1
|
Niu J, Bi F, Tian Q, Tian K. Melittin Treats Periprosthetic Osteolysis in a Rat Model by Inhibiting the NF-kB Pathway and Regulating the Ratio of Receptor Activator of Nuclear Factor Kappa B Ligand/Osteoprotegerin. J Arthroplasty 2024; 39:1845-1855. [PMID: 38336308 DOI: 10.1016/j.arth.2024.01.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Aseptic loosening around the prosthesis is a common cause of failure in total joint arthroplasty. Polyethylene wear particles trigger the release of inflammatory factors by macrophages. Key mediators involved in osteoclastogenesis include interleukin-6, tumor necrosis factor-α, receptor activator of nuclear factor kappa B (RANK), RANK ligand (RANKL), and bone protection hormone (Osteoprotegerin [OPG]). The purpose of our experiment was to see whether melittin can slow down the release of inflammatory mediators through the NF-kB pathway, regulate the RANKL/OPG ratio, reduce osteoclast formation, and delay the onset of arthritis in rats. METHODS A total of 20 male Sprague-Dawley rats (10 months, Specific Pathogen Free, 350 g ± 20 g) were randomly divided into 5 groups: sham group, model group, melittin concentration 1 group (0.2 mg/kg), concentration 2 group (0.4 mg/kg), and concentration 3 group (0.6 mg/kg). All rats were implanted with TA2 high-purity titanium rods. A drill was used to create a bone canal along the long axis of the femur in the intercondylar notch. The model group and experimental groups were exposed to polyethylene particles, while the sham group did not receive any particles. RESULTS The melittin group exhibited significantly increased serum levels of serum P, calcium-phosphorus product, OPG, PINP, PINP/CTX-I, and OPG/RANKKL (P < .05). In the experimental group, micro computed tomography scanning results revealed a decrease in the amount of bone defect around the prosthesis. Immunofluorescence analysis demonstrated a decrease in the expression of IKKα and P65, while the expression of OPG showed an upward trend. Both Hematoxylin-Eosin and Tartrate-Resistant Acid Phosphatase staining revealed less osteoclast and inflammatory cell infiltration in bone resorption pits. CONCLUSIONS Our study demonstrates that melittin has the ability to inhibit the NF-kB pathway in a rat model, and reduce the impact of RANKL/OPG, thereby delaying osteoclast activity and alleviating periprosthetic osteolysis.
Collapse
Affiliation(s)
- Junqi Niu
- Sports Medicine Department of Orthopedics, Orthopedic Disease Areas, The First Affiliated Hospital of Zhengzhou University. No. 1, Zhengzhou City, Henan Province, China
| | - Fanggang Bi
- Sports Medicine Department of Orthopedics, Orthopedic Disease Areas, The First Affiliated Hospital of Zhengzhou University. No. 1, Zhengzhou City, Henan Province, China
| | - Qing Tian
- Sports Medicine Department of Orthopedics, Orthopedic Disease Areas, The First Affiliated Hospital of Zhengzhou University. No. 1, Zhengzhou City, Henan Province, China
| | - Ke Tian
- Sports Medicine Department of Orthopedics, Orthopedic Disease Areas, The First Affiliated Hospital of Zhengzhou University. No. 1, Zhengzhou City, Henan Province, China
| |
Collapse
|
2
|
Zhou C, Wang Y, Meng J, Yao M, Xu H, Wang C, Bi F, Zhu H, Yang G, Shi M, Yan S, Wu H. Additive Effect of Parathyroid Hormone and Zoledronate Acid on Prevention Particle Wears-Induced Implant Loosening by Promoting Periprosthetic Bone Architecture and Strength in an Ovariectomized Rat Model. Front Endocrinol (Lausanne) 2022; 13:871380. [PMID: 35546997 PMCID: PMC9084285 DOI: 10.3389/fendo.2022.871380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Implant-generated particle wears are considered as the major cause for the induction of implant loosening, which is more susceptible to patients with osteoporosis. Monotherapy with parathyroid hormone (PTH) or zoledronate acid (ZOL) has been proven efficient for preventing early-stage periprosthetic osteolysis, while the combination therapy with PTH and ZOL has exerted beneficial effects on the treatment of posterior lumbar vertebral fusion and disuse osteopenia. However, PTH and ZOL still have not been licensed for the treatment of implant loosening to date clinically. In this study, we have explored the effect of single or combined administration with PTH and ZOL on implant loosening in a rat model of osteoporosis. After 12 weeks of ovariectomized surgery, a femoral particle-induced periprosthetic osteolysis model was established. Vehicle, PTH (5 days per week), ZOL (100 mg/kg per week), or combination therapy was utilized for another 6 weeks before sacrifice, followed by micro-CT, histology, mechanical testing, and bone turnover examination. PTH monotherapy or combined PTH with ZOL exerted a protective effect on maintaining implant stability by elevating periprosthetic bone mass and inhibiting pseudomembrane formation. Moreover, an additive effect was observed when combining PTH with ZOL, resulting in better fixation strength, higher periprosthetic bone mass, and less pseudomembrane than PTH monotherapy. Taken together, our results suggested that a combination therapy of PTH and ZOL might be a promising approach for the intervention of early-stage implant loosening in patients with osteoporosis.
