1
|
Aye WWT, Stark MR, Horne K, Livingston L, Grenfell S, Myall DJ, Pitcher TL, Almuqbel MM, Keenan RJ, Meissner WG, Dalrymple‐Alford JC, Anderson TJ, Heron CL, Melzer TR. Early-phase amyloid PET reproduces metabolic signatures of cognitive decline in Parkinson's disease. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e12601. [PMID: 38912306 PMCID: PMC11193095 DOI: 10.1002/dad2.12601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 06/25/2024]
Abstract
INTRODUCTION Recent work suggests that amyloid beta (Aβ) positron emission tomography (PET) tracer uptake shortly after injection ("early phase") reflects brain metabolism and perfusion. We assessed this modality in a predominantly amyloid-negative neurodegenerative condition, Parkinson's disease (PD), and hypothesized that early-phase 18F-florbetaben (eFBB) uptake would reproduce characteristic hypometabolism and hypoperfusion patterns associated with cognitive decline in PD. METHODS One hundred fifteen PD patients across the spectrum of cognitive impairment underwent dual-phase Aβ PET, structural and arterial spin labeling (ASL) magnetic resonance imaging (MRI), and neuropsychological assessments. Multiple linear regression models compared eFBB uptake to cognitive performance and ASL MRI perfusion. RESULTS Reduced eFBB uptake was associated with cognitive performance in brain regions previously linked to hypometabolism-associated cognitive decline in PD, independent of amyloid status. Furthermore, eFBB uptake correlated with cerebral perfusion across widespread regions. DISCUSSION EFBB uptake is a potential surrogate measure for cerebral perfusion/metabolism. A dual-phase PET imaging approach may serve as a clinical tool for assessing cognitive impairment. Highlights Images taken at amyloid beta (Aβ) positron emission tomography tracer injection may reflect brain perfusion and metabolism.Parkinson's disease (PD) is a predominantly amyloid-negative condition.Early-phase florbetaben (eFBB) in PD was associated with cognitive performance.eFBB uptake reflects hypometabolism-related cognitive decline in PD.eFBB correlated with arterial spin labeling magnetic resonance imaging measured cerebral perfusion.eFBB distinguished dementia from normal cognition and mild cognitive impairment.Findings were independent of late-phase Aβ burden.Thus, eFBB may serve as a surrogate measure for brain metabolism/perfusion.
Collapse
Affiliation(s)
- William W. T. Aye
- New Zealand Brain Research InstituteChristchurchNew Zealand
- Department of MedicineUniversity of OtagoChristchurchNew Zealand
| | - Megan R. Stark
- New Zealand Brain Research InstituteChristchurchNew Zealand
| | - Kyla‐Louise Horne
- New Zealand Brain Research InstituteChristchurchNew Zealand
- Department of MedicineUniversity of OtagoChristchurchNew Zealand
| | | | | | | | - Toni L. Pitcher
- New Zealand Brain Research InstituteChristchurchNew Zealand
- Department of MedicineUniversity of OtagoChristchurchNew Zealand
| | - Mustafa M. Almuqbel
- New Zealand Brain Research InstituteChristchurchNew Zealand
- Radiology Holding Company New ZealandChristchurchNew Zealand
| | - Ross J. Keenan
- New Zealand Brain Research InstituteChristchurchNew Zealand
- Radiology Holding Company New ZealandChristchurchNew Zealand
| | - Wassilios G. Meissner
- New Zealand Brain Research InstituteChristchurchNew Zealand
- CHU Bordeaux, Service de Neurologie des Maladies NeurodégénérativesIMNc, NS‐Park/FCRIN NetworkBordeauxFrance
- Univ. Bordeaux, CNRS, IMNBordeauxFrance
| | - John C. Dalrymple‐Alford
- New Zealand Brain Research InstituteChristchurchNew Zealand
- School of Psychology, Speech and Hearing, University of Canterbury, PsychologySpeech and Hearing Arts Road, IlamChristchurchNew Zealand
| | - Tim J. Anderson
- New Zealand Brain Research InstituteChristchurchNew Zealand
- Department of MedicineUniversity of OtagoChristchurchNew Zealand
- Department of NeurologyCanterbury District Health BoardChristchurchNew Zealand
| | - Campbell Le Heron
- New Zealand Brain Research InstituteChristchurchNew Zealand
- Department of MedicineUniversity of OtagoChristchurchNew Zealand
- School of Psychology, Speech and Hearing, University of Canterbury, PsychologySpeech and Hearing Arts Road, IlamChristchurchNew Zealand
- Department of NeurologyCanterbury District Health BoardChristchurchNew Zealand
| | - Tracy R. Melzer
- New Zealand Brain Research InstituteChristchurchNew Zealand
- Department of MedicineUniversity of OtagoChristchurchNew Zealand
- Radiology Holding Company New ZealandChristchurchNew Zealand
- School of Psychology, Speech and Hearing, University of Canterbury, PsychologySpeech and Hearing Arts Road, IlamChristchurchNew Zealand
| |
Collapse
|
2
|
Loftus JR, Puri S, Meyers SP. Multimodality imaging of neurodegenerative disorders with a focus on multiparametric magnetic resonance and molecular imaging. Insights Imaging 2023; 14:8. [PMID: 36645560 PMCID: PMC9842851 DOI: 10.1186/s13244-022-01358-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/13/2022] [Indexed: 01/17/2023] Open
Abstract
Neurodegenerative diseases afflict a large number of persons worldwide, with the prevalence and incidence of dementia rapidly increasing. Despite their prevalence, clinical diagnosis of dementia syndromes remains imperfect with limited specificity. Conventional structural-based imaging techniques also lack the accuracy necessary for confident diagnosis. Multiparametric magnetic resonance imaging and molecular imaging provide the promise of improving specificity and sensitivity in the diagnosis of neurodegenerative disease as well as therapeutic monitoring of monoclonal antibody therapy. This educational review will briefly focus on the epidemiology, clinical presentation, and pathologic findings of common and uncommon neurodegenerative diseases. Imaging features of each disease spanning from conventional magnetic resonance sequences to advanced multiparametric methods such as resting-state functional magnetic resonance imaging and arterial spin labeling imaging will be described in detail. Additionally, the review will explore the findings of each diagnosis on molecular imaging including single-photon emission computed tomography and positron emission tomography with a variety of clinically used and experimental radiotracers. The literature and clinical cases provided demonstrate the power of advanced magnetic resonance imaging and molecular techniques in the diagnosis of neurodegenerative diseases and areas of future and ongoing research. With the advent of combined positron emission tomography/magnetic resonance imaging scanners, hybrid protocols utilizing both techniques are an attractive option for improving the evaluation of neurodegenerative diseases.
