1
|
Azevedo RDS, Santana H, Seus VR, Camargo AD, Werhli AV, Machado KDS, Cançado LJ, Quirino BF, Marins LF. Development of a β-glucosidase improved for glucose retroinhibition for cellulosic ethanol production: an integrated bioinformatics and genetic engineering approach. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2025; 18:44. [PMID: 40188331 PMCID: PMC11972475 DOI: 10.1186/s13068-025-02643-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/24/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND The global energy crisis, driven by economic growth and the increasing demand for energy, highlights the urgency of searching for alternative energy sources to mitigate environmental pollution and climate change. β-Glucosidases act in the final step of the enzymatic hydrolysis of cellulose, cleaving the β-1,4-glycosidic bonds in cellobiose to produce second-generation ethanol. However, these enzymes are easily inhibited by glucose, their final product, which limits the production of this biofuel. Genetic engineering combined with bioinformatics tools can improve key enzymatic characteristics, such as catalytic activity and glucose tolerance, in a more precise, faster, and cost-effective manner compared to traditional methods. In this work, a variant of a β-glucosidase from the GH1 family, isolated from the microbial community of Amazonian soil (Brazil), with enhanced catalytic activity and improved for glucose retroinhibition, was developed. RESULTS Bioinformatics analyses suggested the substitution of tryptophan at position 404 with leucine. The produced variant (W404L) was expressed in Escherichia coli and showed activity 3.2 times higher in the presence of glucose than the non-mutated control. Moreover, the partially purified mutated variant of β-glucosidase exhibited a 26-fold increase in catalytic activity compared to the original form of the enzyme. The results confirmed that the mutation proposed by computational analyses had a significant impact on enzyme catalytic activity and glucose retroinhibition. CONCLUSIONS This new variant may become a promising alternative to reduce the costs of enzyme cocktails used in the hydrolysis of lignocellulosic biomass used as a raw material in the production of second-generation ethanol.
Collapse
Affiliation(s)
- Raíza Dos Santos Azevedo
- LEGENE - Research Group in Genetic Engineering and Biotechnology, Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil.
| | | | - Vinícius Rosa Seus
- Combi-Lab - Computational Biology Laboratory, Center for Computational Sciences (C3), Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Alex Dias Camargo
- Combi-Lab - Computational Biology Laboratory, Center for Computational Sciences (C3), Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Adriano Velasque Werhli
- Combi-Lab - Computational Biology Laboratory, Center for Computational Sciences (C3), Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Karina Dos Santos Machado
- Combi-Lab - Computational Biology Laboratory, Center for Computational Sciences (C3), Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | | | | | - Luis Fernando Marins
- LEGENE - Research Group in Genetic Engineering and Biotechnology, Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| |
Collapse
|
2
|
Bocanegra-Jiménez FY, Montero-Morán GM, Lara-González S. Purification and characterization of an Fe II- and α-ketoglutarate-dependent xanthine hydroxylase from Aspergillus oryzae. Protein Expr Purif 2021; 183:105862. [PMID: 33716123 DOI: 10.1016/j.pep.2021.105862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 02/13/2021] [Accepted: 02/28/2021] [Indexed: 11/29/2022]
Abstract
XanA is an FeII- and α-ketoglutarate-dependent enzyme responsible for the conversion of xanthine to uric acid. It is unique to fungi and it was first described in Aspergillus nidulans. In this work, we present the preliminary characterization of the XanA enzyme from Aspergillus oryzae, a relevant fungus in food production in Japan. The XanA protein (GenBank BAE56701.1) was expressed as a recombinant protein in Escherichia coli BL21 (DE3) Arctic cells. Initial purification assays showed low protein solubility; therefore, the buffer composition was optimized using a fluorescence-based thermal shift assay. The protein was stabilized in solution in the presence of either 600 μM xanthine, 1 M NaCl, 600 μM α-ketoglutarate or 20% glycerol, which increases the melting temperature (Tm) by 2, 4, 5 and 6 °C respectively. The XanA protein was purified by following a three-step purification protocol. The nickel affinity purified protein was subjected to ion-exchange chromatography once the N-terminal 6XHis-tag had been successfully removed, followed by size-exclusion purification. Dynamic light scattering experiments showed that the purified protein was monodisperse and behaved as a monomer in solution. Preliminary activity assays in the presence of xanthine, α-ketoglutarate, and iron suggest that the enzyme is an iron- and α-ketoglutarate-dependent xanthine dioxygenase. Furthermore, the enzyme's optimum activity conditions were determined to be 25 °C, pH of 7.2, HEPES buffer, and 1% of glycerol. In conclusion, we established the conditions to purify the XanA enzyme from A. oryzae in its active form from E. coli bacteria and determined the optimal activity conditions.