Collapse
Affiliation(s)
- Chenhe Zhou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedic Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yangxin Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedic Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Jiahong Meng
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedic Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Minjun Yao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedic Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Huikang Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Cong Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedic Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Fanggang Bi
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hanxiao Zhu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedic Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Guang Yang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedic Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Mingmin Shi
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedic Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
- *Correspondence: Haobo Wu, ; Shigui Yan, ; Mingmin Shi,
| | - Shigui Yan
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedic Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
- *Correspondence: Haobo Wu, ; Shigui Yan, ; Mingmin Shi,
| | - Haobo Wu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedic Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
- *Correspondence: Haobo Wu, ; Shigui Yan, ; Mingmin Shi,
| |
Collapse
|
3
|
Liao L, Lin Y, Liu Q, Zhang Z, Hong Y, Ni J, Yu S, Zhong Y. Cepharanthine ameliorates titanium particle-induced osteolysis by inhibiting osteoclastogenesis and modulating OPG/RANKL ratio in a murine model. Biochem Biophys Res Commun 2019; 517:407-412. [DOI: 10.1016/j.bbrc.2019.07.115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 07/29/2019] [Indexed: 01/09/2023]
|
4
|
Hu B, Wu H, Shi Z, Ying Z, Zhao X, Lin T, Hong J, Wang Y, Yang Y, Cai X, Yan S. Effects of sequential treatment with intermittent parathyroid hormone and zoledronic acid on particle-induced implant loosening: Evidence from a rat model. J Orthop Res 2019; 37:1489-1497. [PMID: 30644138 DOI: 10.1002/jor.24217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 12/26/2018] [Indexed: 02/04/2023]
Abstract
Particle-induced implant loosening is a major challenge to long-term survival of joint prostheses. Administration of intermittent parathyroid hormone (PTH) has shown potential in the treatment of cases of early-stage periprosthetic osteolysis, while sequential administration of intermittent PTH (iPTH) and bisphosphonates (Bps) has achieved significant effects on treatment of postmenopausal osteoporosis. The objective of this study was to determine whether sequential treatment could preserve bone mass and implant fixation during a pathological course of peri-implant osteolysis in a rat model. Ninety male Sprague Dawley rats were randomly divided into nine groups, four of which were used for confirmation of establishment of the peri-implant osteolysis model at two time points, while the other five were used to determine the efficiency of the sequential treatment on peri-implant osteolysis. Implant fixation and peri-implant bone mass were evaluated using biomechanical testing, micro-CT analysis, and histology at 6 and 12 weeks postoperative. The biomechanical test demonstrated that the maximum loading force during a push-out test was significantly elevated in the sequential treatment group compared to the osteolysis group and iPTH withdrawal group at 12 weeks. Peri-implant bone morphology also indicated a robust increase in bone volume in the sequential treatment group. Sequential administration of iPTH and Bps was effective in preventing experimental peri-implant osteolysis, resulting in improved implant fixation and increased peri-implant bone volume. Clinical significance: The innovative application of sequential treatment in peri-implant osteolysis could be used clinically to improve the prognosis of patients with early-stage periprosthetic osteolysis. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1489-1497, 2019.
