1
|
Giménez Y, Palacios M, Sánchez-Domínguez R, Zorbas C, Peral J, Puzik A, Ugalde L, Alberquilla O, Villanueva M, Río P, Gálvez E, Da Costa L, Strullu M, Catala A, Ruiz-Llobet A, Segovia JC, Sevilla J, Strahm B, Niemeyer CM, Beléndez C, Leblanc T, Lafontaine DL, Bueren J, Navarro S. Lentivirus-mediated gene therapy corrects ribosomal biogenesis and shows promise for Diamond Blackfan anemia. JCI Insight 2024; 9:e171650. [PMID: 38775150 PMCID: PMC11141922 DOI: 10.1172/jci.insight.171650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 04/10/2024] [Indexed: 06/02/2024] Open
Abstract
This study lays the groundwork for future lentivirus-mediated gene therapy in patients with Diamond Blackfan anemia (DBA) caused by mutations in ribosomal protein S19 (RPS19), showing evidence of a new safe and effective therapy. The data show that, unlike patients with Fanconi anemia (FA), the hematopoietic stem cell (HSC) reservoir of patients with DBA was not significantly reduced, suggesting that collection of these cells should not constitute a remarkable restriction for DBA gene therapy. Subsequently, 2 clinically applicable lentiviral vectors were developed. In the former lentiviral vector, PGK.CoRPS19 LV, a codon-optimized version of RPS19 was driven by the phosphoglycerate kinase promoter (PGK) already used in different gene therapy trials, including FA gene therapy. In the latter one, EF1α.CoRPS19 LV, RPS19 expression was driven by the elongation factor alpha short promoter, EF1α(s). Preclinical experiments showed that transduction of DBA patient CD34+ cells with the PGK.CoRPS19 LV restored erythroid differentiation, and demonstrated the long-term repopulating properties of corrected DBA CD34+ cells, providing evidence of improved erythroid maturation. Concomitantly, long-term restoration of ribosomal biogenesis was verified using a potentially novel method applicable to patients' blood cells, based on ribosomal RNA methylation analyses. Finally, in vivo safety studies and proviral insertion site analyses showed that lentivirus-mediated gene therapy was nontoxic.
Collapse
Affiliation(s)
- Yari Giménez
- Division of Hematopoietic Innovative Therapies, CIEMAT, Madrid, Spain
- Instituto Nacional de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Advanced Therapies Unit, IIS-Fundación Jimenez Diaz (IIS-FJD, UAM), Madrid, Spain
| | - Manuel Palacios
- Division of Hematopoietic Innovative Therapies, CIEMAT, Madrid, Spain
- Instituto Nacional de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Advanced Therapies Unit, IIS-Fundación Jimenez Diaz (IIS-FJD, UAM), Madrid, Spain
| | - Rebeca Sánchez-Domínguez
- Division of Hematopoietic Innovative Therapies, CIEMAT, Madrid, Spain
- Instituto Nacional de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Advanced Therapies Unit, IIS-Fundación Jimenez Diaz (IIS-FJD, UAM), Madrid, Spain
| | - Christiane Zorbas
- RNA Molecular Biology, Fonds de la Recherche Scientifique (FRS/FNRS), Université libre de Bruxelles (ULB), Biopark campus, Gosselies, Belgium
| | - Jorge Peral
- Division of Hematopoietic Innovative Therapies, CIEMAT, Madrid, Spain
- Instituto Nacional de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Advanced Therapies Unit, IIS-Fundación Jimenez Diaz (IIS-FJD, UAM), Madrid, Spain
| | - Alexander Puzik
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Laura Ugalde
- Division of Hematopoietic Innovative Therapies, CIEMAT, Madrid, Spain
- Instituto Nacional de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Advanced Therapies Unit, IIS-Fundación Jimenez Diaz (IIS-FJD, UAM), Madrid, Spain
| | - Omaira Alberquilla
- Division of Hematopoietic Innovative Therapies, CIEMAT, Madrid, Spain
- Instituto Nacional de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Advanced Therapies Unit, IIS-Fundación Jimenez Diaz (IIS-FJD, UAM), Madrid, Spain
| | - Mariela Villanueva
- Division of Hematopoietic Innovative Therapies, CIEMAT, Madrid, Spain
- Instituto Nacional de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Advanced Therapies Unit, IIS-Fundación Jimenez Diaz (IIS-FJD, UAM), Madrid, Spain