Collapse
Affiliation(s)
- Fitzya Y Bocanegra-Jiménez
- IPICYT, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A. C., San Luis Potosí, SLP, Mexico
| | - Gabriela M Montero-Morán
- Facultad de Ciencias Químicas, Laboratorio IBCM, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, Mexico
| | - Samuel Lara-González
- IPICYT, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A. C., San Luis Potosí, SLP, Mexico.
| |
Collapse
|
3
|
Meinke G, Dalda N, Brigham BS, Bohm A. Synthesis of libraries and multi-site mutagenesis using a PCR-derived, dU-containing template. Synth Biol (Oxf) 2021; 6:ysaa030. [PMID: 34239985 PMCID: PMC8260824 DOI: 10.1093/synbio/ysaa030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/20/2020] [Accepted: 12/14/2020] [Indexed: 12/03/2022] Open
Abstract
Directed DNA libraries are useful because they focus genetic diversity in the most important regions within a sequence. Ideally, all sequences in such libraries should appear with the same frequency and there should be no significant background from the starting sequence. These properties maximize the number of different sequences that can be screened. Described herein is a method termed SLUPT (Synthesis of Libraries via a dU-containing PCR-derived Template) for generating highly targeted DNA libraries and/or multi-site mutations wherein the altered bases may be widely distributed within a target sequence. This method is highly efficient and modular. Moreover, multiple distinct sites, each with one or more base changes, can be altered in a single reaction. There is very low background from the starting sequence, and SLUPT libraries have similar representation of each base at the positions selected for variation. The SLUPT method utilizes a single-stranded dU-containing DNA template that is made by polymerase chain reaction (PCR). Synthesis of the template in this way is significantly easier than has been described earlier. A series of oligonucleotide primers that are homologous to the template and encode the desired genetic diversity are extended and ligated in a single reaction to form the mutated product sequence or library. After selective inactivation of the template, only the product library is amplified. There are no restrictions on the spacing of the mutagenic primers except that they cannot overlap.
Collapse
Affiliation(s)
- Gretchen Meinke
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Nahide Dalda
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Benjamin S Brigham
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Andrew Bohm
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
4
|
Chandler PG, Broendum SS, Riley BT, Spence MA, Jackson CJ, McGowan S, Buckle AM. Strategies for Increasing Protein Stability. Methods Mol Biol 2020; 2073:163-181. [PMID: 31612442 DOI: 10.1007/978-1-4939-9869-2_10] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The stability of wild-type proteins is often a hurdle to their practical use in research, industry, and medicine. The route to engineering stability of a protein of interest lies largely with the available data. Where high-resolution structural data is available, rational design, based on fundamental principles of protein chemistry, can improve protein stability. Recent advances in computational biology and the use of nonnatural amino acids have also provided novel rational methods for improving protein stability. Likewise, the explosion of sequence and structural data available in public databases, in combination with improvements in freely available computational tools, has produced accessible phylogenetic approaches. Trawling modern sequence databases can identify the thermostable homologs of a target protein, and evolutionary data can be quickly generated using available phylogenetic tools. Grafting features from those thermostable homologs or ancestors provides stability improvement through a semi-rational approach. Further, molecular techniques such as directed evolution have shown great promise in delivering designer proteins. These strategies are well documented and newly accessible to the molecular biologist, allowing for rapid enhancements of protein stability.
Collapse
Affiliation(s)
- Peter G Chandler
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Sebastian S Broendum
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Blake T Riley
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Matthew A Spence
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| | - Sheena McGowan
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Ashley M Buckle
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
5
|
Olson MA, Legler PM, Zabetakis D, Turner KB, Anderson GP, Goldman ER. Sequence Tolerance of a Single-Domain Antibody with a High Thermal Stability: Comparison of Computational and Experimental Fitness Profiles. ACS OMEGA 2019; 4:10444-10454. [PMID: 31460140 PMCID: PMC6648363 DOI: 10.1021/acsomega.9b00730] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/09/2019] [Indexed: 06/10/2023]
Abstract
The sequence fitness of a llama single-domain antibody with an unusually high thermal stability is explored by a combined computational and experimental study. Starting with the X-ray crystallographic structure, RosettaBackrub simulations were applied to model sequence-structure tolerance profiles and identify key substitution sites. From the model calculations, an experimental site-directed mutagenesis was used to produce a panel of mutants, and their melting temperatures were determined by thermal denaturation. The results reveal a sequence fitness of an excess stability of approximately 12 °C, a value taken from a decrease in the melting temperature of an electrostatic charge-reversal substitution in the CRD3 without a deleterious effect on the binding affinity to the antigen. The tolerance for the disruption of antigen recognition without loss in the thermal stability was demonstrated by the introduction of a proline in place of a tyrosine in the CDR2, producing a mutant that eliminated binding. To further assist the sequence design and the selection of engineered single-domain antibodies, an assessment of different computational strategies is provided of their accuracy in the detection of substitution "hot spots" in the sequence tolerance landscape.
