1
|
Calmodulin and Its Interactive Proteins Participate in Regulating the Explosive Growth of Alexandrium pacificum (Dinoflagellate). Int J Mol Sci 2021; 23:ijms23010145. [PMID: 35008568 PMCID: PMC8745774 DOI: 10.3390/ijms23010145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022] Open
Abstract
Alexandrium pacificum is a typical dinoflagellate that can cause harmful algal blooms, resulting in negative impacts on ecology and human health. The calcium (Ca2+) signal transduction pathway plays an important role in cell proliferation. Calmodulin (CaM) and CaM-related proteins are the main cellular Ca2+ sensors, and can act as an intermediate in the Ca2+ signal transduction pathway. In this study, the proteins that interacted with CaM of A. pacificum were screened by two-dimensional electrophoresis analysis and far western blots under different growth conditions including lag phase and high phosphorus and manganese induced log phase (HPM). The interactive proteins were then identified using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Four proteins were identified, including Ca2+/CaM-dependent protein kinase, serine/threonine kinase, annexin, and inositol-3-phosphate synthase, which all showed high expression levels under HPM. The gene expression levels encoding these four proteins were also up-regulated under HPM, as revealed by quantitative polymerase chain reaction, suggesting that the identified proteins participate in the Ca2+ transport channel and cell cycle regulation to promote cell division. A network of proteins interacting with CaM and their target proteins involved in the regulation of cell proliferation was raised, which provided new insights into the mechanisms behind the explosive growth of A. pacificum.
Collapse
|
2
|
Lu Y, Gu X, Lin H, Melis A. Engineering microalgae: transition from empirical design to programmable cells. Crit Rev Biotechnol 2021; 41:1233-1256. [PMID: 34130561 DOI: 10.1080/07388551.2021.1917507] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Domesticated microalgae hold great promise for the sustainable provision of various bioresources for human domestic and industrial consumption. Efforts to exploit their potential are far from being fully realized due to limitations in the know-how of microalgal engineering. The associated technologies are not as well developed as those for heterotrophic microbes, cyanobacteria, and plants. However, recent studies on microalgal metabolic engineering, genome editing, and synthetic biology have immensely helped to enhance transformation efficiencies and are bringing new insights into this field. Therefore, this article, summarizes recent developments in microalgal biotechnology and examines the prospects for generating specialty and commodity products through the processes of metabolic engineering and synthetic biology. After a brief examination of empirical engineering methods and vector design, this article focuses on quantitative transformation cassette design, elaborates on target editing methods and emerging digital design of algal cellular metabolism to arrive at high yields of valuable products. These advances have enabled a transition of manners in microalgal engineering from single-gene and enzyme-based metabolic engineering to systems-level precision engineering, from cells created with genetically modified (GM) tags to that without GM tags, and ultimately from proof of concept to tangible industrial applications. Finally, future trends are proposed in microalgal engineering, aiming to establish individualized transformation systems in newly identified species for strain-specific specialty and commodity products, while developing sophisticated universal toolkits in model algal species.
Collapse
Affiliation(s)
- Yandu Lu
- State Key Laboratory of Marine Resource Utilization in the South China Sea, College of Oceanology, Hainan University, Haikou, China.,Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Xinping Gu
- State Key Laboratory of Marine Resource Utilization in the South China Sea, College of Oceanology, Hainan University, Haikou, China
| | - Hanzhi Lin
- Institute of Marine & Environmental Technology, Center for Environmental Science, University of Maryland, College Park, MD, USA
| | - Anastasios Melis
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| |
Collapse
|
3
|
Beedessee G, Kubota T, Arimoto A, Nishitsuji K, Waller RF, Hisata K, Yamasaki S, Satoh N, Kobayashi J, Shoguchi E. Integrated omics unveil the secondary metabolic landscape of a basal dinoflagellate. BMC Biol 2020; 18:139. [PMID: 33050904 PMCID: PMC7557087 DOI: 10.1186/s12915-020-00873-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/18/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Some dinoflagellates cause harmful algal blooms, releasing toxic secondary metabolites, to the detriment of marine ecosystems and human health. Our understanding of dinoflagellate toxin biosynthesis has been hampered by their unusually large genomes. To overcome this challenge, for the first time, we sequenced the genome, microRNAs, and mRNA isoforms of a basal dinoflagellate, Amphidinium gibbosum, and employed an integrated omics approach to understand its secondary metabolite biosynthesis. RESULTS We assembled the ~ 6.4-Gb A. gibbosum genome, and by probing decoded dinoflagellate genomes and transcriptomes, we identified the non-ribosomal peptide synthetase adenylation domain as essential for generation of specialized metabolites. Upon starving the cells of phosphate and nitrogen, we observed pronounced shifts in metabolite biosynthesis, suggestive of post-transcriptional regulation by microRNAs. Using Iso-Seq and RNA-seq data, we found that alternative splicing and polycistronic expression generate different transcripts for secondary metabolism. CONCLUSIONS Our genomic findings suggest intricate integration of various metabolic enzymes that function iteratively to synthesize metabolites, providing mechanistic insights into how dinoflagellates synthesize secondary metabolites, depending upon nutrient availability. This study provides insights into toxin production associated with dinoflagellate blooms. The genome of this basal dinoflagellate provides important clues about dinoflagellate evolution and overcomes the large genome size, which has been a challenge previously.
