a two-cell syncytium using the dynamic clamp. Pflugers Arch 2020; 472:561-570. [PMID: 32415460 DOI: 10.1007/s00424-020-02378-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 12/21/2022]
Abstract
We previously demonstrated that a two-cell syncytium, composed of a ventricular myocyte and an mHCN2 expressing cell, recapitulated most properties of in vivo biological pacing induced by mHCN2-transfected hMSCs in the canine ventricle. Here, we use the two-cell syncytium, employing dynamic clamp, to study the roles of gf (pacemaker conductance), gK1 (background K+ conductance), and gj (intercellular coupling conductance) in biological pacing. We studied gf and gK1 in single HEK293 cells expressing cardiac sodium current channel Nav1.5 (SCN5A). At fixed gf, increasing gK1 hyperpolarized the cell and initiated pacing. As gK1 increased, rate increased, then decreased, finally ceasing at membrane potentials near EK. At fixed gK1, increasing gf depolarized the cell and initiated pacing. With increasing gf, rate increased reaching a plateau, then decreased, ceasing at a depolarized membrane potential. We studied gj via virtual coupling with two non-adjacent cells, a driver (HEK293 cell) in which gK1 and gf were injected without SCN5A and a follower (HEK293 cell), expressing SCN5A. At the chosen values of gK1 and gf oscillations initiated in the driver, when gj was increased synchronized pacing began, which then decreased by about 35% as gj approached 20 nS. Virtual uncoupling yielded similar insights into gj. We also studied subthreshold oscillations in physically and virtually coupled cells. When coupling was insufficient to induce pacing, passive spread of the oscillations occurred in the follower. These results show a non-monotonic relationship between gK1, gf, gj, and pacing. Further, oscillations can be generated by gK1 and gf in the absence of SCN5A.
Collapse
Affiliation(s)
- Virginijus Valiunas
- Department of Physiology and Biophysics and the Institute for Molecular Cardiology, Stony Brook University, Stony Brook, NY, 11794-8661, USA.
| | - Ira S Cohen
- Department of Physiology and Biophysics and the Institute for Molecular Cardiology, Stony Brook University, Stony Brook, NY, 11794-8661, USA
| | - Peter R Brink
- Department of Physiology and Biophysics and the Institute for Molecular Cardiology, Stony Brook University, Stony Brook, NY, 11794-8661, USA
| | - Chris Clausen
- Department of Physiology and Biophysics and the Institute for Molecular Cardiology, Stony Brook University, Stony Brook, NY, 11794-8661, USA
| |
Collapse
|
17
|
Nemade H, Acharya A, Chaudhari U, Nembo E, Nguemo F, Riet N, Abken H, Hescheler J, Papadopoulos S, Sachinidis A. Cyclooxygenases Inhibitors Efficiently Induce Cardiomyogenesis in Human Pluripotent Stem Cells. Cells 2020; 9:cells9030554. [PMID: 32120775 PMCID: PMC7140528 DOI: 10.3390/cells9030554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/28/2020] [Accepted: 02/26/2020] [Indexed: 12/12/2022] Open
Abstract
Application of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) is limited by the challenges in their efficient differentiation. Recently, the Wingless (Wnt) signaling pathway has emerged as the key regulator of cardiomyogenesis. In this study, we evaluated the effects of cyclooxygenase inhibitors on cardiac differentiation of hPSCs. Cardiac differentiation was performed by adherent monolayer based method using 4 hPSC lines (HES3, H9, IMR90, and ES4SKIN). The efficiency of cardiac differentiation was evaluated by flow cytometry and RT-qPCR. Generated hPSC-CMs were characterised using immunocytochemistry, electrophysiology, electron microscopy, and calcium transient measurements. Our data show that the COX inhibitors Sulindac and Diclofenac in combination with CHIR99021 (GSK-3 inhibitor) efficiently induce cardiac differentiation of hPSCs. In addition, inhibition of COX using siRNAs targeted towards COX-1 and/or COX-2 showed that inhibition of COX-2 alone or COX-1 and COX-2 in combination induce cardiomyogenesis in hPSCs within 12 days. Using IMR90-Wnt reporter line, we showed that inhibition of COX-2 led to downregulation of Wnt signalling activity in hPSCs. In conclusion, this study demonstrates that COX inhibition efficiently induced cardiogenesis via modulation of COX and Wnt pathway and the generated cardiomyocytes express cardiac-specific structural markers as well as exhibit typical calcium transients and action potentials. These cardiomyocytes also responded to cardiotoxicants and can be relevant as an in vitro cardiotoxicity screening model.
Collapse
Affiliation(s)
- Harshal Nemade
- Institute of Neurophysiology, Faculty of Medicine, University of Cologne, Robert-Koch-Str. 39, 50931 Cologne, Germany; (H.N.); (A.A.); (U.C.); (E.N.); (F.N.); (J.H.); (S.P.)
| | - Aviseka Acharya
- Institute of Neurophysiology, Faculty of Medicine, University of Cologne, Robert-Koch-Str. 39, 50931 Cologne, Germany; (H.N.); (A.A.); (U.C.); (E.N.); (F.N.); (J.H.); (S.P.)
| | - Umesh Chaudhari
- Institute of Neurophysiology, Faculty of Medicine, University of Cologne, Robert-Koch-Str. 39, 50931 Cologne, Germany; (H.N.); (A.A.); (U.C.); (E.N.); (F.N.); (J.H.); (S.P.)
| | - Erastus Nembo
- Institute of Neurophysiology, Faculty of Medicine, University of Cologne, Robert-Koch-Str. 39, 50931 Cologne, Germany; (H.N.); (A.A.); (U.C.); (E.N.); (F.N.); (J.H.); (S.P.)