Collapse
Affiliation(s)
- Mark A. Olson
- Systems
and Structural Biology Division, USAMRIID, Frederick, Maryland 21702, United States
| | - Patricia M. Legler
- Center
for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, District of Columbia 20375, United States
| | - Daniel Zabetakis
- Center
for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, District of Columbia 20375, United States
| | - Kendrick B. Turner
- Center
for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, District of Columbia 20375, United States
| | - George P. Anderson
- Center
for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, District of Columbia 20375, United States
| | - Ellen R. Goldman
- Center
for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, District of Columbia 20375, United States
| |
Collapse
|
6
|
Popov P, Kozlovskii I, Katritch V. Computational design for thermostabilization of GPCRs. Curr Opin Struct Biol 2019; 55:25-33. [PMID: 30909106 DOI: 10.1016/j.sbi.2019.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 02/19/2019] [Indexed: 10/27/2022]
Abstract
GPCR superfamily is the largest clinically relevant family of targets in human genome; however, low thermostability and high conformational plasticity of these integral membrane proteins make them notoriously hard to handle in biochemical, biophysical, and structural experiments. Here, we describe the recent advances in computational approaches to design stabilizing mutations for GPCR that take advantage of the structural and sequence conservation properties of the receptors, and employ machine learning on accumulated mutation data for the superfamily. The fast and effective computational tools can provide a viable alternative to existing experimental mutation screening and are poised for further improvements with expansion of thermostability datasets for training the machine learning models. The rapidly growing practical applications of computational stability design streamline GPCR structure determination and may contribute to more efficient drug discovery.
Collapse
Affiliation(s)
- Petr Popov
- Skolkovo Institute of Science and Technology, Moscow, Russia; Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Igor Kozlovskii
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Vsevolod Katritch
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia; Departments of Biological Sciences and Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Bendre AD, Suresh CG, Shanmugam D, Ramasamy S. Structural insights into the unique inhibitory mechanism of Kunitz type trypsin inhibitor from Cicer arietinum L. J Biomol Struct Dyn 2018; 37:2669-2677. [PMID: 30052127 DOI: 10.1080/07391102.2018.1494633] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Kunitz-type trypsin inhibitors bind to the active pocket of trypsin causing its inhibition. Plant Kunitz-type inhibitors are thought to be important in defense, especially against insect pests. From sequence analysis of various Kunitz-type inhibitors from plants, we identified CaTI2 from chickpea as a unique variant lacking the functionally important arginine residue corresponding to the soybean trypsin inhibitor (STI) and having a distinct and unique inhibitory loop organization. To further explore the implications of these sequence variations, we obtained the crystal structure of recombinant CaTI2 at 2.8Å resolution. It is evident from the structure that the variations in the inhibitory loop facilitates non-substrate like binding of CaTI2 to trypsin, while the canonical inhibitor STI binds to trypsin in substrate like manner. Our results establish the unique mechanism of trypsin inhibition by CaTI2, which warrant further research into its substrate spectrum. Abbreviations BApNA Nα-Benzoyl-L-arginine 4-nitroanilide BPT bovine pancreatic trypsin CaTI2 Cicer arietinum L trypsin inhibitor 2 DrTI Delonix regia Trypsin inhibitor EcTI Enterolobium contortisiliquum trypsin inhibitor ETI Erythrina caffra trypsin inhibitor KTI Kunitz type inhibitor STI soybean trypsin inhibitor TKI Tamarindus indica Kunitz inhibitor Communicated By Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ameya D Bendre
- a Division of Biochemical Sciences, CSIR-National Chemical Laboratory , Pune , India.,b Academy of Scientific and Innovative Research (AcSIR) , Pune , India
| | - C G Suresh
- a Division of Biochemical Sciences, CSIR-National Chemical Laboratory , Pune , India
| | - Dhanasekaran Shanmugam
- a Division of Biochemical Sciences, CSIR-National Chemical Laboratory , Pune , India.,b Academy of Scientific and Innovative Research (AcSIR) , Pune , India
| | - Sureshkumar Ramasamy
- a Division of Biochemical Sciences, CSIR-National Chemical Laboratory , Pune , India
| |
Collapse
|
8
|
Cloning and characterization of trehalase: a conserved glycosidase from oriental midge, Chironomus ramosus. 3 Biotech 2018; 8:352. [PMID: 30105177 DOI: 10.1007/s13205-018-1376-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/27/2018] [Indexed: 12/14/2022] Open