Collapse
Affiliation(s)
- Bin Hu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, People's Republic of China.,Orthopedic Research Institute of Zhejiang University, No. 88 Jiefang Road, Hangzhou, People's Republic of China
| | - Haobo Wu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, People's Republic of China.,Orthopedic Research Institute of Zhejiang University, No. 88 Jiefang Road, Hangzhou, People's Republic of China
| | - Zhongli Shi
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, People's Republic of China.,Orthopedic Research Institute of Zhejiang University, No. 88 Jiefang Road, Hangzhou, People's Republic of China
| | - Zhimin Ying
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, People's Republic of China.,Orthopedic Research Institute of Zhejiang University, No. 88 Jiefang Road, Hangzhou, People's Republic of China
| | - Xiang Zhao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, People's Republic of China.,Orthopedic Research Institute of Zhejiang University, No. 88 Jiefang Road, Hangzhou, People's Republic of China
| | - Tiao Lin
- Department of Orthopedic Surgery, First Affiliated Hospital of Sun Yat-sen University, No.58 Zhongshan 2nd Road, Guangzhou, People's Republic of China
| | - Jianqiao Hong
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, People's Republic of China.,Orthopedic Research Institute of Zhejiang University, No. 88 Jiefang Road, Hangzhou, People's Republic of China
| | - Yangxin Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, People's Republic of China.,Orthopedic Research Institute of Zhejiang University, No. 88 Jiefang Road, Hangzhou, People's Republic of China
| | - Yute Yang
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Hangzhou, People's Republic of China
| | - Xunzi Cai
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, People's Republic of China.,Orthopedic Research Institute of Zhejiang University, No. 88 Jiefang Road, Hangzhou, People's Republic of China
| | - Shigui Yan
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, People's Republic of China.,Orthopedic Research Institute of Zhejiang University, No. 88 Jiefang Road, Hangzhou, People's Republic of China
| |
Collapse
|
5
|
Meng J, Zhou C, Hu B, Luo M, Yang Y, Wang Y, Wang W, Jiang G, Hong J, Li S, Wu H, Yan S, Yan W. Stevioside Prevents Wear Particle-Induced Osteolysis by Inhibiting Osteoclastogenesis and Inflammatory Response via the Suppression of TAK1 Activation. Front Pharmacol 2018; 9:1053. [PMID: 30319406 PMCID: PMC6169369 DOI: 10.3389/fphar.2018.01053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/31/2018] [Indexed: 12/28/2022] Open
Abstract
Aseptic loosening and periprosthetic osteolysis are the leading causes of total joint arthroplasty failure, which occurs as a result of chronic inflammatory response and enhanced osteoclast activity. Here we showed that stevioside, a natural compound isolated from Stevia rebaudiana, exhibited preventative effects on titanium particle-induced osteolysis in a mouse calvarial model. Further histological assessment and real-time PCR analysis indicated that stevioside prevented titanium particle-induced osteolysis by inhibiting osteoclast formation and inflammatory cytokine expression in vivo. In vitro, we found that stevioside could suppress RANKL-induced osteoclastogenesis and titanium particle-induced inflammatory response in a dose-dependent manner. Mechanistically, stevioside achieved these effects by disrupting the phosphorylation of TAK1 and subsequent activation of NF-κB/MAPKs signaling pathways. Collectively, our data suggest that stevioside effectively suppresses osteoclastogenesis and inflammatory response both in vitro and in vivo, and it might be a potential therapy for particle-induced osteolysis and other osteolytic diseases.