| | - Paula Río
- Division of Hematopoietic Innovative Therapies, CIEMAT, Madrid, Spain
- Instituto Nacional de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Advanced Therapies Unit, IIS-Fundación Jimenez Diaz (IIS-FJD, UAM), Madrid, Spain
| | | | - Lydie Da Costa
- AP-HP, Hematology diagnostic laboratory, Hôpital Robert-Debré, Paris, France
- University of Paris; Hematim, UR4666, UPJV; LABEX GR-EX, Paris, France
| | - Marion Strullu
- AP-HP, service Immuno-Hématologie pédiatique, Hôpital R. Debré, Paris, France
| | | | | | - Jose Carlos Segovia
- Division of Hematopoietic Innovative Therapies, CIEMAT, Madrid, Spain
- Instituto Nacional de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Advanced Therapies Unit, IIS-Fundación Jimenez Diaz (IIS-FJD, UAM), Madrid, Spain
| | | | - Brigitte Strahm
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Charlotte M. Niemeyer
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Cristina Beléndez
- Instituto Nacional de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Sección de Hematología y Oncología Pediátricas, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Thierry Leblanc
- AP-HP, service Immuno-Hématologie pédiatique, Hôpital R. Debré, Paris, France
| | - Denis L.J. Lafontaine
- RNA Molecular Biology, Fonds de la Recherche Scientifique (FRS/FNRS), Université libre de Bruxelles (ULB), Biopark campus, Gosselies, Belgium
| | - Juan Bueren
- Division of Hematopoietic Innovative Therapies, CIEMAT, Madrid, Spain
- Instituto Nacional de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Advanced Therapies Unit, IIS-Fundación Jimenez Diaz (IIS-FJD, UAM), Madrid, Spain
| | - Susana Navarro
- Division of Hematopoietic Innovative Therapies, CIEMAT, Madrid, Spain
- Instituto Nacional de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Advanced Therapies Unit, IIS-Fundación Jimenez Diaz (IIS-FJD, UAM), Madrid, Spain
| |
Collapse
|
2
|
Kim HK, Cho S, Choi YS, Lee BS, Kim S, Kim HO, Park JH. Human Endometrium Derived Induced Pluripotent Stem Cells Are Amenable to Directed Erythroid Differentiation. Tissue Eng Regen Med 2023; 20:939-950. [PMID: 37452918 PMCID: PMC10519893 DOI: 10.1007/s13770-023-00554-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/19/2023] [Accepted: 05/14/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND A protocol for using human endometrium derived induced pluripotent stem cells (iPSCs) to derive hematopoietic and erythroid lineages will be elaborated, through a two-phase culture system. METHODS Discarded endometrial tissues were obtained from women receiving hysterectomy in their 4th to 5th decade due to benign uterine conditions. pCE-Sox2, Oct4, Klf4, L-Myc and Lin28 episomal vectors were used to electrotransfect the endometrial stromal cells. The first 8 days involves commitment to hematopoietic stem cells through embryoid body with robust expansion on murine bone marrow stromal cells. The second phase involves feeder free conditions with hydrocortisone, stem cell factor, interleukin-3, and recombinant EPO. After 22 days of feeder free culture, the expression profiles of CD235a+, CD34+, CD43+ and CD 71+ were analyzed by flow cytometry and Wright-Giemsa staining for differential counting. The oxygen carrying capacity of cultured RBCs was measured using a hemoxanalyser. RESULTS As a result of inducing these cells via co-culture with murine stromal fibroblasts, all endometrium derived iPSCs were differentiated into erythroblasts with a stable yield of approximately 80% for polychromatic and orthochromatic normoblasts. The protocol for complete induction of erythroid lineage cells starting from human endometrial tissue via iPS cells has been optimized. CONCLUSION Successful directed erythroid differentiation has occurred from human endometrium-derived iPS cells. A comprehensive process of actually deriving iPS cells using discarded surgical hysterectomy specimens to the erythroid fate has significance in that the scope of using human iPSC cell lines for tissue regeneration could be expanded in the future.
