1
|
Qi W, Qingfeng L, Jing Z, Maolin Z, Zhihui Z, Wangqi D, Shanli Z, Jun C, Pengfei J, Lifang Z. A novel multi-epitope vaccine of HPV16 E5E6E7 oncoprotein delivered by HBc VLPs induced efficient prophylactic and therapeutic antitumor immunity in tumor mice model. Vaccine 2022; 40:7693-7702. [PMID: 36376215 DOI: 10.1016/j.vaccine.2022.10.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/08/2022] [Accepted: 10/24/2022] [Indexed: 11/13/2022]
Abstract
Human papilloma virus type 16 (HPV16) is the most prevalent etiologic agent associated with cervical cancer, and its early proteins E5, E6 and E7 play important roles in cervical epithelium transformation to cervical intraepithelial neoplasia and even cervical cancer. Hence, these oncoproteins are ideal target antigens for developing immunotherapeutic vaccines against HPV-associated infection and cervical cancer. Currently, multi-epitope vaccines have been a promising strategy for immunotherapy for viral infection or cancers. In this study, the E5aa28-46, E6aa37-57 and E7aa26-57 peptides were selected and linked to form a novel multi-epitopes vaccine (E765m), which was inserted into the major immune dominant region (MIR) of hepatitis B virus core antigen (HBc) to construct a HBc-E765m chimeric virus-like particles (cVLPs). The immunogenicity and immunotherapeutic effect of the cVLPs vaccine was evaluated in immunized mice and a tumor-bearing mouse model. The results showed that HBc-E765m cVLPs elicited high E5-, E6- and E7- specific CTL and serum IgG antibody responses, and also relatively high levels of the cytokines IFN-γ, IL-4 and IL-5. More importantly, the cVLPs vaccine significant suppressed tumor growth in mice bearing E5-TC-1 tumors. Our findings provide strong evidence that this novel HBc-E765m cVLPs vaccine could be a candidate vaccine for specific immunotherapy in HPV16-associated cervical intraepithelial neoplasia or cervical cancer.
Collapse
Affiliation(s)
- Wang Qi
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China; Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical, University, 325035 Zhejiang, Wenzhou, China
| | - Li Qingfeng
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China; Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical, University, 325035 Zhejiang, Wenzhou, China
| | - Zhang Jing
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China; Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical, University, 325035 Zhejiang, Wenzhou, China
| | - Zheng Maolin
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China; Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical, University, 325035 Zhejiang, Wenzhou, China
| | - Zhang Zhihui
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China; Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical, University, 325035 Zhejiang, Wenzhou, China
| | - Du Wangqi
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China; Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical, University, 325035 Zhejiang, Wenzhou, China
| | - Zhu Shanli
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China; Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical, University, 325035 Zhejiang, Wenzhou, China
| | - Chen Jun
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China; Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical, University, 325035 Zhejiang, Wenzhou, China
| | - Jiang Pengfei
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China; Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical, University, 325035 Zhejiang, Wenzhou, China
| | - Zhang Lifang
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China; Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical, University, 325035 Zhejiang, Wenzhou, China.