Collapse
Affiliation(s)
- Jiahong Meng
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedic Research Institute of Zhejiang University, Hangzhou, China
| | - Chenhe Zhou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedic Research Institute of Zhejiang University, Hangzhou, China
| | - Bin Hu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedic Research Institute of Zhejiang University, Hangzhou, China
| | - Mengmeng Luo
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yute Yang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedic Research Institute of Zhejiang University, Hangzhou, China
| | - Yangxin Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedic Research Institute of Zhejiang University, Hangzhou, China
| | - Wei Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedic Research Institute of Zhejiang University, Hangzhou, China
| | - Guangyao Jiang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedic Research Institute of Zhejiang University, Hangzhou, China
| | - Jianqiao Hong
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedic Research Institute of Zhejiang University, Hangzhou, China
| | - Sihao Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedic Research Institute of Zhejiang University, Hangzhou, China
| | - Haobo Wu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedic Research Institute of Zhejiang University, Hangzhou, China
| | - Shigui Yan
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedic Research Institute of Zhejiang University, Hangzhou, China
| | - Weiqi Yan
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Orthopedic Research Institute of Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Zhou CH, Shi ZL, Meng JH, Hu B, Zhao CC, Yang YT, Yu W, Chen ZX, Heng BC, Parkman VJA, Jiang S, Zhu HX, Wu HB, Shen WL, Yan SG. Sophocarpine attenuates wear particle-induced implant loosening by inhibiting osteoclastogenesis and bone resorption via suppression of the NF-κB signalling pathway in a rat model. Br J Pharmacol 2018; 175:859-876. [PMID: 29130485 DOI: 10.1111/bph.14092] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 10/31/2017] [Accepted: 11/06/2017] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Aseptic prosthesis loosening, caused by wear particles, is one of the most common causes of arthroplasty failure. Extensive and over-activated osteoclast formation and physiological functioning are regarded as the mechanism of prosthesis loosening. Therapeutic modalities based on inhibiting osteoclast formation and bone resorption have been confirmed to be an effective way of preventing aseptic prosthesis loosening. In this study, we have investigated the effects of sophocarpine (SPC, derived from Sophora flavescens) on preventing implant loosening and further explored the underlying mechanisms. EXPERIMENTAL APPROACH The effects of SPC in inhibiting osteoclastogenesis and bone resorption were evaluated in osteoclast formation, induced in vitro by the receptor activator of NF-κB ligand (RANKL). A rat femoral particle-induced peri-implant osteolysis model was established. Subsequently, micro-CT, histology, mechanical testing and bone turnover were used to assess the effects of SPC in preventing implant loosening. KEY RESULTS In vitro, we found that SPC suppressed osteoclast formation, bone resorption, F-actin ring formation and osteoclast-associated gene expression by inhibiting NF-κB signalling, specifically by targeting IκB kinases. Our in vivo study showed that SPC prevented particle-induced prosthesis loosening by inhibiting osteoclast formation, resulting in reduced periprosthetic bone loss, diminished pseudomembrane formation, improved bone-implant contact, reduced bone resorption-related turnover and enhanced stability of implants. Inhibition of NF-κB signalling by SPC was confirmed in vivo. CONCLUSION AND IMPLICATIONS SPC can prevent implant loosening through inhibiting osteoclast formation and bone resorption. Thus, SPC might be a novel therapeutic agent to prevent prosthesis loosening and for osteolytic diseases.