Collapse
Affiliation(s)
- Hyun Kyung Kim
- Department of Obstetrics and Gynecology, Yongin Severance Hospital, Yonsei University College of Medicine, 363, Dongbaekjukjeon-Daero, Giheung, Yongin, 16995, Gyeonggi-Do, Republic of Korea
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - SiHyun Cho
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Young Sik Choi
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Byung Seok Lee
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Sinyoung Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Hyun Ok Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Joo Hyun Park
- Department of Obstetrics and Gynecology, Yongin Severance Hospital, Yonsei University College of Medicine, 363, Dongbaekjukjeon-Daero, Giheung, Yongin, 16995, Gyeonggi-Do, Republic of Korea.
- Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| |
Collapse
|
3
|
Lee YJ, Chae S, Choi D. Monitoring of single extracellular vesicle heterogeneity in cancer progression and therapy. Front Oncol 2023; 13:1256585. [PMID: 37823055 PMCID: PMC10562638 DOI: 10.3389/fonc.2023.1256585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/04/2023] [Indexed: 10/13/2023] Open
Abstract
Cancer cells actively release lipid bilayer extracellular vesicles (EVs) that affect their microenvironment, favoring their progression and response to extracellular stress. These EVs contain dynamically regulating molecular cargos (proteins and nucleic acids) selected from their parental cells, representing the active biological functionality for cancer progression. These EVs are heterogeneous according to their size and molecular composition and are usually defined based on their biogenetic mechanisms, such as exosomes and ectosomes. Recent single EV detection technologies, such as nano-flow cytometry, have revealed the dynamically regulated molecular diversity within bulk EVs, indicating complex EV heterogeneity beyond classical biogenetic-based EV subtypes. EVs can be changed by internal oncogenic transformation or external stress such as chemotherapy. Among the altered combinations of EV subtypes, only a specific set of EVs represents functional molecular cargo, enabling cancer progression and immune modulation in the tumor microenvironment through their altered targeting efficiency and specificity. This review covers the heterogeneity of EVs discovered by emerging single EV analysis technologies, which reveal the complex distribution of EVs affected by oncogenic transformation and chemotherapy. Encouragingly, these unique molecular signatures in individual EVs indicate the status of their parental cancer cells. Thus, precise molecular profiling of circulating single EVs would open new areas for in-depth monitoring of the cancer microenvironment and shed new light on non-invasive diagnostic approaches using liquid biopsy.
Collapse
Affiliation(s)
| | | | - Dongsic Choi
- Department of Biochemistry, College of Medicine, Soonchunhyang University, Cheonan, Chungcheongnam, Republic of Korea
| |
Collapse
|
4
|
Lewis JE, Hergott CB. The Immunophenotypic Profile of Healthy Human Bone Marrow. Clin Lab Med 2023; 43:323-332. [PMID: 37481314 DOI: 10.1016/j.cll.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Flow cytometry enables multiparametric characterization of hematopoietic cell immunophenotype. Deviations from normal immunophenotypic patterns comprise a cardinal feature of many hematopoietic neoplasms, underscoring the ongoing essentiality of flow cytometry as a diagnostic tool. However, understanding of aberrant hematopoiesis requires an equal understanding of normal hematopoiesis as a comparator. In this review, we outline key features of healthy adult hematopoiesis and lineage specification as illuminated by flow cytometry and provide diagrams illustrating what a diagnostician may observe in flow cytometric plots. These features provide a profile of baseline hematopoiesis, to which clinical samples with suspected neoplasia may be compared.
Collapse
Affiliation(s)
- Joshua E Lewis
- Department of Pathology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA; Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA
| | - Christopher B Hergott
- Department of Pathology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA; Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA.
| |
Collapse
|
5
|
Jerome MS, Nanjappa DP, Chakraborty A, Chakrabarty S. Molecular etiology of defective nuclear and mitochondrial ribosome biogenesis: Clinical phenotypes and therapy. Biochimie 2023; 207:122-136. [PMID: 36336106 DOI: 10.1016/j.biochi.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
Ribosomopathies are rare congenital disorders associated with defective ribosome biogenesis due to pathogenic variations in genes that encode proteins related to ribosome function and biogenesis. Defects in ribosome biogenesis result in a nucleolar stress response involving the TP53 tumor suppressor protein and impaired protein synthesis leading to a deregulated translational output. Despite the accepted notion that ribosomes are omnipresent and essential for all cells, most ribosomopathies show tissue-specific phenotypes affecting blood cells, hair, spleen, or skin. On the other hand, defects in mitochondrial ribosome biogenesis are associated with a range of clinical manifestations affecting more than one organ. Intriguingly, the deregulated ribosomal function is also a feature in several human malignancies with a selective upregulation or downregulation of specific ribosome components. Here, we highlight the clinical conditions associated with defective ribosome biogenesis in the nucleus and mitochondria with a description of the affected genes and the implicated pathways, along with a note on the treatment strategies currently available for these disorders.