Collapse
Affiliation(s)
- James Ryan Loftus
- grid.412750.50000 0004 1936 9166Department of Imaging Sciences, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642 USA
| | - Savita Puri
- grid.412750.50000 0004 1936 9166Department of Imaging Sciences, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642 USA
| | - Steven P. Meyers
- grid.412750.50000 0004 1936 9166Department of Imaging Sciences, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642 USA
| |
Collapse
|
3
|
Dondi F, Bertoli M, Lucchini S, Cerudelli E, Albano D, Bertagna F. PET imaging for the evaluation of cerebral amyloid angiopathy: a systematic review. Clin Transl Imaging 2022. [DOI: 10.1007/s40336-022-00511-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Abstract
Purpose
In the last years, the role of PET imaging in the assessment of cerebral amyloid angiopathy (CAA) is emerging. In this setting, some tracers have proven their utility for the evaluation of the disease (mainly 11C-Pittsburgh compound B [11C-PIB]), however, the value of other radiotracers has to be clarified. The aim of this systematic review is, therefore, to assess the role of PET imaging in the evaluation of CAA.
Methods
A wide literature search of the PubMed/MEDLINE, Scopus, Embase, Web of Science and Cochrane library databases was made to find relevant published articles about the diagnostic performance of PET imaging for the evaluation of CAA. Quality assessment including the risk of bias and applicability concerns was carried out using QUADAS-2 evaluation.
Results
The comprehensive computer literature search revealed 651 articles. On reviewing the titles and abstracts, 622 articles were excluded because the reported data were not within the field of interest. Twenty-nine studies were included in the review. In general, PET imaging with amyloid tracers revealed its value for the assessment of CAA, for its differential diagnosis and a correlation with some clinico-pathological features. With less evidence, a role for 18F-fluorodeoxiglucose (18F-FDG) and tau tracers is starting to emerge.
Conclusion
PET imaging demonstrated its utility for the assessment of CAA. In particular, amiloid tracers revealed higher retention in CAA patients, correlation with cerebral bleed, the ability to differentiate between CAA and other related conditions (such as Alzheimer's disease) and a correlation with some cerebrospinal fluid biomarkers.
Collapse
|
4
|
Chang Y, Liu J, Wang L, Li X, Wang Z, Lin M, Jin W, Zhu M, Xu B. Diagnostic Utility of Integrated 11C-Pittsburgh Compound B Positron Emission Tomography/Magnetic Resonance for Cerebral Amyloid Angiopathy: A Pilot Study. Front Aging Neurosci 2021; 13:721780. [PMID: 34899265 PMCID: PMC8660657 DOI: 10.3389/fnagi.2021.721780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: We aimed to compare amyloid deposition at the lobar cerebral microbleed (CMB) sites of cerebral amyloid angiopathy (CAA), Alzheimer’s disease (AD), and cognitively normal healthy controls (NC) and to propose a novel diagnostic method for differentiating CAA patients from AD patients with integrated 11C-Pittsburgh compound B (PIB) positron emission tomography (PET)/magnetic resonance (MR) and assess its diagnostic value. Methods: Nine CAA, 15 AD patients, and 15 NC subjects were enrolled in this study. Each subject underwent an 11C-PIB brain PET/MR examination. Susceptibility weighted imaging was assessed to detect CMB locations, and standardized uptake value ratios (SUVRs) were measured at these sites. Cortical PIB distributions were quantitatively evaluated. Patients with CAA, AD, and NC subjects were compared with global and regional cortical SUVRs at CMB cites. The diagnostic accuracy of MRI, PIB-PET, and PET/MR in differentiating CAA and AD was evaluated. Results: Lobar CMBs were detected in all the CAA patients, eight of the 15 AD patients (53.3%), and four of the 15 NC subjects (26.7%), respectively. The PIB deposition at CMB sites was significantly higher in CAA patients compared with AD patients and NC subjects in terms of SUVR (1.72 ± 0.10 vs. 1.42 ± 0.16 and 1.17 ± 0.08; p < 0.0001). The PIB deposition was associated with CMB locations and was greatest in the occipital and temporal regions of CAA patients. The global cortical PIB deposition was significantly higher in CAA than in NC subjects (1.66 ± 0.06 vs. 1.21 ± 0.06; p < 0.0001) and significantly lower than in AD patients (1.66 ± 0.06 vs. 1.86 ± 0.17; p < 0.0001). In contrast, the occipital/global PIB uptake ratio was significantly increased in CAA (occipital/global ratio, 1.05 ± 0.02) relative to AD patients (1.05 ± 0.02 vs. 0.99 ± 0.04; p < 0.001). PET/MR had a higher accuracy (sensitivity, 88.9%; specificity, 93.3%) than separate PET and MR. Conclusion: Our results indicate that the CMBs occur preferentially at loci with concentrated amyloid. By combining lobar CMBs with regional cortical amyloid deposition, the proposed workflow can further improve CAA diagnostic accuracy compared to each method alone. These findings improve our knowledge regarding the pathogenesis of CMBs and highlight the potential utility of PIB-PET/MR as a non-invasive tool for distinguishing CAA and AD patients.