| |
Collapse
|
2
|
Jindra C, Hainisch EK, Rümmele A, Wolschek M, Muster T, Brandt S. Influenza virus vector iNS1 expressing bovine papillomavirus 1 (BPV1) antigens efficiently induces tumour regression in equine sarcoid patients. PLoS One 2021; 16:e0260155. [PMID: 34797850 PMCID: PMC8604313 DOI: 10.1371/journal.pone.0260155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/03/2021] [Indexed: 11/18/2022] Open
Abstract
Bovine papillomaviruses types 1 and 2 (BPV1, BPV2) commonly induce skin tumours termed sarcoids in horses and other equids. Sarcoids seriously compromise the health and welfare of affected individuals due to their propensity to resist treatment and reoccur in a more severe form. We have developed influenza (Flu) A and B virus vectors that harbour a truncated NS1 gene (iNS) assuring interferon induction and co-express shuffled BPV1 E6 and E7 antigens for sarcoid immunotherapy. In a safety trial involving 12 healthy horses, intradermal administration of iNSA/E6E7equ and iNSB/E6E7equ was well tolerated, with the only transient side effect being mild fever in four horses. Repeated screening of secretions and faeces by RT-PCR and plaque assay revealed no virus shedding, thus also confirming biological safety. In a patient trial involving 29 horses bearing BPV1-induced single or multiple sarcoids, at least one lesion per horse was intratumourally injected and then boosted with iNSA/E6E7equ and/or iNSB/E6E7equ. The treatment induced a systemic antitumour response as reflected by the synchronous regression of injected and non-injected lesions. Irrespective of vaccination schemes, complete tumour regression was achieved in 10/29 horses. In 10/29 horses, regression is still ongoing (May 2021). Intriguingly, scrapings collected from former tumour sites in two patients tested negative by BPV1 PCR. Nine severely affected individuals with a history of unsuccessful therapeutic attempts did not (6/29) or only transiently (3/29) respond to the treatment. INSA/E6E7equ and iNSB/E6E7equ proved safe and effective in significantly reducing the tumour burden even in severe cases.
Collapse
Affiliation(s)
- Christoph Jindra
- Department of Companion Animals and Horses, Division of Equine Surgery, Research Group Oncology, University of Veterinary Medicine, Vienna, Austria
| | - Edmund K. Hainisch
- Department of Companion Animals and Horses, Division of Equine Surgery, Research Group Oncology, University of Veterinary Medicine, Vienna, Austria
| | - Andrea Rümmele
- Department of Companion Animals and Horses, Division of Equine Surgery, Research Group Oncology, University of Veterinary Medicine, Vienna, Austria
| | | | | | - Sabine Brandt
- Department of Companion Animals and Horses, Division of Equine Surgery, Research Group Oncology, University of Veterinary Medicine, Vienna, Austria
- * E-mail:
| |
Collapse
|
3
|
Kayesh MEH, Hashem MA, Tsukiyama-Kohara K. Koala retrovirus epidemiology, transmission mode, pathogenesis, and host immune response in koalas (Phascolarctos cinereus): a review. Arch Virol 2020; 165:2409-2417. [PMID: 32770481 PMCID: PMC7413838 DOI: 10.1007/s00705-020-04770-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/07/2020] [Indexed: 12/21/2022]
Abstract
Koala retrovirus (KoRV) is a major threat to koala health and conservation. It also represents a series of challenges across the fields of virology, immunology, and epidemiology that are of great potential interest to any researcher in the field of retroviral diseases. KoRV is a gammaretrovirus that is present in both endogenous and exogenous forms in koala populations, with a still-active endogenization process. KoRV may induce immunosuppression and neoplastic conditions such as lymphoma and leukemia and play a role in chlamydiosis and other diseases in koalas. KoRV transmission modes, pathogenesis, and host immune response still remain unclear, and a clear understanding of these areas is critical for devising effective preventative and therapeutic strategies. Research on KoRV is clearly critical for koala conservation. In this review, we provide an overview of the current understanding and future challenges related to KoRV epidemiology, transmission mode, pathogenesis, and host immune response and discuss prospects for therapeutic and preventive vaccines.
Collapse
Affiliation(s)
- Mohammad Enamul Hoque Kayesh
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
- Department of Microbiology and Public Health, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, 8210, Bangladesh
| | - Md Abul Hashem
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
- Department of Health, Chattogram City Corporation, Chattogram, 4000, Bangladesh
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan.