Abstract
Insect trehalase is a multiferous enzyme, crucial for normal physiological functions as well as under stress conditions. In this report, we present a fundamental study of the trehalase gene segment (1587 bp) from Chironomus ramosus (CrTre) encoding for 529 amino acids, using appropriate bioinformatics tools. C. ramosus, a tropical midge is an emerging animal model to investigate the consequences of environmental stresses. We observed that CrTre belongs to GH family 37 in the CAZy database and possess 57-92% identity to dipteran trehalases. In silico characterization provided information regarding the structural, functional and evolutionary aspects of midge trehalase. In the phylogenetic tree, CrTre clustered with the soluble dipteran trehalases. Moreover, domain functional characterization of the deduced protein sequence by InterProScan (IPR001661), ProSite (PS00927 and PS00928) and Pfam (PF01204) indicated presence of highly conserved signature motifs which are important for the identification of trehalase superfamily. Furthermore, the instability index of CrTre was predicted to be < 40 suggesting its in vivo stability while, the high aliphatic index indicated towards its thermal stability (index value 71-81). The modelled 3D tertiary structure of CrTre depicts a (α/α)6 barrel toroidal core. The catalytic domain of the enzyme comprised Glu424 and Asp226 as the putative active site residues. Interestingly, the conserved motifs were observed to be formed by the flexible loopy regions in the tertiary structure. This study revealed essential sequence features of the midge trehalase and offers better insights into the structural aspects of this enzyme which can be correlated with its function.
Collapse
|
9
|
Activation of HRI is mediated by Hsp90 during stress through modulation of the HRI-Hsp90 complex. Int J Biol Macromol 2018; 118:1604-1613. [PMID: 30170366 DOI: 10.1016/j.ijbiomac.2018.06.204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/28/2018] [Accepted: 06/30/2018] [Indexed: 12/28/2022]
Abstract
Heme Regulated Inhibitor (HRI) is known to get activated in various stresses such as heme deficiency, heat shock, heavy metal toxicity etc. Heat shock protein 90 (Hsp90), a ubiquitous cytoplasmic protein interacts with HRI in order to regulate protein synthesis. However, it still remains to establish this interaction of HRI and Hsp90 at cellular levels and how this modulation of HRI activity is mediated by Hsp90 during stress. In the present report, using co-immunoprecipitation analysis we show that HRI interacts with Hsp90 and this association is independent of other co-chaperones in in vitro conditions. Further, analysis using truncated domains of HRI revealed that the K1 subdomain is essential for HRI - Hsp90 complex formation. Our in silico protein - protein interaction studies also indicated interaction of Hsp90 with K1 subdomain of HRI. Mammalian two hybrid assay validated this HRI - Hsp90 interaction at cellular levels. When the in vitro kinase assay was carried out with the co-immunoprecipitated complex of HRI - Hsp90, an increase in the kinase activity was observed resulting elevated levels of eIF2α phosphorylation upon heavy metal stress and heat shock. Thus, our results clearly indicate modulation of HRI kinase activity with simultaneous Hsp90 association under stress conditions.
Collapse
|
10
|
Bendre AD, Ramasamy S, Suresh CG. Analysis of Kunitz inhibitors from plants for comprehensive structural and functional insights. Int J Biol Macromol 2018; 113:933-943. [PMID: 29499268 DOI: 10.1016/j.ijbiomac.2018.02.148] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 01/11/2023]
Abstract
Legume Kunitz type trypsin inhibitor (KTI) family is one of the most versatile families of proteins. A typical KTI features a single peptide folded in β-trefoil manner, with the molecular weight about 20-22kDa and two disulphide bonds. The members are known to inhibit a wide range of serpins proteases at the same time many of them possess unique features. Copaifera langsdorffii Trypsin inhibitor (CTI) has a β-trefoil fold made up of two non-covalently bound polypeptide chains with only a single disulfide bridge. Delonix regia Trypsin inhibitor (DrTI) has one amino acid insertion between P1 and P2 of the reactive site distorting its conformation. Bauhinia bauhinioides Cruzipain inhibitor (BbCI) has a conservative β-trefoil fold but lacks disulfide bonds. Such subtle differences in structures make Kunitz inhibitors different from other inhibitor families. Most of the studies on these inhibitors are focused towards their proposed role in defense from insect pests and wounding but their exact physiological role in nature is still uncharted. Thus, it would be very interesting to closely analyze the structural details of these inhibitors in order to ascertain their biological role and other fascinating applications.
