1
|
Silva WN, Costa AC, Picoli CC, Rocha BGS, Santos GSP, Costa PAC, Azimnasab-sorkhabi P, Soltani-asl M, da Silva RA, Amorim JH, Resende RR, Mintz A, Birbrair A. Hematopoietic stem cell stretches and moves in its bone marrow niche. Crit Rev Oncol Hematol 2021; 163:103368. [PMID: 34051302 PMCID: PMC8277710 DOI: 10.1016/j.critrevonc.2021.103368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 12/20/2022] Open
Abstract
Hematopoietic stem cells are the most illustrious inhabitants of the bone marrow. Direct visualization of endogenous hematopoietic stem cells in this niche is essential to study their functions. Until recently this was not possible in live animals. Recent studies, using state-of-the-art technologies, including sophisticated in vivo inducible genetic approaches in combination with two-photon laser scanning microscopy, allow the follow-up of endogenous hematopoietic stem cells' behavior in their habitat. Strikingly, the new findings reveal that quiescent hematopoietic stem cells are more mobile than previously thought, and link their retained steady state within the niche to a mobile behavior. The arising knowledge from this research will be critical for the therapy of several hematological diseases. Here, we review recent progress in our understanding of hematopoietic stem cell biology in their niches.
Collapse
Affiliation(s)
- Walison N. Silva
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alinne C. Costa
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Caroline C. Picoli
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Beatriz G. S. Rocha
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Pedro A. C. Costa
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Maryam Soltani-asl
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | - Rodrigo R. Resende
- Center of Biological Sciences and Health, Federal University of West Bahia, Barreiras, BA, Brazil
| | - Akiva Mintz
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
2
|
Vieco‐Galvez D, Castro I, Morel PCH, Chua WH, Loh M. The eggshell structure in apteryx; form, function, and adaptation. Ecol Evol 2021; 11:3184-3202. [PMID: 33841776 PMCID: PMC8019059 DOI: 10.1002/ece3.7266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/09/2021] [Accepted: 01/15/2021] [Indexed: 11/22/2022] Open
Abstract
Apteryx is a genus of flightless birds endemic to New Zealand known to lay very large eggs in proportion to body weight. The eggshell of Apteryx is unusually thin and less porous than allometrically expected possibly as a compensation for a very long incubation period. Past studies have been carried out on Apteryx australis, a species which once comprised all kiwi with brown plumage, now separated into three distinct species. These species use different habitats and live at different latitudes and altitudes, therefore generating a need to revise our knowledge of the attributes of their eggshells. In this study, we measured the physical characteristics and water conductance on eggshell fragments of these three species and Great-spotted Kiwi and relate them to the environmental conditions of their respective environments; we also measured the water vapor conductance of Brown Kiwi eggs of late stages of incubation. We found that several trade-offs exist between incubation behavior, environmental conditions, and eggshell structure. We found differences between species in eggshell water vapor conductance seemingly related to altitude; Brown Kiwi and Rowi generally inhabiting lower altitudes had the highest conductance and Tokoeka, generally living in montane environments, the lowest. This is achieved by an increased eggshell thickness rather than a pore area reduction. Finally, the water vapor conductance late in incubation was 58% higher than infertile unincubated eggs, suggesting a drastic increase in conductance throughout the long incubation period. Using the values previously reported, we calculated the embryonic eggshell thinning to be 32.5% at the equatorial region of the eggshell. We describe several new features, such as triangular mineral particles in the cuticle, reported for the extinct Trigonoolithus amoei, and confirmed the existence of plugged pores. We suggest that these structures provide microbial protection needed by a burrow nesting species with a long incubation period.