Collapse
Affiliation(s)
- Maria Sona Jerome
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Dechamma Pandyanda Nanjappa
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research (NUCSER), NITTE (Deemed to Be University), Deralakate, Mangaluru, 575018, India
| | - Anirban Chakraborty
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research (NUCSER), NITTE (Deemed to Be University), Deralakate, Mangaluru, 575018, India.
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
6
|
Zhang H, Wan GZ, Wang YY, Chen W, Guan JZ. The role of erythrocytes and erythroid progenitor cells in tumors. Open Life Sci 2022; 17:1641-1656. [PMID: 36567722 PMCID: PMC9755711 DOI: 10.1515/biol-2022-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/09/2022] [Accepted: 05/30/2022] [Indexed: 12/23/2022] Open
Abstract
In the current research context of precision treatment of malignant tumors, the advantages of immunotherapy are unmatched by conventional antitumor therapy, which can prolong progression-free survival and overall survival. The search for new targets and novel combination therapies can improve the efficacy of immunotherapy and reduce adverse effects. Since current research targets for immunotherapy mainly focus on lymphocytes, little research has been done on erythrocytes. Nucleated erythroid precursor stem cells have been discovered to play an essential role in tumor progression. Researchers are exploring new targets and therapeutic approaches for immunotherapy from the perspective of erythroid progenitor cells (EPCs). Recent studies have shown that different subtypes of EPCs have specific surface markers and distinct biological roles in tumor immunity. CD45+ EPCs are potent myeloid-derived suppressor cell-like immunosuppressants that reduce the patient's antitumor immune response. CD45- EPCs promote tumor invasion and metastasis by secreting artemin. A specific type of EPC also promotes angiogenesis and provides radiation protection. Therefore, EPCs may be involved in tumor growth, infiltration, and metastasis. It may also be an important cause of anti-angiogenesis and immunotherapy resistance. This review summarizes recent research advances in erythropoiesis, EPC features, and their impacts and processes on tumors.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Oncology, The Fifth Medical Center, Chinese PLA (People’s Liberation Army) General Hospital, Beijing 100091, China,Department of Oncology, The Eighth Medical Center, Chinese PLA (People’s Liberation Army) General Hospital, Beijing 100071, China,Postgraduate Department of Hebei North University, Zhangjiakou 075000, China
| | - Guang-zhi Wan
- Department of Oncology, The Eighth Medical Center, Chinese PLA (People’s Liberation Army) General Hospital, Beijing 100071, China
| | - Yu-ying Wang
- Department of Oncology, First Medical Center, Chinese PLA (People’s Liberation Army) General Hospital, Beijing, China
| | - Wen Chen
- Department of Pathology, The Eighth Medical Center, Chinese PLA (People’s Liberation Army) General Hospital, Beijing 100091, China
| | - Jing-Zhi Guan
- Department of Oncology, The Eighth Medical Center, Chinese PLA (People’s Liberation Army) General Hospital, Beijing 100071, China
| |
Collapse
|
7
|
Peng J, Federman HG, Hernandez C, Siracusa MC. Communication is key: Innate immune cells regulate host protection to helminths. Front Immunol 2022; 13:995432. [PMID: 36225918 PMCID: PMC9548658 DOI: 10.3389/fimmu.2022.995432] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022] Open
Abstract
Parasitic helminth infections remain a significant global health issue and are responsible for devastating morbidity and economic hardships. During infection, helminths migrate through different host organs, which results in substantial tissue damage and the release of diverse effector molecules by both hematopoietic and non-hematopoietic cells. Thus, host protective responses to helminths must initiate mechanisms that help to promote worm clearance while simultaneously mitigating tissue injury. The specialized immunity that promotes these responses is termed type 2 inflammation and is initiated by the recruitment and activation of hematopoietic stem/progenitor cells, mast cells, basophils, eosinophils, dendritic cells, neutrophils, macrophages, myeloid-derived suppressor cells, and group 2 innate lymphoid cells. Recent work has also revealed the importance of neuron-derived signals in regulating type 2 inflammation and antihelminth immunity. These studies suggest that multiple body systems coordinate to promote optimal outcomes post-infection. In this review, we will describe the innate immune events that direct the scope and intensity of antihelminth immunity. Further, we will highlight the recent progress made in our understanding of the neuro-immune interactions that regulate these pathways and discuss the conceptual advances they promote.