Collapse
Affiliation(s)
- Ameya D Bendre
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NCL campus, Pune 411008, India
| | - Sureshkumar Ramasamy
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune 411008, India.
| | - C G Suresh
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune 411008, India
| |
Collapse
|
11
|
Buß O, Rudat J, Ochsenreither K. FoldX as Protein Engineering Tool: Better Than Random Based Approaches? Comput Struct Biotechnol J 2018; 16:25-33. [PMID: 30275935 PMCID: PMC6158775 DOI: 10.1016/j.csbj.2018.01.002] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/21/2017] [Accepted: 01/20/2018] [Indexed: 02/04/2023] Open
Abstract
Improving protein stability is an important goal for basic research as well as for clinical and industrial applications but no commonly accepted and widely used strategy for efficient engineering is known. Beside random approaches like error prone PCR or physical techniques to stabilize proteins, e.g. by immobilization, in silico approaches are gaining more attention to apply target-oriented mutagenesis. In this review different algorithms for the prediction of beneficial mutation sites to enhance protein stability are summarized and the advantages and disadvantages of FoldX are highlighted. The question whether the prediction of mutation sites by the algorithm FoldX is more accurate than random based approaches is addressed.
Collapse
Affiliation(s)
- Oliver Buß
- Institute of Process Engineering in Life Sciences, Section II: Technical Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | | | | |
Collapse
|
12
|
Pezeshgi Modarres H, Mofrad MR, Sanati-Nezhad A. ProtDataTherm: A database for thermostability analysis and engineering of proteins. PLoS One 2018; 13:e0191222. [PMID: 29377907 PMCID: PMC5788348 DOI: 10.1371/journal.pone.0191222] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 12/29/2017] [Indexed: 11/18/2022] Open
Abstract
Protein thermostability engineering is a powerful tool to improve resistance of proteins against high temperatures and thereafter broaden their applications. For efficient protein thermostability engineering, different thermostability-classified data sources including sequences and 3D structures are needed for different protein families. However, no data source is available providing such data easily. It is the first release of ProtDataTherm database for analysis and engineering of protein thermostability which contains more than 14 million protein sequences categorized based on their thermal stability and protein family. This database contains data needed for better understanding protein thermostability and stability engineering. Providing categorized protein sequences and structures as psychrophilic, mesophilic and thermophilic makes this database useful for the development of new tools in protein stability prediction. This database is available at http://profiles.bs.ipm.ir/softwares/protdatatherm. As a proof of concept, the thermostability that improves mutations were suggested for one sample protein belonging to one of protein families with more than 20 mesophilic and thermophilic sequences and with known experimentally measured ΔT of mutations available within ProTherm database.