Collapse
Affiliation(s)
- David Vieco‐Galvez
- School of Agriculture and EnvironmentMassey UniversityPalmerston NorthNew Zealand
| | - Isabel Castro
- School of Agriculture and EnvironmentMassey UniversityPalmerston NorthNew Zealand
| | - Patrick C. H. Morel
- School of Agriculture and EnvironmentMassey UniversityPalmerston NorthNew Zealand
| | - Wei Hang Chua
- School of Health SciencesMassey UniversityPalmerston NorthNew Zealand
| | | |
Collapse
|
3
|
Jokela H, Lokka E, Kiviranta M, Tyystjärvi S, Gerke H, Elima K, Salmi M, Rantakari P. Fetal-derived macrophages persist and sequentially maturate in ovaries after birth in mice. Eur J Immunol 2020; 50:1500-1514. [PMID: 32459864 DOI: 10.1002/eji.202048531] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/19/2020] [Accepted: 05/25/2020] [Indexed: 12/18/2022]
Abstract
Macrophages, which are highly diverse in different tissues, play a complex and vital role in tissue development, homeostasis, and inflammation. The origin and heterogeneity of tissue-resident monocytes and macrophages in ovaries remains unknown. Here we identify three tissue-resident monocyte populations and five macrophage populations in the adult ovaries using high-dimensional single cell mass cytometry. Ontogenic analyses using cell fate mapping models and cell depletion experiments revealed the infiltration of ovaries by both yolk sac and fetal liver-derived macrophages already during the embryonic development. Moreover, we found that both embryonic and bone marrow-derived macrophages contribute to the distinct ovarian macrophage subpopulations in the adults. These assays also showed that fetal-derived MHC II-negative macrophages differentiate postnatally in the maturing ovary to MHC II-positive cells. Our analyses further unraveled that the developmentally distinct macrophage types share overlapping distribution and scavenging function in the ovaries under homeostatic conditions. In conclusion, we report here the first comprehensive analyses of ovarian monocytes and macrophages. In addition, we show that the mechanisms controlling monocyte immigration, the phenotype of different pools of interstitial macrophages, and the interconversion capacity of fetal-derived macrophages in ovaries are remarkably different from those seen in other tissue niches.
Collapse
Affiliation(s)
- Heli Jokela
- Institute of Biomedicine, University of Turku, Turku, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Emmi Lokka
- Institute of Biomedicine, University of Turku, Turku, Finland.,MediCity Research Laboratory, University of Turku, Turku, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | | | | | - Heidi Gerke
- Institute of Biomedicine, University of Turku, Turku, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Kati Elima
- Institute of Biomedicine, University of Turku, Turku, Finland.,MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Marko Salmi
- Institute of Biomedicine, University of Turku, Turku, Finland.,MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Pia Rantakari
- Institute of Biomedicine, University of Turku, Turku, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| |
Collapse
|
4
|
Paracrine CCL17 and CCL22 signaling regulates hematopoietic stem/progenitor cell migration and retention in mouse fetal liver. Biochem Biophys Res Commun 2020; 527:730-736. [PMID: 32439173 DOI: 10.1016/j.bbrc.2020.04.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/06/2020] [Accepted: 04/11/2020] [Indexed: 11/20/2022]
Abstract
Fetal liver (FL) is the major embryonic hematopoietic organ and a site where circulating hematopoietic stem/progenitor cells (HSPCs) reside. However, HSPC migration/retention mechanisms in FL remain unclear. A chemokine screen revealed that the CCR4 ligands CCL17 and CCL22 are highly expressed in mouse embryonic day (E) 12.5 FL. Flow cytometric analysis confirmed CCR4 expression in FL HSPCs. To identify sources of CCL17 and CCL22, we fractionated FL into various cell types and found that Ccl17 and Ccl22 were predominantly expressed in HPCs/matured HCs. In vitro cell migration analysis confirmed enhanced HSPC migration in the presence of HPCs/matured HCs. Furthermore, exo-utero injection of anti-CCR4 neutralizing antibody into pregnant mice significantly reduced the number of FL HSPCs in embryos. These data demonstrate a paracrine mechanism by which HSPC migration/retention is regulated by CCL17 and CCL22 secreted from HPCs or matured HCs in FL.
Collapse
|
5
|
Analysis of Hematopoietic Niche in the Mouse Embryo. Methods Mol Biol 2019. [PMID: 30671734 DOI: 10.1007/7651_2018_176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The development, differentiation, and maturation of hematopoietic cells are regulated by the intrinsic and extrinsic regulation. Intrinsic activity is affected by cell autonomous gene expression and extrinsic factors originate from the so-called niche surrounding the hematopoietic cells. It remains unclear why the hematopoietic sites are shifted during embryogenesis. Flow cytometry and immunohistochemistry enable us to study embryonic regulation of hematopoietic niche in the mouse embryo.