Collapse
Affiliation(s)
- Yan Chang
- Department of Nuclear Medicine, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Jiajin Liu
- Department of Nuclear Medicine, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Liang Wang
- PET/CT, Jixi Ji Mine Hospital, Jixi, China
| | - Xin Li
- Department of Interventional Radiology, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Zhenjun Wang
- Department of Radiology, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Mu Lin
- MR Collaboration, Diagnostic Imaging, Siemens Healthcare Ltd., Shanghai, China
| | - Wei Jin
- Department of Pathology, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Mingwei Zhu
- Department of Neurology Medicine, The Second Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Baixuan Xu
- Department of Nuclear Medicine, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
5
|
Seiffert AP, Gómez-Grande A, Villarejo-Galende A, González-Sánchez M, Bueno H, Gómez EJ, Sánchez-González P. High Correlation of Static First-Minute-Frame (FMF) PET Imaging after 18F-Labeled Amyloid Tracer Injection with [ 18F]FDG PET Imaging. SENSORS (BASEL, SWITZERLAND) 2021; 21:5182. [PMID: 34372416 PMCID: PMC8348394 DOI: 10.3390/s21155182] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 01/17/2023]
Abstract
Dynamic early-phase PET images acquired with radiotracers binding to fibrillar amyloid-beta (Aβ) have shown to correlate with [18F]fluorodeoxyglucose (FDG) PET images and provide perfusion-like information. Perfusion information of static PET scans acquired during the first minute after radiotracer injection (FMF, first-minute-frame) is compared to [18F]FDG PET images. FMFs of 60 patients acquired with [18F]florbetapir (FBP), [18F]flutemetamol (FMM), and [18F]florbetaben (FBB) are compared to [18F]FDG PET images. Regional standardized uptake value ratios (SUVR) are directly compared and intrapatient Pearson's correlation coefficients are calculated to evaluate the correlation of FMFs to their corresponding [18F]FDG PET images. Additionally, regional interpatient correlations are calculated. The intensity profiles of mean SUVRs among the study cohort (r = 0.98, p < 0.001) and intrapatient analyses show strong correlations between FMFs and [18F]FDG PET images (r = 0.93 ± 0.05). Regional VOI-based analyses also result in high correlation coefficients. The FMF shows similar information to the cerebral metabolic patterns obtained by [18F]FDG PET imaging. Therefore, it could be an alternative to the dynamic imaging of early phase amyloid PET and be used as an additional neurodegeneration biomarker in amyloid PET studies in routine clinical practice while being acquired at the same time as amyloid PET images.
Collapse
Affiliation(s)
- Alexander P. Seiffert
- Biomedical Engineering and Telemedicine Centre, ETSI Telecomunicación, Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
| | - Adolfo Gómez-Grande
- Department of Nuclear Medicine, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain;
- Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.V.-G.); (H.B.)
| | - Alberto Villarejo-Galende
- Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.V.-G.); (H.B.)
- Department of Neurology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain;
- Group of Neurodegenerative Diseases, Hospital 12 de Octubre Research Institute (imas12), 28041 Madrid, Spain
- Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain
| | - Marta González-Sánchez
- Department of Neurology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain;
- Group of Neurodegenerative Diseases, Hospital 12 de Octubre Research Institute (imas12), 28041 Madrid, Spain
- Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain
| | - Héctor Bueno
- Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.V.-G.); (H.B.)