Collapse
Affiliation(s)
- Girish Beedessee
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan.
- Present address: Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK.
| | - Takaaki Kubota
- Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo, 194-8543, Japan
| | - Asuka Arimoto
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
- Marine Biological Laboratory, Graduate School of Integrated Sciences for Life, Hiroshima University, Onomichi, Hiroshima, 722-0073, Japan
| | - Koki Nishitsuji
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Ross F Waller
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Kanako Hisata
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Shinichi Yamasaki
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Jun'ichi Kobayashi
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Eiichi Shoguchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| |
Collapse
|
4
|
Akbar MA, Mohd Yusof NY, Tahir NI, Ahmad A, Usup G, Sahrani FK, Bunawan H. Biosynthesis of Saxitoxin in Marine Dinoflagellates: An Omics Perspective. Mar Drugs 2020; 18:md18020103. [PMID: 32033403 PMCID: PMC7073992 DOI: 10.3390/md18020103] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/09/2020] [Accepted: 01/09/2020] [Indexed: 02/07/2023] Open
Abstract
Saxitoxin is an alkaloid neurotoxin originally isolated from the clam Saxidomus giganteus in 1957. This group of neurotoxins is produced by several species of freshwater cyanobacteria and marine dinoflagellates. The saxitoxin biosynthesis pathway was described for the first time in the 1980s and, since then, it was studied in more than seven cyanobacterial genera, comprising 26 genes that form a cluster ranging from 25.7 kb to 35 kb in sequence length. Due to the complexity of the genomic landscape, saxitoxin biosynthesis in dinoflagellates remains unknown. In order to reveal and understand the dynamics of the activity in such impressive unicellular organisms with a complex genome, a strategy that can carefully engage them in a systems view is necessary. Advances in omics technology (the collective tools of biological sciences) facilitated high-throughput studies of the genome, transcriptome, proteome, and metabolome of dinoflagellates. The omics approach was utilized to address saxitoxin-producing dinoflagellates in response to environmental stresses to improve understanding of dinoflagellates gene–environment interactions. Therefore, in this review, the progress in understanding dinoflagellate saxitoxin biosynthesis using an omics approach is emphasized. Further potential applications of metabolomics and genomics to unravel novel insights into saxitoxin biosynthesis in dinoflagellates are also reviewed.
Collapse
Affiliation(s)
- Muhamad Afiq Akbar
- School of Bioscience and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia;
| | - Nurul Yuziana Mohd Yusof
- Department of Earth Science and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (N.Y.M.Y.); (F.K.S.)
| | - Noor Idayu Tahir
- Malaysian Palm Oil Board, No 6, Persiaran Institusi, Bandar Baru Bangi, Kajang 43000, Selangor, Malaysia;
| | - Asmat Ahmad
- University College Sabah Foundation, Jalan Sanzac, Kota Kinabalu 88100, Sabah, Malaysia; (A.A.); (G.U.)
| | - Gires Usup
- University College Sabah Foundation, Jalan Sanzac, Kota Kinabalu 88100, Sabah, Malaysia; (A.A.); (G.U.)
| | - Fathul Karim Sahrani
- Department of Earth Science and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (N.Y.M.Y.); (F.K.S.)