| |
Collapse
|
4
|
Ding Z, Zhu H, Mo L, Li X, Xu R, Li T, Zhao L, Ren Y, Xu Y, Ou R. FLT3L and granulocyte macrophage colony-stimulating factor enhance the anti-tumor and immune effects of an HPV16 E6/E7 vaccine. Aging (Albany NY) 2019; 11:11893-11904. [PMID: 31881013 PMCID: PMC6949056 DOI: 10.18632/aging.102494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 11/17/2019] [Indexed: 04/12/2023]
Abstract
HPV16 infections promote the development and progression of cervical cancer. We investigated Fms-like Tyrosine Kinase 3 Ligand and granulocyte macrophage colony-stimulating factor as new adjuvants to an HPV16 vaccine. C57BL/6 mice were immunized by intramuscular injections of HPV16 E6/E7 plasmids every two weeks, three times in all. An in vivo imaging system was used to observe tumor growth and metastasis. Pathological changes to the heart, liver, spleen, lungs, brain and kidneys were recorded, and the survival rate of the mice was determined. The constructed HPV16 E6/E7 vaccine had no notable side effects in terms of physiological or biochemical indexes. Fms-like Tyrosine Kinase 3 Ligand and granulocyte macrophage colony-stimulating factor increased the inhibitory effects of the HPV16 E6/E7 vaccine on tumor growth and metastasis in vivo. The HPV16 E6/E7 vaccine enhanced the survival of mice and increased their serum-specific antibody and interferon-γ levels. Fms-like Tyrosine Kinase 3 Ligand and granulocyte macrophage colony-stimulating factor augmented these effects. In a cytotoxic lymphocyte killing test, Fms-like Tyrosine Kinase 3 Ligand and granulocyte macrophage colony-stimulating factor improved the ability of splenic lymphocytes from HPV16 E6/E7-vaccinated mice to kill B16 cells. As Fms-like Tyrosine Kinase 3 Ligand and granulocyte macrophage colony-stimulating factor enhanced the anti-tumor and immune effects of the HPV16 vaccine, these adjuvants should be considered for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Zhenzhen Ding
- Department of Dermatovenereology, Yuyao People’s Hospital of Zhejiang Province, Yuyao, Zhejiang 315400, China
- Department of Dermatovenereology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Hua Zhu
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Laiming Mo
- Department of Clinical Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Xiangyun Li
- Department of Dermatovenereology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Rui Xu
- Department of Dermatovenereology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Tian Li
- Department of Gynecology and Obstetrics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Liang Zhao
- Laboratory for Advanced Interdisciplinary Research, Institutes of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yi Ren
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32304, USA
| | - Yunsheng Xu
- Department of Dermatovenereology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Rongying Ou
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| |
Collapse
|
5
|
Gerlach T, Elbahesh H, Saletti G, Rimmelzwaan GF. Recombinant influenza A viruses as vaccine vectors. Expert Rev Vaccines 2019; 18:379-392. [PMID: 30777467 DOI: 10.1080/14760584.2019.1582338] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Various viruses, including poxviruses, adenoviruses and vesicular stomatitis virus, have been considered as vaccine vectors for the delivery of antigens of interest in the development of vaccines against newly emerging pathogens. AREAS COVERED Here, we review results that have been obtained with influenza A viruses (IAV) as vaccine vectors. With the advent of reverse genetics technology, IAV-based recombinant vaccine candidates have been constructed that induce protective immunity to a variety of different pathogens of interest, including West Nile virus, Plasmodium falciparum and respiratory syncytial virus. The various cloning strategies to produce effective and attenuated, safe to use IAV-based viral vectors are discussed. EXPERT COMMENTARY It was concluded that IAV-based vector system has several advantages and holds promise for further development.