- Department of Cardiology and Instituto de Investigación Sanitaria (imas12), Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Enrique J. Gómez
- Biomedical Engineering and Telemedicine Centre, ETSI Telecomunicación, Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Patricia Sánchez-González
- Biomedical Engineering and Telemedicine Centre, ETSI Telecomunicación, Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
6
|
Bergeret S, Queneau M, Rodallec M, Curis E, Dumurgier J, Hugon J, Paquet C, Farid K, Baron JC. [ 18 F]FDG PET may differentiate cerebral amyloid angiopathy from Alzheimer's disease. Eur J Neurol 2021; 28:1511-1519. [PMID: 33460498 DOI: 10.1111/ene.14743] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Cerebral amyloid angiopathy (CAA) is a frequent cause of both intracerebral hemorrhage (ICH) and cognitive impairment in the elderly. Diagnosis relies on the Boston criteria, which use magnetic resonance imaging markers including ≥2 exclusively lobar cerebral microbleeds (lCMBs). Although amyloid positron emission tomography (PET) may provide molecular diagnosis, its specificity relative to Alzheimer's disease (AD) is limited due to the prevalence of positive amyloid PET in cognitively normal elderly. Using early-phase 11 C-Pittsburgh compound B as surrogate for tissue perfusion, a significantly lower occipital/posterior cingulate (O/PC) tracer uptake ratio in probable CAA relative to AD was recently reported, consistent with histopathological lesion distribution. We tested whether this finding could be reproduced using [18 F]fluorodeoxyglucose (FDG)-PET, a widely available modality that correlates well with early-phase amyloid PET in both healthy subjects and AD. METHODS From a large memory clinic database, we retrospectively included 14 patients with probable CAA (Boston criteria) and 21 patients with no lCMB fulfilling AD criteria including cerebrospinal fluid biomarkers. In all, [18 F]FDG-PET/computed tomography (CT) was available as part of routine care. No subject had a clinical history of ICH. Regional standardized [18 F]FDG uptake values normalized to the pons (standard uptake value ratio [SUVr]) were obtained, and the O/PC ratio was calculated. RESULTS The SUVr O/PC ratio was significantly lower in CAA versus AD (1.02 ± 0.14 vs. 1.19 ± 0.18, respectively; p = 0.024). CONCLUSIONS Despite the small sample, our findings are consistent with the previous early-phase amyloid PET study. Thus, [18 F]FDG-PET may help differentiate CAA from AD, particularly in cases of amyloid PET positivity. Larger prospective studies, including in CAA-related ICH, are however warranted.
Collapse
Affiliation(s)
- Sébastien Bergeret
- Department of Nuclear Medicine, CHU French West Indies, Fort-de-France, France
| | - Mathieu Queneau
- Department of Nuclear Medicine, Centre Cardiologique du Nord, Saint-Denis, France
| | - Mathieu Rodallec
- Department of Radiology, Centre Cardiologique du Nord, Saint-Denis, France
| | - Emmanuel Curis
- Laboratoire de Biomathématiques, EA 7537 "BioSTM", Faculté de Pharmacie, Université de Paris, Paris, France.,Service de Biostatistiques et d'Information Médicale, Hôpital Saint-Louis, APHP, Paris, France
| | - Julien Dumurgier
- INSERM UMR-S 1144: Therapeutic Optimization in Neuropsychopharmacology, Université de Paris, Paris, France
| | - Jacques Hugon
- INSERM UMR-S 1144: Therapeutic Optimization in Neuropsychopharmacology, Université de Paris, Paris, France.,Cognitive Neurology Center, APHP, Saint-Louis Lariboisière Fernand-Widal Hospital Group, Paris, France
| | - Claire Paquet
- INSERM UMR-S 1144: Therapeutic Optimization in Neuropsychopharmacology, Université de Paris, Paris, France.,Cognitive Neurology Center, APHP, Saint-Louis Lariboisière Fernand-Widal Hospital Group, Paris, France
| | - Karim Farid
- Department of Nuclear Medicine, CHU French West Indies, Fort-de-France, France.,INSERM UMR-S 1144: Therapeutic Optimization in Neuropsychopharmacology, Université de Paris, Paris, France
| | - Jean-Claude Baron
- Department of Neurology, Sainte-Anne Hospital, Université de Paris, Paris, France.,INSERM U1266: Institut de Psychiatrie et Neurosciences de Paris, Université de Paris, Paris, France
| |
Collapse
|
7
|
Papanastasiou G, Rodrigues MA, Wang C, Heurling K, Lucatelli C, Salman RAS, Wardlaw JM, van Beek EJR, Thompson G. Pharmacokinetic modelling for the simultaneous assessment of perfusion and 18F-flutemetamol uptake in cerebral amyloid angiopathy using a reduced PET-MR acquisition time: Proof of concept. Neuroimage 2020; 225:117482. [PMID: 33157265 DOI: 10.1016/j.neuroimage.2020.117482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/24/2020] [Accepted: 10/19/2020] [Indexed: 01/05/2023] Open
Abstract
PURPOSE Cerebral amyloid angiopathy (CAA) is a cerebral small vessel disease associated with perivascular β-amyloid deposition. CAA is also associated with strokes due to lobar intracerebral haemorrhage (ICH). 18F-flutemetamol amyloid ligand PET may improve the early detection of CAA. We performed pharmacokinetic modelling using both full (0-30, 90-120 min) and reduced (30 min) 18F-flutemetamol PET-MR acquisitions, to investigate regional cerebral perfusion and amyloid deposition in ICH patients. METHODS Dynamic18F-flutemetamol PET-MR was performed in a pilot cohort of sixteen ICH participants; eight lobar ICH cases with probable CAA and eight deep ICH patients. A model-based input function (mIF) method was developed for compartmental modelling. mIF 1-tissue (1-TC) and 2-tissue (2-TC) compartmental modelling, reference tissue models and standardized uptake value ratios were assessed in the setting of probable CAA detection. RESULTS The mIF 1-TC model detected perfusion deficits and 18F-flutemetamol uptake in cases with probable CAA versus deep ICH patients, in both full and reduced PET acquisition time (all P < 0.05). In the reduced PET acquisition, mIF 1-TC modelling reached the highest sensitivity and specificity in detecting perfusion deficits (0.87, 0.77) and 18F-flutemetamol uptake (0.83, 0.71) in cases with probable CAA. Overall, 52 and 48 out of the 64 brain areas with 18F-flutemetamol-determined amyloid deposition showed reduced perfusion for 1-TC and 2-TC models, respectively. CONCLUSION Pharmacokinetic (1-TC) modelling using a 30 min PET-MR time frame detected impaired haemodynamics and increased amyloid load in probable CAA. Perfusion deficits and amyloid burden co-existed within cases with CAA, demonstrating a distinct imaging pattern which may have merit in elucidating the pathophysiological process of CAA.