Collapse
Affiliation(s)
- Jianya Peng
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
- Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
| | - Hannah G. Federman
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
- Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
| | - Christina M. Hernandez
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
- Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
| | - Mark C. Siracusa
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
- Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
- *Correspondence: Mark C. Siracusa,
| |
Collapse
|
8
|
Sun G, Gu Q, Zheng J, Cheng H, Cheng T. Emerging roles of extracellular vesicles in normal and malignant hematopoiesis. J Clin Invest 2022; 132:160840. [PMID: 36106632 PMCID: PMC9479752 DOI: 10.1172/jci160840] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hematopoietic stem cells, regulated by their microenvironment (or “niche”), sustain the production of mature blood and immune cells. Leukemia cells remodel the microenvironment to enhance their survival, which is accompanied by the loss of support for normal hematopoiesis in hematologic malignancies. Extracellular vesicles (EVs) mediate intercellular communication in physiological and pathological conditions, and deciphering their functions in cell-cell interactions in the ecosystem can highlight potential therapeutic targets. In this Review, we illustrate the utility of EVs derived from various cell types, focusing on the biological molecules they contain and the behavioral alterations they can induce in recipient cells. We also discuss the potential for clinical application in hematologic malignancies, including EV-based therapeutic regimens, drug delivery via EVs, and the use of EVs (or their cargoes) as biomarkers.
Collapse
Affiliation(s)
- Guohuan Sun
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Quan Gu
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Junke Zheng
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
- Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China
| |
Collapse
|
9
|
Wan G, Medina S, Zhang H, Pan R, Zhou X, Bolt AM, Luo L, Burchiel SW, Liu KJ. Arsenite exposure inhibits the erythroid differentiation of human hematopoietic progenitor CD34 + cells and causes decreased levels of hemoglobin. Sci Rep 2021; 11:22121. [PMID: 34764389 PMCID: PMC8586241 DOI: 10.1038/s41598-021-01643-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/01/2021] [Indexed: 02/02/2023] Open
Abstract
Arsenic exposure poses numerous threats to human health. Our previous work in mice has shown that arsenic causes anemia by inhibiting erythropoiesis. However, the impacts of arsenic exposure on human erythropoiesis remain largely unclear. We report here that low-dose arsenic exposure inhibits the erythroid differentiation of human hematopoietic progenitor cells (HPCs). The impacts of arsenic (in the form of arsenite; As3+) on red blood cell (RBC) development was evaluated using a long-term culture of normal human bone marrow CD34+-HPCs stimulated in vitro to undergo erythropoiesis. Over the time course studied, we analyzed the expression of the cell surface antigens CD34, CD71 and CD235a, which are markers commonly used to monitor the progression of HPCs through the stages of erythropoiesis. Simultaneously, we measured hemoglobin content, which is an important criterion used clinically for diagnosing anemia. As compared to control, low-dose As3+ exposure (100 nM and 500 nM) inhibited the expansion of CD34+-HPCs over the time course investigated; decreased the number of committed erythroid progenitors (BFU-E and CFU-E) and erythroblast differentiation in the subsequent stages; and caused a reduction of hemoglobin content. These findings demonstrate that low-dose arsenic exposure impairs human erythropoiesis, likely by combined effects on various stages of RBC formation.