| | - Filomain Nguemo
- Institute of Neurophysiology, Faculty of Medicine, University of Cologne, Robert-Koch-Str. 39, 50931 Cologne, Germany; (H.N.); (A.A.); (U.C.); (E.N.); (F.N.); (J.H.); (S.P.)
| | - Nicole Riet
- Department I Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of Cologne (UKK), Robert-Koch-Str. 21, 50931 Cologne, Germany;
| | - Hinrich Abken
- Regensburg Centre for Interventional Immunology (RCI), Deptartment Genetic Immunotherapy, University Hospital Regensburg, 93053 Regensburg, Germany;
| | - Jürgen Hescheler
- Institute of Neurophysiology, Faculty of Medicine, University of Cologne, Robert-Koch-Str. 39, 50931 Cologne, Germany; (H.N.); (A.A.); (U.C.); (E.N.); (F.N.); (J.H.); (S.P.)
| | - Symeon Papadopoulos
- Institute of Neurophysiology, Faculty of Medicine, University of Cologne, Robert-Koch-Str. 39, 50931 Cologne, Germany; (H.N.); (A.A.); (U.C.); (E.N.); (F.N.); (J.H.); (S.P.)
| | - Agapios Sachinidis
- Institute of Neurophysiology, Faculty of Medicine, University of Cologne, Robert-Koch-Str. 39, 50931 Cologne, Germany; (H.N.); (A.A.); (U.C.); (E.N.); (F.N.); (J.H.); (S.P.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Str. 21, 50931 Cologne, Germany
- Correspondence: ; Tel.: +49-0221-4787373
| |
Collapse
|
18
|
Li Y, Wang K, Li Q, Luo C, Zhang H. Role of I f Density on Electrical Action Potential of Bio-engineered Cardiac Pacemaker: A Simulation Study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:3995-3998. [PMID: 31946747 DOI: 10.1109/embc.2019.8856350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Due to the inevitable drawbacks of the implantable electrical pacemaker, the biological pacemaker was believed to be an alternative therapy for heart failure. Previous experimental studies have shown that biological pacemaker could be produced by genetically manipulating non-pacemaking cardiac cells by suppressing the inward rectifier potassium current (IK1) and expressing the hyperpolarization- activated current (If). However, the role of If in such bio-engineered pacemaker is not clear. In this study, we simulated the action potential of biological pacemaker cells by manipulating If-IK1 parameters (i.e., inhibiting IK1 as well as incorporating If) to analyze possible mechanisms by which different If densities control pacemaking action potentials. Our simulation results showed different pacing mechanism between the bioengineered pacemaking cells with and without If. In addition, it was shown that a greater If density might result in a slower pacing frequency, and excessive of it might produce an early-afterdepolarizations-like action potential due to a sudden release of calcium from sarcoplasmic reticulum into the cytoplasm. This study indicated that when IK1 was significantly suppressed, incorporating If may not enhance the pacing ability of biological pacemaker, but lead to abnormal dynamics of intracellular ionic concentration, increasing risks of dysrhythmia in the heart.
Collapse
|
19
|
Sun B, Dong X, Zhao J, Yang Z, Zhang Y, Li L. Differentiation of human urine-derived stem cells into interstitial cells of Cajal-like cells by exogenous gene modification: A preliminary study. Biochem Biophys Res Commun 2019; 523:10-17. [PMID: 31831171 DOI: 10.1016/j.bbrc.2019.09.121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 09/27/2019] [Indexed: 02/07/2023]
Abstract
Human urine-derived stem cells (hUSCs) show multipotential differentiation ability and can differentiate into mesodermal cell lineages. Interstitial cells of Cajal-like cells (ICC-LCs) are crucial for the pace-making function of spontaneous contraction in the bladder. However, the mechanisms by which hUSCs generate ICC-LCs have not been elucidated. In this study, we developed a strategy for directional differentiation of hUSCs into ICC-LCs. hUSCs were transfected with lentiviral vectors encoding c-Kit, stem cell factor (SCF), hyperpolarization activated cyclic nucleotide gated potassium channel 4 (HCN4), and 5-azacytidine induced 2 (AZI2) genes, and the cells were cultured for an additional 7 days in specific medium. The expression of the surface marker c-Kit on ICC-LCs was determined at 7 days after transfection. hUSCs were successfully expanded and transfected with the four lentiviral vectors. hUSCs transfected with lentiviral-c-Kit, lentiviral-HCN4, and lentiviral-AZI2 showed higher expression of c-Kit 7 days after transfection, but only the lentiviral-HCN4-transfected cells showed morphological alterations in ICC-LCs. These cells also displayed visible HCN current amplitude and density. This approach may provide a new strategy for the treatment of underactive bladder.
Collapse
Affiliation(s)
- Bishao Sun
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Xingyou Dong
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Jiang Zhao
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Zhenxing Yang
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Longkun Li
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
20
|
Li XH, Hu YM, Yin GL, Wu P. Correlation between HCN4 gene polymorphisms and lone atrial fibrillation risk. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2989-2993. [PMID: 31315459 DOI: 10.1080/21691401.2019.1637885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Background and objective: Atrial electrical remodelling (AER) was significantly associated with atrial fibrillation (AF) development. Polymorphisms in hyperpolarization activated cyclic nucleotide gated potassium channel 4 (HCN4) gene might be correlated with AER. In the present study, we explored the association of HCN4 polymorphisms (rs498005 and rs7164883) with lone AF risk in a Chinese Han population. Methods: In this case-control study, the Sanger sequencing method was utilized to genotype the HCN4 polymorphisms. Relative risk of AF was assessed by the χ2 test, and presented by odds ratios (ORs) and corresponding 95% confidence intervals (CIs). Logistic regression analysis was performed for multivariate analysis. The effects of HCN4 polymorphisms on AF clinical features were analyzed by the Mann-Whitney U test and adjusted by the Bonferroni method. Results: C allele of rs498005 was significantly correlated with increased risk of AF (OR = 1.412, 95%CI = 1.012-1.970), and the association still exited after adjustment by age, gender, the status of smoking and drinking, histories of diabetes, hyperlipidaemia and myocardial infarction (adjusted OR = 1.473, 95%CI = 1.043-2.081). G allele of rs7164883 SNP was marginally associated with enhanced AF risk after adjustment by the above clinical parameters (adjusted OR = 1.742, 95%CI = 1.019-2.980). Atrial late potential (ALP), including TP (P wave duration after filtering) and LP20 (the amplitude of superimposed potential in the final 20 ms of P wave) were significantly associated with rs498005 genotype (p < .001). Conclusion: HCN4 rs498005 and rs7164883 polymorphisms are significantly associated with AF risk.