Collapse
Affiliation(s)
- Giorgos Papanastasiou
- Edinburgh Imaging Facility, Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| | - Mark A Rodrigues
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Chengjia Wang
- Edinburgh Imaging Facility, Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | | | - Christophe Lucatelli
- Edinburgh Imaging Facility, Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | | | - Joanna M Wardlaw
- Edinburgh Imaging Facility, Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Edwin J R van Beek
- Edinburgh Imaging Facility, Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Gerard Thompson
- Edinburgh Imaging Facility, Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
8
|
Thal DR, Ronisz A, Tousseyn T, Rijal Upadhaya A, Balakrishnan K, Vandenberghe R, Vandenbulcke M, von Arnim CAF, Otto M, Beach TG, Lilja J, Heurling K, Chakrabarty A, Ismail A, Buckley C, Smith APL, Kumar S, Farrar G, Walter J. Different aspects of Alzheimer's disease-related amyloid β-peptide pathology and their relationship to amyloid positron emission tomography imaging and dementia. Acta Neuropathol Commun 2019; 7:178. [PMID: 31727169 PMCID: PMC6854805 DOI: 10.1186/s40478-019-0837-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 10/28/2019] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease (AD)-related amyloid β-peptide (Aβ) pathology in the form of amyloid plaques and cerebral amyloid angiopathy (CAA) spreads in its topographical distribution, increases in quantity, and undergoes qualitative changes in its composition of modified Aβ species throughout the pathogenesis of AD. It is not clear which of these aspects of Aβ pathology contribute to AD progression and to what extent amyloid positron emission tomography (PET) reflects each of these aspects. To address these questions three cohorts of human autopsy cases (in total n = 271) were neuropathologically and biochemically examined for the topographical distribution of Aβ pathology (plaques and CAA), its quantity and its composition. These parameters were compared with neurofibrillary tangle (NFT) and neuritic plaque pathology, the degree of dementia and the results from [18F]flutemetamol amyloid PET imaging in cohort 3. All three aspects of Aβ pathology correlated with one another, the estimation of Aβ pathology by [18F]flutemetamol PET, AD-related NFT pathology, neuritic plaques, and with the degree of dementia. These results show that one aspect of Aβ pathology can be used to predict the other two, and correlates well with the development of dementia, advancing NFT and neuritic plaque pathology. Moreover, amyloid PET estimates all three aspects of Aβ pathology in-vivo. Accordingly, amyloid PET-based estimates for staging of amyloid pathology indicate the progression status of amyloid pathology in general and, in doing so, also of AD pathology. Only 7.75% of our cases deviated from this general association.
Collapse
|
9
|
Chen SJ, Tsai HH, Tsai LK, Tang SC, Lee BC, Liu HM, Yen RF, Jeng JS. Advances in cerebral amyloid angiopathy imaging. Ther Adv Neurol Disord 2019; 12:1756286419844113. [PMID: 31105769 PMCID: PMC6501479 DOI: 10.1177/1756286419844113] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/25/2019] [Indexed: 11/16/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA) is a cerebral small vessel disease caused by β -amyloid (Aβ) deposition at the leptomeningeal vessel walls. It is a common cause of spontaneous intracerebral hemorrhage and a frequent comorbidity in Alzheimer’s disease. The high recurrent hemorrhage rate in CAA makes it very important to recognize this disease to avoid potential harmful medication. Imaging studies play an important role in diagnosis and research of CAA. Conventional computed tomography and magnetic resonance imaging (MRI) methods reveal anatomical alterations, and remains as the most reliable tool in identifying CAA according to modified Boston criteria. The vascular injuries of CAA result in both hemorrhagic and ischemic manifestations and related structural changes on MRI, including cerebral microbleeds, cortical superficial siderosis, white matter hyperintensity, MRI-visible perivascular spaces, and cortical microinfarcts. As imaging techniques advance, not only does the resolution of conventional imaging improve, but novel skills in functional and molecular imaging studies also enable in vivo analysis of vessel physiological changes and underlying pathology. These modern tools help in early detection of CAA and may potentially serve as sensitive outcome markers in future clinical trials. In this article, we reviewed past studies of CAA focusing on utilization of various conventional and novel imaging techniques in both research and clinical aspects.