Collapse
Affiliation(s)
- Guanghua Wan
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM, 87131, USA
| | - Sebastian Medina
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM, 87131, USA
- Department of Biology, New Mexico Highlands University, Las Vegas, NM, 87701, USA
| | - Haikun Zhang
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM, 87131, USA
| | - Rong Pan
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM, 87131, USA
| | - Xixi Zhou
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM, 87131, USA
| | - Alicia M Bolt
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM, 87131, USA
| | - Li Luo
- Division of Epidemiology, Biostatistics and Preventive Medicine at the University of New Mexico, Albuquerque, NM, 87131, USA
| | - Scott W Burchiel
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM, 87131, USA
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM, 87131, USA.
| |
Collapse
|
10
|
Kuiper M, van de Nes A, Nieuwland R, Varga Z, van der Pol E. Reliable measurements of extracellular vesicles by clinical flow cytometry. Am J Reprod Immunol 2020; 85:e13350. [PMID: 32966654 PMCID: PMC7900981 DOI: 10.1111/aji.13350] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/13/2020] [Accepted: 09/10/2020] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) are cell‐derived particles with a phospholipid membrane present in all body fluids. Because EV properties change in health and disease, EVs have excellent potential to become biomarkers for diagnosis, prognosis, or monitoring of disease. The only technique capable of detecting, sizing, and phenotyping a million of EVs within minutes is (clinical) flow cytometry. A flow cytometer measures light scattering and fluorescence signals of single EVs. Although these signals contain valuable information about the presence and composition of EVs, the signals are expressed in arbitrary units, which make the comparison of measurement results impossible between instruments and laboratories. Additionally, unintended and undocumented variations in the source, preparation, and analysis of the sample lead to orders of magnitude variations in the measured EV concentrations. Here, we will explain the basics, challenges, and common misconceptions of EV flow cytometry. In addition, we provide an overview of recent standardization initiatives, which are a prerequisite for comparison of clinical data and thus for clinical biomarker exploration of EVs.
Collapse
Affiliation(s)
- Martine Kuiper
- Biomedical Engineering and Physics, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands.,Laboratory Experimental Clinical Chemistry, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands.,Vesicle Observation Center, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands.,Dutch Metrology Institute, VSL, Delft, The Netherlands
| | | | - Rienk Nieuwland
- Laboratory Experimental Clinical Chemistry, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands.,Vesicle Observation Center, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Zoltan Varga
- Biological Nanochemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Edwin van der Pol
- Biomedical Engineering and Physics, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands.,Laboratory Experimental Clinical Chemistry, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands.,Vesicle Observation Center, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Brändle K, Bergmann TC, Raic A, Li Y, Million N, Rehbock C, Barcikowski S, Lee-Thedieck C. Iron Nanoparticle Composite Hydrogels for Studying Effects of Iron Ion Release on Red Blood Cell In Vitro Production. ACS APPLIED BIO MATERIALS 2020; 3:4766-4778. [PMID: 35021724 DOI: 10.1021/acsabm.0c00297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Growing numbers of complex surgical interventions increase the need for blood transfusions, which cannot be fulfilled by the number of donors. Therefore, the interest in producing erythrocytes from their precursors-the hematopoietic stem and progenitor cells (HSPCs)-in laboratories is rising. To enable this, in vitro systems are needed, which allow analysis of the effects of essential factors such as iron on erythroid development. For this purpose, iron ion-releasing systems based on poly(ethylene glycol) (PEG)-iron nanocomposites are developed to assess if gradual iron release improves iron bioavailability during in vitro erythroid differentiation. The nanocomposites are synthesized using surfactant-free pulsed laser ablation of iron directly in the PEG solution. The iron concentrations released from the material are sufficient to influence in vitro erythropoiesis. In this way, the production of erythroid cells cultured on flat PEG-iron nanocomposite hydrogel pads can be enhanced. In contrast, erythroid differentiation is not enhanced in the biomimetic macroporous 3D composite scaffolds, possibly because of local iron overload within the pores of the system. In conclusion, the developed iron nanoparticle-PEG composite hydrogel allows constant iron ion release and thus paves the way (i) to understand the role of iron during erythropoiesis and (ii) toward the development of biomaterials with a controlled iron release for directing erythropoiesis in culture.