Collapse
Affiliation(s)
- Chen-He Zhou
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedic Research Institute of Zhejiang University, Hangzhou, China.,Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Zhong-Li Shi
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedic Research Institute of Zhejiang University, Hangzhou, China
| | - Jia-Hong Meng
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedic Research Institute of Zhejiang University, Hangzhou, China
| | - Bin Hu
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedic Research Institute of Zhejiang University, Hangzhou, China
| | - Chen-Chen Zhao
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedic Research Institute of Zhejiang University, Hangzhou, China
| | - Yu-Te Yang
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedic Research Institute of Zhejiang University, Hangzhou, China
| | - Wei Yu
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedic Research Institute of Zhejiang University, Hangzhou, China
| | - Ze-Xin Chen
- Center of Clinical Epidemiology & Biostatistics, Department of Science and Education, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Boon Chin Heng
- Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong
| | | | - Shuai Jiang
- Department of Hand Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Han-Xiao Zhu
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedic Research Institute of Zhejiang University, Hangzhou, China
| | - Hao-Bo Wu
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedic Research Institute of Zhejiang University, Hangzhou, China
| | - Wei-Liang Shen
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedic Research Institute of Zhejiang University, Hangzhou, China
| | - Shi-Gui Yan
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedic Research Institute of Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Mahon OR, O'Hanlon S, Cunningham CC, McCarthy GM, Hobbs C, Nicolosi V, Kelly DJ, Dunne A. Orthopaedic implant materials drive M1 macrophage polarization in a spleen tyrosine kinase- and mitogen-activated protein kinase-dependent manner. Acta Biomater 2018; 65:426-435. [PMID: 29104084 DOI: 10.1016/j.actbio.2017.10.041] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/25/2017] [Accepted: 10/27/2017] [Indexed: 12/17/2022]
Abstract
Total joint replacements (TJR) are costly procedures required to relieve pain and restore function in patients suffering from end-stage arthritis. Despite great progress in the development and durability of TJRs, the generation of prosthesis-associated wear particles over time leads to an inflammatory cascade which culminates in periprosthetic osteolysis. Studies suggest that wear particles drive the polarization/differentiation of immature macrophages towards a pro-inflammatory M1 phenotype rather than an anti-inflammatory M2 phenotype associated with normal bone and wound healing. This, in turn, contributes to the initiation of peri-implant inflammation. As a result, modulating M1 macrophage cytokine production has been recognised as a viable therapeutic option. The aim of this study was to examine the impact of hydroxyapatite (HA) and poly(methyl methacrylate) (PMMA) particles on human macrophage polarization by comparing their effect on M1/M2-associated gene expression using real-time PCR. Furthermore, using immunoblotting to assess kinase activation, we sought to identify the intracellular signalling molecules activated by PMMA/HA particles and to determine whether pharmacological blockade of these molecules impacts on macrophage phenotype and cytokine production as measured by ELISA. We report that wear particles preferentially polarize macrophages towards an M1 phenotype, an effect that is dependent on activation of the membrane proximal kinase, Syk and members of the mitogen-activated protein kinase (MAPK) family of signalling molecules. Pre-treatment of macrophages with Syk inhibitors (R788/piceatannol) or MAPK inhibitors (SB203580 and PD98059), not only prevents M1 polarization, but also attenuates production of key pro-inflammatory mediators that have been specifically implicated in periprosthetic osteolysis and osteoclast differentiation. STATEMENT OF SIGNIFICANCE It is now well established that wear-debris particles from implanted materials drive deleterious inflammatory responses which can eventually lead to implant loosening. In this study, we provide further insight into the specific cellular pathways activated by wear particles in primary human immune cells. We demonstrate that PMMA bone cement and hydroxyapatite, a commonly used biomaterial, drive the polarization of macrophages towards an inflammatory phenotype and identify the specific signalling molecules that are activated in this process. Pre-treatment of macrophages with pharmacological inhibitors of these molecules in turn prevents macrophage polarization and dampens inflammatory cytokine production. Hence these signalling molecules represent potential therapeutic targets to treat or possibly prevent particulate induced osteolysis.