Collapse
Affiliation(s)
- Szu-Ju Chen
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan Department of Neurology, En Chu Kong Hospital, New Taipei City, Taiwan
| | - Hsin-Hsi Tsai
- Department of Neurology, National Taiwan University Hospital Bei-Hu Branch, No. 87, Neijiang Street, Taipei, 10845, Taiwan
| | - Li-Kai Tsai
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Sung-Chun Tang
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Bo-Chin Lee
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan
| | - Hon-Man Liu
- Department of Medical Imaging, Fu-Jen Catholic University Hospital, New Taipei City, Taiwan
| | - Ruoh-Fang Yen
- Department of Nuclear Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jiann-Shing Jeng
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
10
|
Sheikh-Bahaei N, Manavaki R, Sajjadi SA, Priest AN, O’Brien JT, Gillard JH. Correlation of Lobar Cerebral Microbleeds with Amyloid, Perfusion, and Metabolism in Alzheimer’s Disease. J Alzheimers Dis 2019; 68:1489-1497. [DOI: 10.3233/jad-180443] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Nasim Sheikh-Bahaei
- Department of Radiology, Keck School of Medicine of USC, University of Southern California, USA
| | - Roido Manavaki
- Department of Radiology, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - S. Ahmad Sajjadi
- Department of Neurology, University of California Irvine, CA, USA
| | - Andrew N. Priest
- Department of Radiology, Cambridge University Hospitals, Cambridge, UK
| | - John T. O’Brien
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Jonathan H. Gillard
- Department of Radiology, University of Cambridge School of Clinical Medicine, Cambridge, UK
| |
Collapse
|
11
|
Florek L, Tiepolt S, Schroeter ML, Berrouschot J, Saur D, Hesse S, Jochimsen T, Luthardt J, Sattler B, Patt M, Hoffmann KT, Villringer A, Classen J, Gertz HJ, Sabri O, Barthel H. Dual Time-Point [18F]Florbetaben PET Delivers Dual Biomarker Information in Mild Cognitive Impairment and Alzheimer’s Disease. J Alzheimers Dis 2018; 66:1105-1116. [DOI: 10.3233/jad-180522] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Lisa Florek
- Department of Nuclear Medicine, Leipzig University Hospital, Leipzig, Germany
| | - Solveig Tiepolt
- Department of Nuclear Medicine, Leipzig University Hospital, Leipzig, Germany
| | - Matthias L. Schroeter
- Day Clinic for Cognitive Neurology, Leipzig University Hospital & Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | | | - Dorothee Saur
- Department of Neurology, Leipzig University Hospital, Leipzig, Germany
| | - Swen Hesse
- Department of Nuclear Medicine, Leipzig University Hospital, Leipzig, Germany
- IFB Adiposity Diseases, Leipzig University Hospital, Leipzig, Germany
| | - Thies Jochimsen
- Department of Nuclear Medicine, Leipzig University Hospital, Leipzig, Germany
| | - Julia Luthardt
- Department of Nuclear Medicine, Leipzig University Hospital, Leipzig, Germany
| | - Bernhard Sattler
- Department of Nuclear Medicine, Leipzig University Hospital, Leipzig, Germany
| | - Marianne Patt
- Department of Nuclear Medicine, Leipzig University Hospital, Leipzig, Germany
| | | | - Arno Villringer
- IFB Adiposity Diseases, Leipzig University Hospital, Leipzig, Germany
- Day Clinic for Cognitive Neurology, Leipzig University Hospital & Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Joseph Classen
- Department of Neurology, Leipzig University Hospital, Leipzig, Germany
| | | | - Osama Sabri
- Department of Nuclear Medicine, Leipzig University Hospital, Leipzig, Germany
| | - Henryk Barthel
- Department of Nuclear Medicine, Leipzig University Hospital, Leipzig, Germany
| |
Collapse
|
12
|
Joseph-Mathurin N, Su Y, Blazey TM, Jasielec M, Vlassenko A, Friedrichsen K, Gordon BA, Hornbeck RC, Cash L, Ances BM, Veale T, Cash DM, Brickman AM, Buckles V, Cairns NJ, Cruchaga C, Goate A, Jack CR, Karch C, Klunk W, Koeppe RA, Marcus DS, Mayeux R, McDade E, Noble JM, Ringman J, Saykin AJ, Thompson PM, Xiong C, Morris JC, Bateman RJ, Benzinger TL. Utility of perfusion PET measures to assess neuronal injury in Alzheimer's disease. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2018; 10:669-677. [PMID: 30417072 PMCID: PMC6215983 DOI: 10.1016/j.dadm.2018.08.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
INTRODUCTION 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) is commonly used to estimate neuronal injury in Alzheimer's disease (AD). Here, we evaluate the utility of dynamic PET measures of perfusion using 11C-Pittsburgh compound B (PiB) to estimate neuronal injury in comparison to FDG PET. METHODS FDG, early frames of PiB images, and relative PiB delivery rate constants (PiB-R1) were obtained from 110 participants from the Dominantly Inherited Alzheimer Network. Voxelwise, regional cross-sectional, and longitudinal analyses were done to evaluate the correlation between images and estimate the relationship of the imaging biomarkers with estimated time to disease progression based on family history. RESULTS Metabolism and perfusion images were spatially correlated. Regional PiB-R1 values and FDG, but not early frames of PiB images, significantly decreased in the mutation carriers with estimated year to onset and with increasing dementia severity. DISCUSSION Hypometabolism estimated by PiB-R1 may provide a measure of brain perfusion without increasing radiation exposure.