Collapse
Affiliation(s)
- Xiao-Hong Li
- a Department of Cardiology, Cangzhou City Central Hospital , Cangzhou , China
| | - Ya-Min Hu
- a Department of Cardiology, Cangzhou City Central Hospital , Cangzhou , China
| | - Guang-Li Yin
- b Department of Cardiology, Hebei Provincial Hospital of Integrative Chinese and Western Medicine , Cangzhou , China
| | - Ping Wu
- a Department of Cardiology, Cangzhou City Central Hospital , Cangzhou , China
| |
Collapse
|
21
|
Zhang J, Huang C. A new combination of transcription factors increases the harvesting efficiency of pacemaker‑like cells. Mol Med Rep 2019; 19:3584-3592. [PMID: 30864738 PMCID: PMC6472109 DOI: 10.3892/mmr.2019.10012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 02/01/2019] [Indexed: 01/22/2023] Open
Abstract
Biological pacemakers that combine cell-based and gene-based therapies are a promising treatment for sick sinus syndrome or severe atrioventricular block. The current study aimed to induce differentiation of adipose tissue-derived stem cells (ADSCs) into cardiac pacemaker cells through co-expression of the transcription factors insulin gene enhancer binding protein 1 (ISL-1) and T-box18 (Tbx18). ADSCs were transfected with green fluorescent protein, ISL-1, Tbx18 or ISL-1+Tbx18 fluorescent protein lentiviral vectors, and subsequently co-cultured with neonatal rat ventricular cardiomyocytes in vitro for 7 days. The potential for regulating the differentiation of ADSCs into pacemaker-like cells was evaluated by cell morphology, beating rate, reverse transcription-quantitative polymerase chain reaction, western blotting, immunofluorescence and electrophysiological activity. ADSCs were successfully transformed into spontaneously beating cells that exhibited a behavior similar to that of co-cultured pacemaker cells. This effect was significantly increased in the combined ISL-1 and Tbx18 group. These results provide a potential strategy for enriching the cardiac pacemaker cell population from ADSCs.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
22
|
Farraha M, Kumar S, Chong J, Cho HC, Kizana E. Gene Therapy Approaches to Biological Pacemakers. J Cardiovasc Dev Dis 2018; 5:jcdd5040050. [PMID: 30347716 PMCID: PMC6306875 DOI: 10.3390/jcdd5040050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 01/01/2023] Open
Abstract
Bradycardia arising from pacemaker dysfunction can be debilitating and life threatening. Electronic pacemakers serve as effective treatment options for pacemaker dysfunction. They however present their own limitations and complications. This has motivated research into discovering more effective and innovative ways to treat pacemaker dysfunction. Gene therapy is being explored for its potential to treat various cardiac conditions including cardiac arrhythmias. Gene transfer vectors with increasing transduction efficiency and biosafety have been developed and trialed for cardiovascular disease treatment. With an improved understanding of the molecular mechanisms driving pacemaker development, several gene therapy targets have been identified to generate the phenotypic changes required to correct pacemaker dysfunction. This review will discuss the gene therapy vectors in use today along with methods for their delivery. Furthermore, it will evaluate several gene therapy strategies attempting to restore biological pacing, having the potential to emerge as viable therapies for pacemaker dysfunction.
Collapse
Affiliation(s)
- Melad Farraha
- Centre for Heart Research, the Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia.
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Saurabh Kumar
- Department of Cardiology, Westmead Hospital, Westmead, NSW 2145, Australia.
| | - James Chong
- Centre for Heart Research, the Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia.
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia.
- Department of Cardiology, Westmead Hospital, Westmead, NSW 2145, Australia.
| | - Hee Cheol Cho
- Departments of Pediatrics and Biomedical Engineering, Emory University, Atlanta, GA 30322, USA.
| | - Eddy Kizana
- Centre for Heart Research, the Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia.
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia.
- Department of Cardiology, Westmead Hospital, Westmead, NSW 2145, Australia.
| |
Collapse
|
23
|
Yamoah MA, Moshref M, Sharma J, Chen WC, Ledford HA, Lee JH, Chavez KS, Wang W, López JE, Lieu DK, Sirish P, Zhang XD. Highly efficient transfection of human induced pluripotent stem cells using magnetic nanoparticles. Int J Nanomedicine 2018; 13:6073-6078. [PMID: 30323594 PMCID: PMC6179720 DOI: 10.2147/ijn.s172254] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose The delivery of transgenes into human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (hiPSC-CMs) represents an important tool in cardiac regeneration with potential for clinical applications. Gene transfection is more difficult, however, for hiPSCs and hiPSC-CMs than for somatic cells. Despite improvements in transfection and transduction, the efficiency, cytotoxicity, safety, and cost of these methods remain unsatisfactory. The objective of this study is to examine gene transfection in hiPSCs and hiPSC-CMs using magnetic nanoparticles (NPs). Methods Magnetic NPs are unique transfection reagents that form complexes with nucleic acids by ionic interaction. The particles, loaded with nucleic acids, can be guided by a magnetic field to allow their concentration onto the surface of the cell membrane. Subsequent uptake of the loaded particles by the cells allows for high efficiency transfection of the cells with nucleic acids. We developed a new method using magnetic NPs to transfect hiPSCs and hiPSC-CMs. HiPSCs and hiPSC-CMs were cultured and analyzed using confocal microscopy, flow cytometry, and patch clamp recordings to quantify the transfection efficiency and cellular function. Results We compared the transfection efficiency of hiPSCs with that of human embryonic kidney (HEK 293) cells. We observed that the average efficiency in hiPSCs was 43%±2% compared to 62%±4% in HEK 293 cells. Further analysis of the transfected hiPSCs showed that the differentiation of hiPSCs to hiPSC-CMs was not altered by NPs. Finally, robust transfection of hiPSC-CMs with an efficiency of 18%±2% was obtained. Conclusion The difficult-to-transfect hiPSCs and hiPSC-CMs were efficiently transfected using magnetic NPs. Our study offers a novel approach for transfection of hiPSCs and hiPSC-CMs without the need for viral vector generation.