Collapse
|
8
|
Moran MM, Wilson BM, Ross RD, Virdi AS, Sumner DR. Arthrotomy-based preclinical models of particle-induced osteolysis: A systematic review. J Orthop Res 2017; 35:2595-2605. [PMID: 28548682 PMCID: PMC5702596 DOI: 10.1002/jor.23619] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 05/24/2017] [Indexed: 02/04/2023]
Abstract
We completed a systematic literature review of in vivo animal models that use arthrotomy-based methods to study particle-induced peri-implant osteolysis. The purpose of the review was to characterize the models developed to date, to determine the questions addressed, to assess scientific rigor and transparency, and to identify gaps in knowledge. We probed three literature databases (Medline, Embase, and Scopus) and found 77 manuscripts that fit the search parameters. In the most recent 10 years, researchers mainly used rat and mouse models, whereas in the previous 20 years, large animal, canine, and rabbit models were more common. The studies have demonstrated several pathophysiology pathways, including macrophage migration, particle phagocytosis, increased local production of cytokines and lysosomal enzymes, elevated bone resorption, and suppressed bone formation. The effect of variation in particle characteristics and concentration received limited attention with somewhat mixed findings. Particle contamination by endotoxin was shown to exacerbate peri-implant osteolysis. The possibility of early diagnosis was demonstrated through imaging and biomarker approaches. Several studies showed that both local and systemic delivery of bisphosphonates inhibits the development of particle-induced osteolysis. Other methods of inhibiting osteolysis include the use of anabolic agents and altering the implant design. Few studies examined non-surgical rescue of loosened implants, with conflicting results with alendronate. We found that the manuscripts often lacked the methodological detail now advocated by the ARRIVE guidelines, suggesting that improvement in reporting would be useful to maximize rigor and transparency. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2595-2605, 2017.
Collapse
Affiliation(s)
- Meghan M. Moran
- Department of Anatomy and Cell Biology, Rush University Medical Center
| | | | - Ryan D. Ross
- Department of Anatomy and Cell Biology, Rush University Medical Center
| | - Amarjit S. Virdi
- Department of Anatomy and Cell Biology, Rush University Medical Center
| | | |
Collapse
|
9
|
A comparison of micro-CT and histomorphometry for evaluation of osseointegration of PEO-coated titanium implants in a rat model. Sci Rep 2017; 7:16270. [PMID: 29176604 PMCID: PMC5701240 DOI: 10.1038/s41598-017-16465-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/13/2017] [Indexed: 11/16/2022] Open
Abstract
The aim of the present study was to determine the correlation between bone volume density (BV/TV) around a titanium implant determined by micro-computed tomography (micro-CT) and bone area density (BA/TA) measurements obtained using histomorphometry. An intramedullary rat femur implant model was evaluated to compare raw titanium implants with plasma electrolytic oxidation (PEO)-coated titanium implants. Titanium and PEO-treated titanium pins were inserted into rat femurs under general anesthesia. The animals were sacrificed and femurs harvested at 0, 2, 4 and 6 weeks, and subsequently, histomorphometry and micro-CT were performed. BV/TV and BA/TA values were strongly and positively correlated at all time points and locations (with all correlation coefficients being >0.8 and with P < 0.001). BV/TV and BA/TA were significantly higher proximal to the growth plate than distal to the growth plate, with estimated differences of 14.10% (P < 0.001) and 11.95% (P < 0.001), respectively. BV/TV and BA/TA were significantly higher on the PEO-coated surface than on the raw titanium surface, with estimated differences of 3.20% (P = 0.044) and 4.10% (P = 0.018), respectively. Therefore, quantitative micro-CT analysis of BV/TV is correlated with BA/TA determined by histomorphometry when artifacts around titanium implants are minimized by a region of interest modification.
Collapse
|