Collapse
Affiliation(s)
- Nelly Joseph-Mathurin
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Yi Su
- Banner Alzheimer's Institute, Phoenix, AZ, USA
| | - Tyler M. Blazey
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Mateusz Jasielec
- Division of Biostatistics, Washington University School of Medicine, Saint Louis, MO, USA
| | - Andrei Vlassenko
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Karl Friedrichsen
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Brian A. Gordon
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Russ C. Hornbeck
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Lisa Cash
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Beau M. Ances
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Thomas Veale
- Dementia Research Centre, UCL Institute of Neurology, London, UK
| | - David M. Cash
- Dementia Research Centre, UCL Institute of Neurology, London, UK
| | - Adam M. Brickman
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Virginia Buckles
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Nigel J. Cairns
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| | - Alison Goate
- Neuroscience Department Laboratories, Mount Sinai School of Medicine, New York, NY, USA
| | | | - Celeste Karch
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - William Klunk
- Departments of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Robert A. Koeppe
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Daniel S. Marcus
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Richard Mayeux
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Eric McDade
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - James M. Noble
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - John Ringman
- Memory and Aging Center, Department of Neurology, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | - Andrew J. Saykin
- Center for Neuroimaging, Department of Radiology and Imaging Science, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Paul M. Thompson
- Laboratory of Neuroimaging, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Chengjie Xiong
- Division of Biostatistics, Washington University School of Medicine, Saint Louis, MO, USA
| | - John C. Morris
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Randall J. Bateman
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Tammie L.S. Benzinger
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | | |
Collapse
|
13
|
Nobili F, Cagnin A, Calcagni ML, Chincarini A, Guerra UP, Morbelli S, Padovani A, Paghera B, Pappatà S, Parnetti L, Sestini S, Schillaci O. Emerging topics and practical aspects for an appropriate use of amyloid PET in the current Italian context. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2018; 63:83-92. [PMID: 29697220 DOI: 10.23736/s1824-4785.18.03069-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In May 2017 some representatives of the Italian nuclear medicine and neurological communities spontaneously met to discuss the issues emerged during the first two years of routine application of amyloid PET with fluorinated radiopharmaceuticals in the real world. The limitations of a binary classification of scans, the possibility to obtain early images as a surrogate marker of regional cerebral bloos flow, the need for (semi-)quantification and, thus, the opportunity of ranking brain amyloidosis, the correlation with Aβ42 levels in the cerebrospinal fluid, the occurrence and biological meaning of uncertain/boderline scans, the issue of incidental amyloidosis, the technical pittfalls leading to false negative/positive results, the position of the tool in the diagnostic flow-chart in the national reality, are the main topics that have been discussed. Also, a card to justify the examination to be filled by the dementia specialist and a card for the nuclear medicine physician to report the exam in detail have been approved and are available in the web, which should facilitate the creation of a national register, as previewed by the 2015 intersocietal recommendation on the use of amyloid PET in Italy. The content of this discussion could stimulate both public institutions and companies to support further research on these topics.
Collapse
Affiliation(s)
- Flavio Nobili
- Department of Neuroscience (DINOGMI), University of Genoa and Neurology Clinic, San Martino Polyclinic Hospital, Genoa, Italy -
| | - Annachiara Cagnin
- Department of Neurosciences (DNS), University of Padua, Padua, Italy.,San Camillo IRCCS Hospital, Venice, Italy
| | - Maria L Calcagni
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea Chincarini
- National Institute for Nuclear Physics (INFN), Genoa Section, Genoa, Italy
| | - Ugo P Guerra
- Unit of Nuclear Medicine, Poliambulanza Fundation, Brescia, Italy
| | - Silvia Morbelli
- Unit of Nuclear Medicine, Department of Health Sciences (DISSAL), Polyclinic San Martino Hospital, University of Genoa, Genoa, Italy
| | - Alessandro Padovani
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.,Neurology Clinic, Spedali Civili, Brescia, Italy
| | - Barbara Paghera
- Unit of Nuclear Medicine, ASST-Spedali Civili, University of Brescia, Brescia, Italy
| | - Sabina Pappatà
- Institute of Biostructure and Bioimaging, National Research Council, Naples, Italy
| | - Lucilla Parnetti
- Center for Memory Disorders, Laboratory of Clinical Neurochemistry, Neurology Clinic, University of Perugia, Perugia, Italy
| | - Stelvio Sestini
- Unit of Nuclear Medicine, Department of Diagnostic Imaging, N.O.P. - S. Stefano, U.S.L. Toscana Centro, Prato, Italy
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.,IRCCS Neuromed, Rome, Italy
| |
Collapse
|
14
|
Charidimou A, Farid K, Tsai HH, Tsai LK, Yen RF, Baron JC. Amyloid-PET burden and regional distribution in cerebral amyloid angiopathy: a systematic review and meta-analysis of biomarker performance. J Neurol Neurosurg Psychiatry 2018; 89:410-417. [PMID: 29070646 DOI: 10.1136/jnnp-2017-316851] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/28/2017] [Accepted: 10/02/2017] [Indexed: 11/04/2022]
Abstract
INTRODUCTION We performed a meta-analysis to synthesise current evidence on amyloid-positron emission tomography (PET) burden and presumed preferential occipital distribution in sporadic cerebral amyloid angiopathy (CAA). METHODS In a PubMed systematic search, we identified case-control studies with extractable data on global and occipital-to-global amyloid-PET uptake in symptomatic patients with CAA (per Boston criteria) versus control groups (healthy participants or patients with non-CAA deep intracerebral haemorrhage) and patients with Alzheimer's disease. To circumvent PET studies' methodological variation, we generated and used 'fold change', that is, ratio of mean amyloid uptake (global and occipital-to-global) of CAA relative to comparison groups. Amyloid-PET uptake biomarker performance was then quantified by random-effects meta-analysis on the ratios of the means. A ratio >1 indicates that amyloid-PET uptake (global or occipital/global) is higher in CAA than comparison groups, and a ratio <1 indicates the reverse. RESULTS Seven studies, including 106 patients with CAA (>90% with probable CAA) and 138 controls (96 healthy elderly, 42 deep intracerebral haemorrhage controls) and 72 patients with Alzheimer's disease, were included. Global amyloid-PET ratio between patients with CAA and controls was above 1, with an average effect size of 1.18 (95% CI 1.08 to 1.28; p<0.0001). Occipital-to-global amyloid-PET uptake ratio did not differ between patients with CAA versus patients with deep intracerebral haemorrhage or healthy controls. By contrast, occipital-to-global amyloid-PET uptake ratio was above 1 in patients with CAA versus those with Alzheimer's disease, with an average ratio of 1.10 (95% CI 1.03 to 1.19; p=0.009) and high statistical heterogeneity. CONCLUSIONS Our analysis provides exploratory actionable data on the overall effect sizes and strength of amyloid-PET burden and distribution in patients with CAA, useful for future larger studies.