Collapse
Affiliation(s)
- Megan A Yamoah
- Department of Internal Medicine, University of California, Davis, CA, USA, ,
| | - Maryam Moshref
- Department of Internal Medicine, University of California, Davis, CA, USA, ,
| | - Janhavi Sharma
- Department of Internal Medicine, University of California, Davis, CA, USA, ,
| | - Wei Chun Chen
- Department of Internal Medicine, University of California, Davis, CA, USA, ,
| | - Hannah A Ledford
- Department of Internal Medicine, University of California, Davis, CA, USA, ,
| | - Jeong Han Lee
- Department of Physiology and Cell Biology, University of Nevada, Reno, NV, USA
| | - Karen S Chavez
- Department of Internal Medicine, University of California, Davis, CA, USA, ,
| | - Wenying Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno, NV, USA
| | - Javier E López
- Department of Internal Medicine, University of California, Davis, CA, USA, ,
| | - Deborah K Lieu
- Department of Internal Medicine, University of California, Davis, CA, USA, ,
| | - Padmini Sirish
- Department of Internal Medicine, University of California, Davis, CA, USA, , .,Department of Veterans Affairs, Northern California Health Care System, Mather, CA, USA, ,
| | - Xiao-Dong Zhang
- Department of Internal Medicine, University of California, Davis, CA, USA, , .,Department of Veterans Affairs, Northern California Health Care System, Mather, CA, USA, ,
| |
Collapse
|
24
|
Spinelli V, Sartiani L, Mugelli A, Romanelli MN, Cerbai E. Hyperpolarization-activated cyclic-nucleotide-gated channels: pathophysiological, developmental, and pharmacological insights into their function in cellular excitability. Can J Physiol Pharmacol 2018; 96:977-984. [PMID: 29969572 DOI: 10.1139/cjpp-2018-0115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The hyperpolarization-activated cyclic-nucleotide-gated (HCN) proteins are voltage-dependent ion channels, conducting both Na+ and K+, blocked by millimolar concentrations of extracellular Cs+ and modulated by cyclic nucleotides (mainly cAMP) that contribute crucially to the pacemaker activity in cardiac nodal cells and subsidiary pacemakers. Over the last decades, much attention has focused on HCN current, If, in non-pacemaker cardiac cells and its potential role in triggering arrhythmias. In fact, in addition to pacemakers, HCN current is constitutively present in the human atria and has long been proposed to sustain atrial arrhythmias associated to different cardiac pathologies or triggered by various modulatory signals (catecholamines, serotonin, natriuretic peptides). An atypical If occurs in diseased ventricular cardiomyocytes, its amplitude being linearly related to the severity of cardiac hypertrophy. The properties of atrial and ventricular If and its modulation by pharmacological interventions has been object of intense study, including the synthesis and characterization of new compounds able to block preferentially HCN1, HCN2, or HCN4 isoforms. Altogether, clues emerge for opportunities of future pharmacological strategies exploiting the unique properties of this channel family: the prevalence of different HCN subtypes in organs and tissues, the possibility to target HCN gain- or loss-of-function associated with disease, the feasibility of novel isoform-selective drugs, as well as the discovery of HCN-mediated effects for old medicines.