Collapse
|
6
|
Borges I, Sena I, Azevedo P, Andreotti J, Almeida V, Paiva A, Santos G, Guerra D, Prazeres P, Mesquita LL, Silva LSDB, Leonel C, Mintz A, Birbrair A. Lung as a Niche for Hematopoietic Progenitors. Stem Cell Rev Rep 2017; 13:567-574. [PMID: 28669077 PMCID: PMC6093188 DOI: 10.1007/s12015-017-9747-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Platelets are released from megakaryocytes. The bone marrow has been proposed to be the major site where this process occurs. Lefrançais et al. (2017) using state-of-the-art techniques including two-photon microscopy, in vivo lineage-tracing technologies, and sophisticated lung transplants reveal that the lung is also a primary site for platelet biogenesis. Strikingly, lung megakaryocytes can completely reconstitute platelet counts in the blood in mice with thrombocytopenia. This study also shows that hematopoietic progenitors, with capacity to repopulate the bone marrow after irradiation, are present in the lungs. This work brings a novel unexpected role for the lung as a niche for hematopoiesis. The emerging knowledge from this research may be important for the treatment of several disorders.
Collapse
Affiliation(s)
- Isabella Borges
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Isadora Sena
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Patrick Azevedo
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Julia Andreotti
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Viviani Almeida
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Paiva
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gabryella Santos
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Daniel Guerra
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Pedro Prazeres
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | - Caroline Leonel
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Akiva Mintz
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
- Albert Einstein College of Medicine, Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Bronx, NY, USA.
| |
Collapse
|
7
|
Yumine A, Fraser ST, Sugiyama D. Regulation of the embryonic erythropoietic niche: a future perspective. Blood Res 2017; 52:10-17. [PMID: 28401096 PMCID: PMC5383581 DOI: 10.5045/br.2017.52.1.10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 03/10/2017] [Accepted: 03/13/2017] [Indexed: 12/12/2022] Open
Abstract
The production of red blood cells, termed erythropoiesis, occurs in two waves in the developing mouse embryo: first primitive erythropoiesis followed by definitive erythropoiesis. In the mouse embryo, both primitive and definitive erythropoiesis originates in the extra-embryonic yolk sac. The definitive wave then migrates to the fetal liver, fetal spleen and fetal bone marrow as these organs form. The fetal liver serves as the major organ for hematopoietic cell expansion and erythroid maturation after mid-gestation. The erythropoietic niche, which expresses critical cytokines such as stem cell factor (SCF), thrombopoietin (TPO) and the insulin-like growth factors IGF1 and IGF2, supports hematopoietic expansion in the fetal liver. Previously, our group demonstrated that DLK1+ hepatoblasts support fetal liver hematopoiesis through erythropoietin and SCF release as well as extracellular matrix deposition. Loss of DLK1+ hepatoblasts in Map2k4−/− mouse embryos resulted in decreased numbers of hematopoietic cells in fetal liver. Genes encoding proteinases and peptidases were found to be highly expressed in DLK1+ hepatoblasts. Capitalizing on this knowledge, and working on the assumption that these proteinases and peptidases are generating small, potentially biologically active peptides, we assessed a range of peptides for their ability to support erythropoiesis in vitro. We identified KS-13 (PCT/JP2010/067011) as an erythropoietic peptide-a peptide which enhances the production of red blood cells from progenitor cells. Here, we discuss the elements regulating embryonic erythropoiesis with special attention to niche cells, and demonstrate how this knowledge can be applied in the identification of niche-derived peptides with potential therapeutic capability.
Collapse
Affiliation(s)
- Ayako Yumine
- Department of Research and Development of Next Generation Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Stuart T Fraser
- Department of Research and Development of Next Generation Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.; Disciplines of Physiology, Anatomy and Histology, School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Daisuke Sugiyama
- Department of Research and Development of Next Generation Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|