Collapse
Affiliation(s)
- Hassan Pezeshgi Modarres
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, Canada
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, 208A Stanley Hall, Berkeley, CA, United States of America
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Mohammad R. Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, 208A Stanley Hall, Berkeley, CA, United States of America
- Physical Biosciences Division, Lawrence Berkeley National Lab, Berkeley, CA, United States of America
| | - Amir Sanati-Nezhad
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, Canada
- Center for BioEngineering Research and Education, University of Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
13
|
Enhancing the Thermostability of Rhizomucor miehei Lipase with a Limited Screening Library by Rational-Design Point Mutations and Disulfide Bonds. Appl Environ Microbiol 2018; 84:AEM.02129-17. [PMID: 29101200 DOI: 10.1128/aem.02129-17] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/01/2017] [Indexed: 01/02/2023] Open
Abstract
Rhizomucor miehei lipase (RML), as a kind of eukaryotic protein catalyst, plays an important role in the food, organic chemical, and biofuel industries. However, RML retains its catalytic activity below 50°C, which limits its industrial applications at higher temperatures. Soluble expression of this eukaryotic protein in Escherichia coli not only helps to screen for thermostable mutants quickly but also provides the opportunity to develop rapid and effective ways to enhance the thermal stability of eukaryotic proteins. Therefore, in this study, RML was engineered using multiple computational design methods, followed by filtration via conservation analysis and functional region assessment. We successfully obtained a limited screening library (only 36 candidates) to validate thermostable single point mutants, among which 24 of the candidates showed higher thermostability and 13 point mutations resulted in an apparent melting temperature ([Formula: see text]) of at least 1°C higher. Furthermore, both of the two disulfide bonds predicted from four rational-design algorithms were further introduced and found to stabilize RML. The most stable mutant, with T18K/T22I/E230I/S56C-N63C/V189C-D238C mutations, exhibited a 14.3°C-higher [Formula: see text] and a 12.5-fold increase in half-life at 70°C. The catalytic efficiency of the engineered lipase was 39% higher than that of the wild type. The results demonstrate that rationally designed point mutations and disulfide bonds can effectively reduce the number of screened clones to enhance the thermostability of RML.IMPORTANCER. miehei lipase, whose structure is well established, can be widely applied in diverse chemical processes. Soluble expression of R. miehei lipase in E. coli provides an opportunity to explore efficient methods for enhancing eukaryotic protein thermostability. This study highlights a strategy that combines computational algorithms to predict single point mutations and disulfide bonds in RML without losing catalytic activity. Through this strategy, an RML variant with greatly enhanced thermostability was obtained. This study provides a competitive alternative for wild-type RML in practical applications and further a rapid and effective strategy for thermostability engineering.
Collapse
|
14
|
Li G, Chen Y, Fang X, Su F, Xu L, Yan Y. Identification of a hot-spot to enhance Candida rugosa lipase thermostability by rational design methods. RSC Adv 2018; 8:1948-1957. [PMID: 35542566 PMCID: PMC9077275 DOI: 10.1039/c7ra11679a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/02/2018] [Indexed: 11/21/2022] Open
Abstract
Lipase is one of the most widely used classes of enzymes in biotechnological applications and organic chemistry. Candida rugosa lipases (CRL) can catalyze hydrolysis, esterification and transesterification with high regio-, stereo- and enantio-selectivity. However, thermal inactivation above 45 °C limits CRL's applications. Studies on improving the thermal stability of CRL are often limited by its slow-growing eukaryotic expression host, which is not suitable for large-scale screening. Identification of thermally stable mutants by rational design, regarded as an efficient substitution of experimental efforts, would provide a method for site-directed improvement of CRL. In this study, mutation-induced stability changes in CRL Lip1 were predicted by three rational design methods. Followed by conservative analyses and functional region exclusion, five mutants of a hot-spot, Asp457Phe, Asp457Trp, Asp457Met, Asp457Leu, and Asp457Tyr, were identified and prepared for enzymatic characterization. These five mutants increased the apparent melting temperature of Lip1 from 7.4 °C to 9.3 °C, with the most thermostable mutant, Asp457Phe, exhibiting a 5.5-fold longer half-life at 50 °C and a 10 °C increase in optimum temperature. Furthermore, pH stability of Lip1 was also enhanced due to the introduction of Asp457Phe mutation. The study demonstrates that thermally stable mutants of CRL could be identified with limited experimental efforts using rational design methods. The thermostability of Candida rugosa lipase expressed in a eukaryotic host is enhanced with limited experimental effort based on rational design methods.![]()
Collapse
Affiliation(s)
- Guanlin Li
- Key Laboratory of Molecular Biophysics
- The Ministry of Education
- College of Life Science and Technology
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Yuan Chen
- Key Laboratory of Molecular Biophysics
- The Ministry of Education
- College of Life Science and Technology
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Xingrong Fang
- Key Laboratory of Molecular Biophysics
- The Ministry of Education
- College of Life Science and Technology
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Feng Su
- Key Laboratory of Molecular Biophysics