Collapse
Affiliation(s)
- Valentina Spinelli
- Department of Neurosciences, Psychology, Drug Research and Child Health (NeuroFarBa), University of Florence, Florence, Italy.,Department of Neurosciences, Psychology, Drug Research and Child Health (NeuroFarBa), University of Florence, Florence, Italy
| | - Laura Sartiani
- Department of Neurosciences, Psychology, Drug Research and Child Health (NeuroFarBa), University of Florence, Florence, Italy.,Department of Neurosciences, Psychology, Drug Research and Child Health (NeuroFarBa), University of Florence, Florence, Italy
| | - Alessandro Mugelli
- Department of Neurosciences, Psychology, Drug Research and Child Health (NeuroFarBa), University of Florence, Florence, Italy.,Department of Neurosciences, Psychology, Drug Research and Child Health (NeuroFarBa), University of Florence, Florence, Italy
| | - Maria Novella Romanelli
- Department of Neurosciences, Psychology, Drug Research and Child Health (NeuroFarBa), University of Florence, Florence, Italy.,Department of Neurosciences, Psychology, Drug Research and Child Health (NeuroFarBa), University of Florence, Florence, Italy
| | - Elisabetta Cerbai
- Department of Neurosciences, Psychology, Drug Research and Child Health (NeuroFarBa), University of Florence, Florence, Italy.,Department of Neurosciences, Psychology, Drug Research and Child Health (NeuroFarBa), University of Florence, Florence, Italy
| |
Collapse
|
25
|
Sun Y, Timofeyev V, Dennis A, Bektik E, Wan X, Laurita KR, Deschênes I, Li RA, Fu JD. A Singular Role of I K1 Promoting the Development of Cardiac Automaticity during Cardiomyocyte Differentiation by I K1 -Induced Activation of Pacemaker Current. Stem Cell Rev Rep 2018. [PMID: 28623610 DOI: 10.1007/s12015-017-9745-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The inward rectifier potassium current (IK1) is generally thought to suppress cardiac automaticity by hyperpolarizing membrane potential (MP). We recently observed that IK1 could promote the spontaneously-firing automaticity induced by upregulation of pacemaker funny current (If) in adult ventricular cardiomyocytes (CMs). However, the intriguing ability of IK1 to activate If and thereby promote automaticity has not been explored. In this study, we combined mathematical and experimental assays and found that only IK1 and If, at a proper-ratio of densities, were sufficient to generate rhythmic MP-oscillations even in unexcitable cells (i.e. HEK293T cells and undifferentiated mouse embryonic stem cells [ESCs]). We termed this effect IK1-induced If activation. Consistent with previous findings, our electrophysiological recordings observed that around 50% of mouse (m) and human (h) ESC-differentiated CMs could spontaneously fire action potentials (APs). We found that spontaneously-firing ESC-CMs displayed more hyperpolarized maximum diastolic potential and more outward IK1 current than quiescent-yet-excitable m/hESC-CMs. Rather than classical depolarization pacing, quiescent mESC-CMs were able to fire APs spontaneously with an electrode-injected small outward-current that hyperpolarizes MP. The automaticity to spontaneously fire APs was also promoted in quiescent hESC-CMs by an IK1-specific agonist zacopride. In addition, we found that the number of spontaneously-firing m/hESC-CMs was significantly decreased when If was acutely upregulated by Ad-CGI-HCN infection. Our study reveals a novel role of IK1 promoting the development of cardiac automaticity in m/hESC-CMs through a mechanism of IK1-induced If activation and demonstrates a synergistic interaction between IK1 and If that regulates cardiac automaticity.
Collapse
Affiliation(s)
- Yu Sun
- Department of Medicine, Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University, 2500 Metrohealth Drive, Rammelkamp 650, Cleveland, OH, 44109, USA
| | - Valeriy Timofeyev
- Department of Internal Medicine, University of California, Davis, CA, USA
| | - Adrienne Dennis
- Department of Medicine, Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University, 2500 Metrohealth Drive, Rammelkamp 650, Cleveland, OH, 44109, USA
| | - Emre Bektik
- Department of Medicine, Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University, 2500 Metrohealth Drive, Rammelkamp 650, Cleveland, OH, 44109, USA.,Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Xiaoping Wan
- Department of Medicine, Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University, 2500 Metrohealth Drive, Rammelkamp 650, Cleveland, OH, 44109, USA
| | - Kenneth R Laurita
- Department of Medicine, Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University, 2500 Metrohealth Drive, Rammelkamp 650, Cleveland, OH, 44109, USA
| | - Isabelle Deschênes
- Department of Medicine, Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University, 2500 Metrohealth Drive, Rammelkamp 650, Cleveland, OH, 44109, USA
| | - Ronald A Li
- Dr. Li Dak-Sum Center for Regenerative Medicine, University of Hong Kong, The Hong Kong Jockey Club Building for Interdisciplinary Research, LB 5-06, 5 Sassoon Road, Pokfulam, Hong Kong. .,Ming-Wai Lau Center for Regenerative Medicine, Karolinska Institutet, Solna, Sweden.
| | - Ji-Dong Fu
- Department of Medicine, Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University, 2500 Metrohealth Drive, Rammelkamp 650, Cleveland, OH, 44109, USA.
| |
Collapse
|
26
|
Saito Y, Nakamura K, Yoshida M, Sugiyama H, Takano M, Nagase S, Morita H, Kusano KF, Ito H. HCN4-Overexpressing Mouse Embryonic Stem Cell-Derived Cardiomyocytes Generate a New Rapid Rhythm in Rats with Bradycardia. Int Heart J 2018; 59:601-606. [PMID: 29628472 DOI: 10.1536/ihj.17-241] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A biological pacemaker is expected to solve the persisting problems of an artificial cardiac pacemaker including short battery life, lead breaks, infection, and electromagnetic interference. We previously reported HCN4 overexpression enhances pacemaking ability of mouse embryonic stem cell-derived cardiomyocytes (mESC-CMs) in vitro. However, the effect of these cells on bradycardia in vivo has remained unclear. Therefore, we transplanted HCN4-overexpressing mESC-CMs into bradycardia model animals and investigated whether they could function as a biological pacemaker. The rabbit Hcn4 gene was transfected into mouse embryonic stem cells and induced HCN4-overexpressing mESC-CMs. Non-cardiomyocytes were removed under serum/glucose-free and lactate-supplemented conditions. Cardiac balls containing 5 × 103 mESC-CMs were made by using the hanging drop method. One hundred cardiac balls were injected into the left ventricular free wall of complete atrioventricular block (CAVB) model rats. Heart beats were evaluated using an implantable telemetry system 7 to 30 days after cell transplantation. The result showed that ectopic ventricular beats that were faster than the intrinsic escape rhythm were often observed in CAVB model rats transplanted with HCN4-overexpressing mESC-CMs. On the other hand, the rats transplanted with non-overexpressing mESC-CMs showed sporadic single premature ventricular contraction but not sustained ectopic ventricular rhythms. These results indicated that HCN4-overexpressing mESC-CMs produce rapid ectopic ventricular rhythms as a biological pacemaker.