Collapse
Affiliation(s)
- Katharina Brändle
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen 76344, Germany.,Institute of Cell Biology and Biophysics, Leibniz University Hannover, Hannover 30419, Germany
| | - Timna C Bergmann
- Institute of Cell Biology and Biophysics, Leibniz University Hannover, Hannover 30419, Germany
| | - Annamarija Raic
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen 76344, Germany.,Institute of Cell Biology and Biophysics, Leibniz University Hannover, Hannover 30419, Germany
| | - Yaya Li
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstr. 5-7, Essen 45141, Germany
| | - Nina Million
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstr. 5-7, Essen 45141, Germany
| | - Christoph Rehbock
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstr. 5-7, Essen 45141, Germany
| | - Stephan Barcikowski
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstr. 5-7, Essen 45141, Germany
| | - Cornelia Lee-Thedieck
- Institute of Cell Biology and Biophysics, Leibniz University Hannover, Hannover 30419, Germany
| |
Collapse
|
12
|
Lee SY, Gill A, Jung SM. Pure red cell aplasia and seronegative myasthenia gravis in association with thymoma. J Community Hosp Intern Med Perspect 2020; 10:238-241. [PMID: 32864051 PMCID: PMC7431916 DOI: 10.1080/20009666.2020.1770019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Pure red cell aplasia is an uncommon paraneoplastic syndrome of thymoma. Myasthenia gravis is the most common paraneoplastic syndrome associated with thymoma. We present a case of a 79-year-old Pacific Islander female who presented with profound fatigue, generalized weakness, significant unintentional weight loss, bilateral ptosis, and anemia. The bone marrow biopsy showed near absence of erythroid elements consistent with pure red cell aplasia. Ice-pack test was consistent with myasthenia gravis and computed tomography of the chest demonstrated a thymoma. The patient was started on immunosuppressive treatment with prednisone and cyclosporine. This case demonstrates a rare combination of paraneoplastic manifestations of thymoma: pure red cell aplasia and myasthenia gravis.
Collapse
Affiliation(s)
- Sun Yong Lee
- Internal Medicine, San Joaquin General Hospital (SJGH), French Camp, CA, USA
| | - Amandeep Gill
- Internal Medicine, San Joaquin General Hospital (SJGH), French Camp, CA, USA
| | - Syung Min Jung
- Internal Medicine, San Joaquin General Hospital (SJGH), French Camp, CA, USA
| |
Collapse
|
13
|
MAHDAVI MR, POURFARZAD F, KOSARYAN M, AKBARI MT. In Vitro Hb Production in B-thalassemia Patients Is Not a Predictor of Clinical Responsiveness to Hydroxyurea. IRANIAN JOURNAL OF PUBLIC HEALTH 2017; 46:948-956. [PMID: 28845406 PMCID: PMC5563877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The hematologic response to hydroxyurea (HU) is varied among β-thalassemia (BT) patients. The BCL11A and SOX6 genes are involved in response to HU. This study aimed to investigate the in-vitro responsiveness of HU among BT major patients homozygote for IVSII-1G>A mutation and XmnI single nucleotide polymorphism (SNP) in order to find whether the in-vitro Hb concentration is a predictor of clinical (HU) responsiveness. METHODS In this case-control study, twenty BT patients homozygote for IVSII-1G>A mutation and XmnI SNP from Thalassemia Research Center, Sari, Iran in 2015 were selected and categorized into two groups of 10 Responder (R) and 10 Non-Responder (NR) according to their clinical HU response. Ten healthy individuals as a control group were also selected. Hematopoietic erythroid progenitors were expanded from peripheral blood. Hb concentration was measured using photometry method. The flow cytometry and real-time PCR methods were applied for the analysis of cell surface markers (CD71 and CD235a) and gene expression (BCL11A and SOX6), respectively. RESULTS R and NR groups produced higher amount of Basic Hb than C group in cell culture medium at day 14 (P<0.05). After HU treatment, in R group, Hb levels was significantly elevated in comparison to NR and C group (P<0.05). BCL11A expression was decreased after exposure to HU in all groups while SOX6 expression was only down-regulated in C group, and its expression was increased in R and NR groups after HU treatment. CONCLUSION Since different factors including wide networks of intracellular factors and individual differences between patients can affect response to HU in patients, the increasing Hemoglobin on culture medium alone cannot predict clinical responsiveness to that drug.
Collapse
|
14
|
Therapeutic Potential of Hematopoietic Stem Cell-Derived Exosomes in Cardiovascular Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 998:221-235. [DOI: 10.1007/978-981-10-4397-0_15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|