| | - Hamidun Bunawan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
- Correspondence: ; Tel.: +60-389-214-546
| |
Collapse
|
5
|
Verma A, Barua A, Ruvindy R, Savela H, Ajani PA, Murray SA. The Genetic Basis of Toxin Biosynthesis in Dinoflagellates. Microorganisms 2019; 7:E222. [PMID: 31362398 PMCID: PMC6722697 DOI: 10.3390/microorganisms7080222] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/23/2019] [Accepted: 07/27/2019] [Indexed: 02/07/2023] Open
Abstract
In marine ecosystems, dinoflagellates can become highly abundant and even dominant at times, despite their comparatively slow growth rates. One factor that may play a role in their ecological success is the production of complex secondary metabolite compounds that can have anti-predator, allelopathic, or other toxic effects on marine organisms, and also cause seafood poisoning in humans. Our knowledge about the genes involved in toxin biosynthesis in dinoflagellates is currently limited due to the complex genomic features of these organisms. Most recently, the sequencing of dinoflagellate transcriptomes has provided us with valuable insights into the biosynthesis of polyketide and alkaloid-based toxin molecules in dinoflagellate species. This review synthesizes the recent progress that has been made in understanding the evolution, biosynthetic pathways, and gene regulation in dinoflagellates with the aid of transcriptomic and other molecular genetic tools, and provides a pathway for future studies of dinoflagellates in this exciting omics era.
Collapse
Affiliation(s)
- Arjun Verma
- Climate Change Cluster, University of Technology Sydney, Sydney 2007, Australia.
| | - Abanti Barua
- Climate Change Cluster, University of Technology Sydney, Sydney 2007, Australia
- Department of Microbiology, Noakhali Science and Technology University, Chittagong 3814, Bangladesh
| | - Rendy Ruvindy
- Climate Change Cluster, University of Technology Sydney, Sydney 2007, Australia
| | - Henna Savela
- Finnish Environment Institute, Marine Research Centre, 00790 Helsinki, Finland
| | - Penelope A Ajani
- Climate Change Cluster, University of Technology Sydney, Sydney 2007, Australia
| | - Shauna A Murray
- Climate Change Cluster, University of Technology Sydney, Sydney 2007, Australia
| |
Collapse
|
6
|
Riaz S, Niaz Z, Khan S, Liu Y, Sui Z. Detection, characterization and expression dynamics of histone proteins in the dinoflagellate Alexandrium pacificum during growth regulation. HARMFUL ALGAE 2019; 87:101630. [PMID: 31349883 DOI: 10.1016/j.hal.2019.101630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/29/2019] [Accepted: 06/10/2019] [Indexed: 06/10/2023]
Abstract
Histones are the most abundant proteins associated with eukaryotic nuclear DNA. The exception is dinoflagellates, which have histone protein expression that is mostly reported to be below detectable levels. In this study, we investigated the presence of histone proteins and their functions in the dinoflagellate, Alexandrium pacificum. Histone protein sequences were analyzed, focusing on phylogenetic analysis and histone code. Histone expression was analyzed during the cell cycle and under nutritionally enhanced conditions using quantitative-PCR and western blots. Acid-soluble proteins were subjected to mass spectrometry analysis. To our knowledge, this is the first report of immunological detection of histone proteins (H2B and H4) in any dinoflagellate species. Absolute quantification of histone transcript in activily dividing cells revealed significant transcription in cells. The stable expression of histones during the cell cycle suggested that the histone genes in A. pacificum belonged to a replication-independent class and appeared to have a limited role in DNA packaging. The conservation of numerous post-translationally modified residues of multiple histone variants and differential expression of histones under nutritionally enhanced conditions suggested their functional significance in dinoflagellates. However, we detected histone H2B protein only via mass spectrometry. Histone-like protein was identified as most abundant acid-soluble protein of the cells.
Collapse
Affiliation(s)
- Sadaf Riaz
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China; Department of Microbiology, University of Central Punjab, Lahore, Pakistan
| | - Zeeshan Niaz
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China; Department of Microbiology, Hazara University, Mansehra, Pakistan
| | - Sohrab Khan
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China; Department of Microbiology, Hazara University, Mansehra, Pakistan
| | - Yuan Liu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China.
| | - Zhenghong Sui
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China.