Collapse
Affiliation(s)
- Yukihiro Saito
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
| | - Kazufumi Nakamura
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
| | - Masashi Yoshida
- Department of Chronic Kidney Disease and Cardiovascular Disease, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
| | - Hiroki Sugiyama
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
| | - Makoto Takano
- Department of Physiology, Kurume University School of Medicine
| | - Satoshi Nagase
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Hiroshi Morita
- Department of Cardiovascular Therapeutics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
| | - Kengo F Kusano
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences.,Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Hiroshi Ito
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
| |
Collapse
|
27
|
Hu W, Xin Y, Zhao Y, Hu J. Shox2: The Role in Differentiation and Development of Cardiac Conduction System. TOHOKU J EXP MED 2018; 244:177-186. [PMID: 29503396 DOI: 10.1620/tjem.244.177] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The formation and conduction of electrocardiosignals and the synchronous contraction of atria and ventricles with rhythmicity are both triggered and regulated by the cardiac conduction system (CCS). Defect of this system will lead to various types of cardiac arrhythmias. In recent years, the research progress of molecular genetics and developmental biology revealed a clearer understanding of differentiation and development of the cardiac conduction system and their regulatory mechanisms. Short stature homeobox 2 (Shox2) transcription factor, encoded by Shox2 gene in the mouse, is crucial in the formation and differentiation of the sinoatrial node (SAN). Shox2 drives embryonic development processes and is widely expressed in the appendicular skeleton, palate, temporomandibular joints, and heart. Mutations of Shox2 can lead to dysembryoplasia and abnormal phenotypes, including bradycardiac arrhythmia. In this review, we provide a summary of the latest research progress on the regulatory effects of the Shox2 gene in differentiation and development processes of the cardiac conduction system, hoping to deepen the knowledge and understanding of this systematic process based on the cardiac conduction system. Overall, the Shox2 gene is intimately involved in the differentiation and development of cardiac conduction system, especially sinoatrial node. We also summarize the current information about human SHOX2. This review article provides a new direction in biological pacemaker therapies.
Collapse
Affiliation(s)
- Wenyu Hu
- Department of Cardiology, The First Affiliated Hospital of China Medical University
| | - Yanguo Xin
- Department of Cardiology, West China Hospital of Sichuan University
| | - Yinan Zhao
- Department of Neurology, The First Affiliated Hospital of China Medical University
| | - Jian Hu
- Department of Cardiology, The First Affiliated Hospital of China Medical University
| |
Collapse
|
28
|
Schweizer PA, Darche FF, Ullrich ND, Geschwill P, Greber B, Rivinius R, Seyler C, Müller-Decker K, Draguhn A, Utikal J, Koenen M, Katus HA, Thomas D. Subtype-specific differentiation of cardiac pacemaker cell clusters from human induced pluripotent stem cells. Stem Cell Res Ther 2017; 8:229. [PMID: 29037217 PMCID: PMC5644063 DOI: 10.1186/s13287-017-0681-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 09/07/2017] [Accepted: 09/25/2017] [Indexed: 12/11/2022] Open
Abstract
Background Human induced pluripotent stem cells (hiPSC) harbor the potential to differentiate into diverse cardiac cell types. Previous experimental efforts were primarily directed at the generation of hiPSC-derived cells with ventricular cardiomyocyte characteristics. Aiming at a straightforward approach for pacemaker cell modeling and replacement, we sought to selectively differentiate cells with nodal-type properties. Methods hiPSC were differentiated into spontaneously beating clusters by co-culturing with visceral endoderm-like cells in a serum-free medium. Subsequent culturing in a specified fetal bovine serum (FBS)-enriched cell medium produced a pacemaker-type phenotype that was studied in detail using quantitative real-time polymerase chain reaction (qRT-PCR), immunocytochemistry, and patch-clamp electrophysiology. Further investigations comprised pharmacological stimulations and co-culturing with neonatal cardiomyocytes. Results hiPSC co-cultured in a serum-free medium with the visceral endoderm-like cell line END-2 produced spontaneously beating clusters after 10–12 days of culture. The pacemaker-specific genes HCN4, TBX3, and TBX18 were abundantly expressed at this early developmental stage, while levels of sarcomeric gene products remained low. We observed that working-type cardiomyogenic differentiation can be suppressed by transfer of early clusters into a FBS-enriched cell medium immediately after beating onset. After 6 weeks under these conditions, sinoatrial node (SAN) hallmark genes remained at high levels, while working-type myocardial transcripts (NKX2.5, TBX5) were low. Clusters were characterized by regular activity and robust beating rates (70–90 beats/min) and were triggered by spontaneous Ca2+ transients recapitulating calcium clock properties of genuine pacemaker cells. They were responsive to adrenergic/cholinergic stimulation and able to pace neonatal rat ventricular myocytes in co-culture experiments. Action potential (AP) measurements of cells individualized from clusters exhibited nodal-type (63.4%) and atrial-type (36.6%) AP morphologies, while ventricular AP configurations were not observed. Conclusion We provide a novel culture media-based, transgene-free approach for targeted generation of hiPSC-derived pacemaker-type cells that grow in clusters and offer the potential for disease modeling, drug testing, and individualized cell-based replacement therapy of the SAN. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0681-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Patrick A Schweizer
- Department of Cardiology, Medical University Hospital Heidelberg, INF 410, D-69120, Heidelberg, Germany. .,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, INF 410, D-69120, Heidelberg, Germany.