- The Ministry of Education
- College of Life Science and Technology
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Li Xu
- Key Laboratory of Molecular Biophysics
- The Ministry of Education
- College of Life Science and Technology
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Yunjun Yan
- Key Laboratory of Molecular Biophysics
- The Ministry of Education
- College of Life Science and Technology
- Huazhong University of Science and Technology
- Wuhan 430074
| |
Collapse
|
15
|
Farrokh P, Yakhchali B, Karkhane AA. Role of Q177A and K173A/Q177A substitutions in thermostability and activity of the ELBn12 lipase. Biotechnol Appl Biochem 2017; 65:203-211. [DOI: 10.1002/bab.1576] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 06/09/2017] [Accepted: 07/15/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Parisa Farrokh
- Department of Industrial and Environmental Biotechnology; National Institute of Genetic Engineering and Biotechnology (NIGEB); Tehran Iran
- School of Biology; Damghan University; Damghan Iran
- Department of Genetics; School of Biological Science; Tarbiat Modares University; Tehran Iran
| | - Bagher Yakhchali
- Department of Industrial and Environmental Biotechnology; National Institute of Genetic Engineering and Biotechnology (NIGEB); Tehran Iran
| | - Ali Asghar Karkhane
- Department of Industrial and Environmental Biotechnology; National Institute of Genetic Engineering and Biotechnology (NIGEB); Tehran Iran
| |
Collapse
|
16
|
Chakravorty D, Khan MF, Patra S. Multifactorial level of extremostability of proteins: can they be exploited for protein engineering? Extremophiles 2017; 21:419-444. [PMID: 28283770 DOI: 10.1007/s00792-016-0908-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 12/19/2016] [Indexed: 12/20/2022]
Abstract
Research on extremostable proteins has seen immense growth in the past decade owing to their industrial importance. Basic research of attributes related to extreme-stability requires further exploration. Modern mechanistic approaches to engineer such proteins in vitro will have more impact in industrial biotechnology economy. Developing a priori knowledge about the mechanism behind extreme-stability will nurture better understanding of pathways leading to protein molecular evolution and folding. This review is a vivid compilation about all classes of extremostable proteins and the attributes that lead to myriad of adaptations divulged after an extensive study of 6495 articles belonging to extremostable proteins. Along with detailing on the rationale behind extreme-stability of proteins, emphasis has been put on modern approaches that have been utilized to render proteins extremostable by protein engineering. It was understood that each protein shows different approaches to extreme-stability governed by minute differences in their biophysical properties and the milieu in which they exist. Any general rule has not yet been drawn regarding adaptive mechanisms in extreme environments. This review was further instrumental to understand the drawback of the available 14 stabilizing mutation prediction algorithms. Thus, this review lays the foundation to further explore the biophysical pleiotropy of extreme-stable proteins to deduce a global prediction model for predicting the effect of mutations on protein stability.
Collapse
Affiliation(s)
- Debamitra Chakravorty
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Mohd Faheem Khan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Sanjukta Patra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
17
|
Sneha P, Thirumal Kumar D, Saini S, Kajal K, Magesh R, Siva R, George Priya Doss C. Analyzing the Effect of V66M Mutation in BDNF in Causing Mood Disorders: A Computational Approach. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 108:85-103. [PMID: 28427565 DOI: 10.1016/bs.apcsb.2017.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Mental disorders or mood disorders are prevalent globally irrespective of region, race, and ethnic groups. Of the types of mood disorders, major depressive disorder (MDD) and bipolar disorder (BPD) are the most prevalent forms of psychiatric condition. A number of preclinical studies emphasize the essential role of brain-derived neurotrophic factor (BDNF) in the pathophysiology of mood disorders. Additionally, BDNF is the most common growth factor in the central nervous system along with their essential role during the neural development and the synaptic elasticity. A malfunctioning of this protein is associated with many types of mood disorders. The variant methionine replaces valine at 66th position is strongly related to BPD, and an individual with a homozygous condition of this allele is at a greater risk of developing MDD. There are very sparse reports suggesting the structural changes of the protein occurring upon the mutation. Consequently, in this study, we applied a computational pipeline to understand the effects caused by the mutation on the protein's structure and function. With the use of in silico tools and computational macroscopic methods, we identified a decrease in the alpha-helix nature, and an overall increase in the random coils that could have probably resulted in deformation of the protein.
Collapse
Affiliation(s)
- P Sneha
- School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - D Thirumal Kumar
- School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - Sugandhi Saini
- School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - Kreeti Kajal
- School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - R Magesh
- Faculty of Research and Bio Medical Sciences, Sri Ramachandra University, Chennai, Tamil Nadu, India
| | - R Siva
- School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India.
| | - C George Priya Doss
- School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India.