| |
Collapse
|
7
|
Riaz S, Sui Z, Niaz Z, Khan S, Liu Y, Liu H. Distinctive Nuclear Features of Dinoflagellates with A Particular Focus on Histone and Histone-Replacement Proteins. Microorganisms 2018; 6:E128. [PMID: 30558155 PMCID: PMC6313786 DOI: 10.3390/microorganisms6040128] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/29/2018] [Accepted: 12/11/2018] [Indexed: 11/30/2022] Open
Abstract
Dinoflagellates are important eukaryotic microorganisms that play critical roles as producers and grazers, and cause harmful algal blooms. The unusual nuclei of dinoflagellates "dinokaryon" have led researchers to investigate their enigmatic nuclear features. Their nuclei are unusual in terms of their permanently condensed nucleosome-less chromatin, immense genome, low protein to DNA ratio, guanine-cytosine rich methylated DNA, and unique mitosis process. Furthermore, dinoflagellates are the only known group of eukaryotes that apparently lack histone proteins. Over the course of evolution, dinoflagellates have recruited other proteins, e.g., histone-like proteins (HLPs), from bacteria and dinoflagellates/viral nucleoproteins (DVNPs) from viruses as histone substitutes. Expression diversity of these nucleoproteins has greatly influenced the chromatin structure and gene expression regulation in dinoflagellates. Histone replacement proteins (HLPs and DVNPs) are hypothesized to perform a few similar roles as histone proteins do in other eukaryotes, i.e., gene expression regulation and repairing DNA. However, their role in bulk packaging of DNA is not significant as low amounts of proteins are associated with the gigantic genome. This review intends to summarize the discoveries encompassing unique nuclear features of dinoflagellates, particularly focusing on histone and histone replacement proteins. In addition, a comprehensive view of the evolution of dinoflagellate nuclei is presented.
Collapse
Affiliation(s)
- Sadaf Riaz
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China.
- Department of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan.
| | - Zhenghong Sui
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China.
| | - Zeeshan Niaz
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China.
- Department of Microbiology, Hazara University, Mansehra 21120, Pakistan.
| | - Sohrab Khan
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China.
- Department of Microbiology, Hazara University, Mansehra 21120, Pakistan.
| | - Yuan Liu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China.
| | - Haoxin Liu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China.
| |
Collapse
|
8
|
Current Knowledge and Recent Advances in Marine Dinoflagellate Transcriptomic Research. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2018. [DOI: 10.3390/jmse6010013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
RNA-Seq as an Emerging Tool for Marine Dinoflagellate Transcriptome Analysis: Process and Challenges. Processes (Basel) 2018. [DOI: 10.3390/pr6010005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
10
|
Wang J, Jian H, Wang T, Wei L, Li J, Li C, Liu L. Identification of microRNAs Actively Involved in Fatty Acid Biosynthesis in Developing Brassica napus Seeds Using High-Throughput Sequencing. FRONTIERS IN PLANT SCIENCE 2016; 7:1570. [PMID: 27822220 PMCID: PMC5075540 DOI: 10.3389/fpls.2016.01570] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 10/05/2016] [Indexed: 05/21/2023]
Abstract
Seed development has a critical role during the spermatophyte life cycle. In Brassica napus, a major oil crop, fatty acids are synthesized and stored in specific tissues during embryogenesis, and understanding the molecular mechanism underlying fatty acid biosynthesis during seed development is an important research goal. In this study, we constructed three small RNA libraries from early seeds at 14, 21, and 28 days after flowering (DAF) and used high-throughput sequencing to examine microRNA (miRNA) expression. A total of 85 known miRNAs from 30 families and 1160 novel miRNAs were identified, of which 24, including 5 known and 19 novel miRNAs, were found to be involved in fatty acid biosynthesis.bna-miR156b, bna-miR156c, bna-miR156g, novel_mir_1706, novel_mir_1407, novel_mir_173, and novel_mir_104 were significantly down-regulated at 21 DAF and 28 DAF, whereas bna-miR159, novel_mir_1081, novel_mir_19 and novel_mir_555 were significantly up-regulated. In addition, we found that some miRNAs regulate functional genes that are directly involved in fatty acid biosynthesis and that other miRNAs regulate the process of fatty acid biosynthesis by acting on a large number of transcription factors. The miRNAs and their corresponding predicted targets were partially validated by quantitative RT-PCR. Our data suggest that diverse and complex miRNAs are involved in the seed development process and that miRNAs play important roles in fatty acid biosynthesis during seed development.
Collapse
Affiliation(s)
- Jia Wang
- College of Agronomy and Biotechnology, Southwest UniversityChongqing, China
- Nanchong Academy of Agricultural SciencesNanchong, China
| | - Hongju Jian
- College of Agronomy and Biotechnology, Southwest UniversityChongqing, China
| | - Tengyue Wang
- College of Agronomy and Biotechnology, Southwest UniversityChongqing, China
| | - Lijuan Wei
- College of Agronomy and Biotechnology, Southwest UniversityChongqing, China
| | - Jiana Li
- College of Agronomy and Biotechnology, Southwest UniversityChongqing, China
| | - Chao Li
- College of Agronomy and Biotechnology, Southwest UniversityChongqing, China
- Guizhou Province Institute of Oil CropsGuiyang, China
- *Correspondence: Chao Li
| | - Liezhao Liu
- College of Agronomy and Biotechnology, Southwest UniversityChongqing, China
- Liezhao Liu
| |
Collapse
|