| | - Fabrice F Darche
- Department of Cardiology, Medical University Hospital Heidelberg, INF 410, D-69120, Heidelberg, Germany
| | - Nina D Ullrich
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, INF 410, D-69120, Heidelberg, Germany.,Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, Heidelberg University, INF 326, D-69120, Heidelberg, Germany
| | - Pascal Geschwill
- Institute of Physiology and Pathophysiology, Division of Neuro- and Sensory Physiology, Heidelberg University, INF 326, D-69120, Heidelberg, Germany
| | - Boris Greber
- Department of Cell and Developmental Biology, Max-Planck-Institute for Molecular Biomedicine, Röntgenstrasse, 20, D-48149, Münster, Germany
| | - Rasmus Rivinius
- Department of Cardiology, Medical University Hospital Heidelberg, INF 410, D-69120, Heidelberg, Germany
| | - Claudia Seyler
- Department of Cardiology, Medical University Hospital Heidelberg, INF 410, D-69120, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, INF 410, D-69120, Heidelberg, Germany
| | - Karin Müller-Decker
- Unit Tumor Models, German Cancer Research Center (DKFZ), Heidelberg, INF 280, D-69120, Heidelberg, Germany
| | - Andreas Draguhn
- Institute of Physiology and Pathophysiology, Division of Neuro- and Sensory Physiology, Heidelberg University, INF 326, D-69120, Heidelberg, Germany
| | - Jochen Utikal
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, INF 410, D-69120, Heidelberg, Germany.,Dermato-Oncology (G300), German Cancer Research Center (DKFZ), Heidelberg, INF 280, D-69120, Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Theodor-Kutzer-Ufer 1-3, D-68167, Mannheim, Germany
| | - Michael Koenen
- Department of Cardiology, Medical University Hospital Heidelberg, INF 410, D-69120, Heidelberg, Germany.,Department of Molecular Neurobiology, Max-Planck-Institute for Medical Research, Jahnstrasse 29, D-69120, Heidelberg, Germany
| | - Hugo A Katus
- Department of Cardiology, Medical University Hospital Heidelberg, INF 410, D-69120, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, INF 410, D-69120, Heidelberg, Germany
| | - Dierk Thomas
- Department of Cardiology, Medical University Hospital Heidelberg, INF 410, D-69120, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, INF 410, D-69120, Heidelberg, Germany
| |
Collapse
|
29
|
Peischard S, Piccini I, Strutz-Seebohm N, Greber B, Seebohm G. From iPSC towards cardiac tissue-a road under construction. Pflugers Arch 2017; 469:1233-1243. [PMID: 28573409 PMCID: PMC5590027 DOI: 10.1007/s00424-017-2003-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/17/2017] [Accepted: 05/17/2017] [Indexed: 01/16/2023]
Abstract
The possibility to generate induced pluripotent stem cells (iPSC) opens the way to generate virtually all cell types of our human body. In combination with modern gene editing techniques like CRISPR/CAS, a new set of powerful tools becomes available for life science. Scientific fields like genotype and cell type-specific pharmacology, disease modeling, stem cell biology, and developmental biology have been dramatically fostered and their faces have been changed. However, as golden as the age of iPSC-derived cells and their manipulation has started, the shine begins to tarnish. Researchers face more and more practical problems intrinsic to the system. These problems are related to the specific culturing conditions which are not yet sufficient to mimic the natural environment of native stem cells differentiating towards adult cells. However, researchers work hard to uncover these factors. Here, we review a common standard approach to generate iPSCs and transduce these to iPSC cardiomyocytes. Further, we review recent achievements and discuss their current limitations and future perspectives. We are on track, but the road is still under construction.
Collapse
Affiliation(s)
- Stefan Peischard
- Myocellular Electrophysiology and Molecular Biology, IfGH, Department of Cardiovascular Medicine, University Hospital Muenster, 48149, Münster, Germany
| | - Ilaria Piccini
- Myocellular Electrophysiology and Molecular Biology, IfGH, Department of Cardiovascular Medicine, University Hospital Muenster, 48149, Münster, Germany
- Human Stem Cell Pluripotency Group, Max Planck Institute for Molecular Biomedicine, 48149, Münster, Germany
- Chemical Genomics Centre of the Max Planck Society, 44227, Münster, Germany
- Innovative Medizinische Forschung (IMF), Münster, Germany
| | - Nathalie Strutz-Seebohm
- Myocellular Electrophysiology and Molecular Biology, IfGH, Department of Cardiovascular Medicine, University Hospital Muenster, 48149, Münster, Germany
| | - Boris Greber
- Human Stem Cell Pluripotency Group, Max Planck Institute for Molecular Biomedicine, 48149, Münster, Germany
- Chemical Genomics Centre of the Max Planck Society, 44227, Münster, Germany
| | - Guiscard Seebohm
- Myocellular Electrophysiology and Molecular Biology, IfGH, Department of Cardiovascular Medicine, University Hospital Muenster, 48149, Münster, Germany.
- Innovative Medizinische Forschung (IMF), Münster, Germany.
- Institut für Genetik von Herzerkrankungen (IfGH), Department für Kardiologie und Angiologie, Universitätsklinikum Münster, 48149, Münster, Germany.
| |
Collapse
|
30
|
Tse G, Liu T, Li KHC, Laxton V, Wong AOT, Chan YWF, Keung W, Chan CW, Li RA. Tachycardia-bradycardia syndrome: Electrophysiological mechanisms and future therapeutic approaches (Review). Int J Mol Med 2017; 39:519-526. [PMID: 28204831 PMCID: PMC5360359 DOI: 10.3892/ijmm.2017.2877] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/09/2017] [Indexed: 02/07/2023] Open
Abstract
Sick sinus syndrome (SSS) encompasses a group of disorders whereby the heart is unable to perform its pacemaker function, due to genetic and acquired causes. Tachycardia‑bradycardia syndrome (TBS) is a complication of SSS characterized by alternating tachycardia and bradycardia. Techniques such as genetic screening and molecular diagnostics together with the use of pre-clinical models have elucidated the electrophysiological mechanisms of this condition. Dysfunction of ion channels responsible for initiation or conduction of cardiac action potentials may underlie both bradycardia and tachycardia; bradycardia can also increase the risk of tachycardia, and vice versa. The mainstay treatment option for SSS is pacemaker implantation, an effective approach, but has disadvantages such as infection, limited battery life, dislodgement of leads and catheters to be permanently implanted in situ. Alternatives to electronic pacemakers are gene‑based bio‑artificial sinoatrial node and cell‑based bio‑artificial pacemakers, which are promising techniques whose long-term safety and efficacy need to be established. The aim of this article is to review the different ion channels involved in TBS, examine the three‑way relationship between ion channel dysfunction, tachycardia and bradycardia in TBS and to consider its current and future therapies.