Collapse
Affiliation(s)
- Thomas Gerlach
- a Research Center for Emerging Infections and Zoonoses (RIZ) , University of Veterinary Medicine Hannover (TiHo) , Hannover , Germany
| | - Husni Elbahesh
- a Research Center for Emerging Infections and Zoonoses (RIZ) , University of Veterinary Medicine Hannover (TiHo) , Hannover , Germany
| | - Giulietta Saletti
- a Research Center for Emerging Infections and Zoonoses (RIZ) , University of Veterinary Medicine Hannover (TiHo) , Hannover , Germany
| | - Guus F Rimmelzwaan
- a Research Center for Emerging Infections and Zoonoses (RIZ) , University of Veterinary Medicine Hannover (TiHo) , Hannover , Germany
| |
Collapse
|
6
|
Induction of neutralizing antibody response against koala retrovirus (KoRV) and reduction in viral load in koalas following vaccination with recombinant KoRV envelope protein. NPJ Vaccines 2018; 3:30. [PMID: 30083396 PMCID: PMC6072795 DOI: 10.1038/s41541-018-0066-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/25/2018] [Accepted: 05/23/2018] [Indexed: 11/19/2022] Open
Abstract
Koala retrovirus (KoRV) infects the majority of Australia’s koalas (Phascolarctos cinereus) and has been linked to several life-threatening diseases such as lymphoma and leukemia, as well as Chlamydia and thus poses a threat to the continued survival of this species. While quarantine and antiretroviral drug treatment are possible control measures, they are impractical, leaving vaccination as the only realistic option. In this study, we examined the effect of a recombinant envelope protein-based anti-KoRV vaccine in two groups of South Australian koalas: KoRV infected or KoRV free. We report a successful vaccination response in the koalas with no vaccine-associated side effects. The vaccine induced a significant humoral immune response as well as the production of neutralizing antibodies in both groups of koalas. We also identified B-cell epitopes that were differentially recognized in KoRV-infected versus KoRV-free koalas following vaccination. Importantly, we also showed that vaccination had a therapeutic effect on koalas infected exogenously with KoRV by reducing their circulating viral load. Together, this study highlights the possibility of successfully developing a vaccine against KoRV infection in koalas. A vaccine candidate for Koala retrovirus elicits a protective antibody response and reduces the viral load in already-infected koalas. Koala retrovirus (KoRV), first identified in the last 20 years, is a life-threatening, endemic pathogen affecting Australian koalas. In pursuit of an effective KoRV vaccine, the University of the Sunshine Coast’s Peter Timms led a group of Australian scientists to develop a candidate based on the transmembrane section of the virus’ envelope protein. The six koalas vaccinated in the study all generated a strong antibody response to the envelope protein, and a strong neutralizing antibody response was reported during in vitro tests. Vaccinated koalas with pre-existing KoRV infection benefited from an average 79% reduction in viral load when measured 12 weeks after vaccination. Further research should be prioritized to provide much-needed protection to Australia’s koalas.
Collapse
|
7
|
Shanmugasundaram S, You J. Targeting Persistent Human Papillomavirus Infection. Viruses 2017; 9:v9080229. [PMID: 28820433 PMCID: PMC5580486 DOI: 10.3390/v9080229] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 07/30/2017] [Accepted: 08/15/2017] [Indexed: 12/14/2022] Open
Abstract
While the majority of Human papillomavirus (HPV) infections are transient and cleared within a couple of years following exposure, 10-20% of infections persist latently, leading to disease progression and, ultimately, various forms of invasive cancer. Despite the clinical efficiency of recently developed multivalent prophylactic HPV vaccines, these preventive measures are not effective against pre-existing infection. Additionally, considering that the burden associated with HPV is greatest in regions with limited access to preventative vaccination, the development of effective therapies targeting persistent infection remains imperative. This review discusses not only the mechanisms underlying persistent HPV infection, but also the promise of immunomodulatory therapeutic vaccines and small-molecular inhibitors, which aim to augment the host immune response against the viral infection as well as obstruct critical viral-host interactions.
Collapse
Affiliation(s)
- Srinidhi Shanmugasundaram
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Jianxin You
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
8
|
Correction: Attenuated Recombinant Influenza A Virus Expressing HPV16 E6 and E7 as a Novel Therapeutic Vaccine Approach. PLoS One 2015; 10:e0143269. [PMID: 26562162 PMCID: PMC4642983 DOI: 10.1371/journal.pone.0143269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|