| |
Collapse
|
18
|
Shukla E, Agrawal SB, Gaikwad SM. Conformational and functional transitions and in silico analysis of a serine protease from Conidiobolus brefeldianus (MTCC 5185). Int J Biol Macromol 2017; 98:387-397. [PMID: 28153464 DOI: 10.1016/j.ijbiomac.2017.01.124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/06/2017] [Accepted: 01/27/2017] [Indexed: 11/25/2022]
Abstract
This work describes functional and structural transitions of a novel protease isolated from Conidiobolus brefeldianus MTCC 5185 (Cprot), in detail using biophysical and bioinformatics tools. The commercial importance of Cprot in silk and leather industries made it an interesting candidate for structural investigations. Cprot possesses 8.2% α-helix, 31.1% β-sheet and 23.8% turns. The enzyme was found to be active over a wide pH range and up to 55°C. The protease was also stable in organic solvents up to 50% (v/v) concentration of alcohols and DMSO for >24h and in 2M guanidine hydrochloride for >12h. Cprot was also resistant to trypsin, chymotrypsin, proteinase K and fluorinated alcohols (5-10%). The melting temperatures observed for the native Cprot and for the enzyme treated under various stress conditions correlated well with the corresponding structural and functional transitions obtained. The structural information was supported by the homology model of its closest homologue from C. coronatus; revealing its similarity to PA clan of proteases (Proteases of mixed nucleophile, superfamily A), with His-64, Asp-113 and Ser-208 as putative catalytic triad. Three tryptophan residues in Cprot are surrounded by positively charged residues, as evident from solute quenching studies and homology model.
Collapse
Affiliation(s)
- Ekta Shukla
- Academy of Scientific and Innovative Research (AcSIR), Division of Biochemical Sciences, CSIR-National Chemical laboratory, Pune 411008, India
| | - Sanskruthi B Agrawal
- Academy of Scientific and Innovative Research (AcSIR), Division of Biochemical Sciences, CSIR-National Chemical laboratory, Pune 411008, India
| | - Sushama M Gaikwad
- Academy of Scientific and Innovative Research (AcSIR), Division of Biochemical Sciences, CSIR-National Chemical laboratory, Pune 411008, India.
| |
Collapse
|
19
|
Thirumal Kumar D, George Priya Doss C, Sneha P, Tayubi IA, Siva R, Chakraborty C, Magesh R. Influence of V54M mutation in giant muscle protein titin: a computational screening and molecular dynamics approach. J Biomol Struct Dyn 2016; 35:917-928. [PMID: 27125723 DOI: 10.1080/07391102.2016.1166456] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Recent genetic studies have revealed the impact of mutations in associated genes for cardiac sarcomere components leading to dilated cardiomyopathy (DCM). The cardiac sarcomere is composed of thick and thin filaments and a giant muscle protein known as titin or connectin. Titin interacts with T-cap/telethonin in the Z-line region and plays a vital role in regulating sarcomere assembly. Initially, we screened all the variants associated with giant protein titin and analyzed their impact with the aid of pathogenicity and stability prediction methods. V54M mutation found in the hydrophobic core region of the protein associated with abnormal clinical phenotype leads to DCM was selected for further analysis. To address this issue, we mapped the deleterious mutant V54M, modeled the mutant protein complex, and deciphered the impact of mutation on binding with its partner telethonin in the titin crystal structure of PDB ID: 1YA5 with the aid of docking analysis. Furthermore, two run molecular dynamics simulation was initiated to understand the mechanistic action of V54M mutation in altering the protein structure, dynamics, and stability. According to the results obtained from the repeated 50 ns trajectory files, the overall effect of V54M mutation was destabilizing and transition of bend to coil in the secondary structure was observed. Furthermore, MMPBSA elucidated that V54M found in the Z-line region of titin decreases the binding affinity of titin to Z-line proteins T-cap/telethonin thereby hindering the protein-protein interaction.
Collapse
Affiliation(s)
- D Thirumal Kumar
- a School of Biosciences and Technology , VIT University , Vellore , Tamil Nadu 632014 , India
| | - C George Priya Doss
- a School of Biosciences and Technology , VIT University , Vellore , Tamil Nadu 632014 , India
| | - P Sneha
- a School of Biosciences and Technology , VIT University , Vellore , Tamil Nadu 632014 , India
| | - Iftikhar Aslam Tayubi
- a School of Biosciences and Technology , VIT University , Vellore , Tamil Nadu 632014 , India.,b Faculty of Computing and Information Technology , King Abdulaziz University , Rabigh 21911 , Saudi Arabia
| | - R Siva
- a School of Biosciences and Technology , VIT University , Vellore , Tamil Nadu 632014 , India
| | - Chiranjib Chakraborty
- c Department of Bio-informatics , School of Computer and Information Sciences, Galgotias University , Greater Noida , Uttar Pradesh 201306 , India
| | - R Magesh
- d Faculty of Biomedical Sciences, Technology & Research, Department of Biotechnology , Sri Ramachandra University , Chennai , Tamil Nadu 600116 , India
| |
Collapse
|