Collapse
Affiliation(s)
- Gary Tse
- Department of Medicine and Therapeutics, Chinese University of Hong Kong
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, SAR
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | | | - Victoria Laxton
- Intensive Care Department, Royal Brompton and Harefield NHS Foundation Trust, London SW3 6NP, UK
| | - Andy On-Tik Wong
- Stem Cell and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, The University of Hong Kong
- Li Dak-Sum Research Centre-HKU-Karolinska Institutet Collaboration on Regenerative Medicine, University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Yin Wah Fiona Chan
- School of Biological Sciences, University of Cambridge, Cambridge CB2 1AG, UK
| | - Wendy Keung
- Stem Cell and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, The University of Hong Kong
- Li Dak-Sum Research Centre-HKU-Karolinska Institutet Collaboration on Regenerative Medicine, University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Camie W.Y. Chan
- Stem Cell and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, The University of Hong Kong
| | - Ronald A. Li
- Li Dak-Sum Research Centre-HKU-Karolinska Institutet Collaboration on Regenerative Medicine, University of Hong Kong, Hong Kong, SAR, P.R. China
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong, SAR, P.R. China
| |
Collapse
|
31
|
Calderon D, Bardot E, Dubois N. Probing early heart development to instruct stem cell differentiation strategies. Dev Dyn 2016; 245:1130-1144. [PMID: 27580352 DOI: 10.1002/dvdy.24441] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 08/20/2016] [Accepted: 08/20/2016] [Indexed: 12/19/2022] Open
Abstract
Scientists have studied organs and their development for centuries and, along that path, described models and mechanisms explaining the developmental principles of organogenesis. In particular, with respect to the heart, new fundamental discoveries are reported continuously that keep changing the way we think about early cardiac development. These discoveries are driven by the need to answer long-standing questions regarding the origin of the earliest cells specified to the cardiac lineage, the differentiation potential of distinct cardiac progenitor cells, and, very importantly, the molecular mechanisms underlying these specification events. As evidenced by numerous examples, the wealth of developmental knowledge collected over the years has had an invaluable impact on establishing efficient strategies to generate cardiovascular cell types ex vivo, from either pluripotent stem cells or via direct reprogramming approaches. The ability to generate functional cardiovascular cells in an efficient and reliable manner will contribute to therapeutic strategies aimed at alleviating the increasing burden of cardiovascular disease and morbidity. Here we will discuss the recent discoveries in the field of cardiac progenitor biology and their translation to the pluripotent stem cell model to illustrate how developmental concepts have instructed regenerative model systems in the past and promise to do so in the future. Developmental Dynamics 245:1130-1144, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Damelys Calderon
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, NY, USA.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, NY, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Evan Bardot
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, NY, USA.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, NY, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Nicole Dubois
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, NY, USA.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, NY, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, NY, USA
| |
Collapse
|
32
|
Relevance of HCN2-expressing human mesenchymal stem cells for the generation of biological pacemakers. Stem Cell Res Ther 2016; 7:67. [PMID: 27137910 PMCID: PMC4853868 DOI: 10.1186/s13287-016-0326-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 03/29/2016] [Accepted: 04/13/2016] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The transfection of human mesenchymal stem cells (hMSCs) with the hyperpolarization-activated cyclic nucleotide-gated ion channel 2 (HCN2) gene has been demonstrated to provide biological pacing in dogs with complete heart block. The mechanism appears to be the generation of the ion current (If) by the HCN2-expressing hMSCs. However, it is not clear how the transfection process and/or the HCN2 gene affect the growth functions of the hMSCs. Therefore, we investigated survival, proliferation, cell cycle, and growth on a Kapton® scaffold of HCN2-expressing hMSCs. METHODS hMSCs were isolated from the bone marrow of healthy volunteers applying a selective cell adhesion procedure and were identified by their expression of specific surface markers. Cells from passages 2-3 were transfected by electroporation using commercial transfection kits and a pIRES2-EGFP vector carrying the pacemaker gene, mouse HCN2 (mHCN2). Transfection efficiency was confirmed by enhanced green fluorescent protein (EGFP) fluorescence, quantitative real-time polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA). After hMSCs were transfected, their viability, proliferation, If generation, apoptosis, cell cycle, and expression of transcription factors were measured and compared with non-transfected cells and cells transfected with pIRES2-EGFP vector alone. RESULTS Intracellular mHCN2 expression after transfection increased from 22.14 to 62.66 ng/mg protein (p < 0.05). Transfection efficiency was 45 ± 5 %. The viability of mHCN2-transfected cells was 82 ± 5 %; they grew stably for more than 3 weeks and induced If current. mHCN2-transfected cells had low mitotic activity (10.4 ± 1.24 % in G2/M and 83.6 ± 2.5 % in G1 phases) as compared with non-transfected cells (52-53 % in G2/M and 31-35 % in G1 phases). Transfected cells showed increased activation of nine cell cycle-regulating transcription factors: the most prominent upregulation was of AMP-dependent transcription factor ATF3 (7.11-fold, p = 0.00056) which regulates the G1 phase. mHCN2-expressing hMSCs were attached and made anchorage-dependent connection with other cells without transmigration through a 12.7-μm thick Kapton® HN film with micromachined 1-3 μm diameter pores. CONCLUSIONS mHCN2-expressing hMSCs preserved the major cell functions required for the generation of biological pacemakers: high viability, functional activity, but low proliferation rate through the arrest of cell cycle in the G1 phase. mHCN2-expressing hMSCs attached and grew on a Kapton® scaffold without transmigration, confirming the relevance of these cells for the generation of biological pacemakers.
Collapse
|