Collapse
Affiliation(s)
- Andreas Charidimou
- Hemorrhagic Stroke Research Group, Department of Neurology, J Philip Kistler Stroke Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Karim Farid
- Department of Nuclear Medicine, Martinique University Hospital, Fort-de-France, French West Indies
| | - Hsin-Hsi Tsai
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Li-Kai Tsai
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Rouh-Fang Yen
- Department of Nuclear Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
| | - Jean-Claude Baron
- Department of Neurology, Centre Hospitalier Sainte Anne, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
15
|
Renard D, Gabelle A, Hirtz C, Demattei C, Thouvenot E, Lehmann S. Cerebrospinal Fluid Alzheimer's Disease Biomarkers in Isolated Supratentorial Cortical Superficial Siderosis. J Alzheimers Dis 2018; 54:1291-1295. [PMID: 27567848 DOI: 10.3233/jad-160400] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We evaluated cerebrospinal fluid amyloid-β 1-40 (Aβ40), amyloid-β 1-42 (Aβ42), total and phosphorylated-tau (t-tau and p-tau) in patients with symptomatic isolated cortical supratentorial superficial siderosis (SS), by prospectively recruiting ten patients with SS in the absence of pre-existing cognitive dysfunction, and comparing biomarkers with lobar hematoma cerebral amyloid angiopathy patients (LH-CAA, n = 13), Alzheimer's disease patients (AD, n = 42), and controls (n = 16). Compared to controls, SS patients showed statistically significant higher t-tau (p = 0.019) and lower Aβ42 (p = 0.0084). Compared to other groups, SS showed statistically significant lower t-tau, p-tau, and Aβ40 compared to AD (p = 0.0063, p = 0.0004, and p = 0022, respectively), and higher p-tau compared to LH-CAA (p = 0.012).
Collapse
Affiliation(s)
- Dimitri Renard
- Department of Neurology, CHU Nîmes, Hôpital Caremeau, Nîmes Cedex 4, France
| | - Audrey Gabelle
- Laboratoire de Biochimie-Protéomique Clinique - IRMB - CCBHM - Inserm U11183, CHU Montpellier, Hôpital St-Eloi - Université Montpellier, Montpellier Cedex 5, France.,Centre Mémoire de Ressources et de Recherche Montpellier, Département de Neurologie, CHU Montpellier, Hôpital Gui de Chauliac - Université de Montpellier, Montpellier Cedex 5, France
| | - Christophe Hirtz
- Laboratoire de Biochimie-Protéomique Clinique - IRMB - CCBHM - Inserm U11183, CHU Montpellier, Hôpital St-Eloi - Université Montpellier, Montpellier Cedex 5, France
| | - Christophe Demattei
- Department of biostatistics (BESPIM), Nîmes University Hospital, Nîmes cedex 9, France
| | - Eric Thouvenot
- Department of Neurology, CHU Nîmes, Hôpital Caremeau, Nîmes Cedex 4, France.,Institut de Génomique Fonctionnelle, UMR5203, Université Montpellier, Montpellier Cedex 5, France
| | - Sylvain Lehmann
- Laboratoire de Biochimie-Protéomique Clinique - IRMB - CCBHM - Inserm U11183, CHU Montpellier, Hôpital St-Eloi - Université Montpellier, Montpellier Cedex 5, France
| |
Collapse
|
16
|
Leuzy A, Rodriguez-Vieitez E, Saint-Aubert L, Chiotis K, Almkvist O, Savitcheva I, Jonasson M, Lubberink M, Wall A, Antoni G, Nordberg A. Longitudinal uncoupling of cerebral perfusion, glucose metabolism, and tau deposition in Alzheimer's disease. Alzheimers Dement 2017; 14:652-663. [PMID: 29268078 DOI: 10.1016/j.jalz.2017.11.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 12/01/2022]
Abstract
INTRODUCTION Cross-sectional findings using the tau tracer [18F]THK5317 (THK5317) have shown that [18F]fluorodeoxyglucose (FDG) positron emission tomography (PET) data can be approximated using perfusion measures (early-frame standardized uptake value ratio; ratio of tracer delivery in target to reference regions). In this way, a single PET study can provide both functional and molecular information. METHODS We included 16 patients with Alzheimer's disease who completed follow-up THK5317 and FDG studies 17 months after baseline investigations. Linear mixed-effects models and annual percentage change maps were used to examine longitudinal change. RESULTS Limited spatial overlap was observed between areas showing declines in THK5317 perfusion measures and FDG. Minimal overlap was seen between areas showing functional change and those showing increased retention of THK5317. DISCUSSION Our findings suggest a spatiotemporal offset between functional changes and tau pathology and a partial uncoupling between perfusion and metabolism, possibly as a function of Alzheimer's disease severity.
Collapse
Affiliation(s)
- Antoine Leuzy
- Division of Translational Alzheimer Neurobiology, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
| | - Elena Rodriguez-Vieitez
- Division of Translational Alzheimer Neurobiology, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
| | - Laure Saint-Aubert
- Division of Translational Alzheimer Neurobiology, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
| | - Konstantinos Chiotis
- Division of Translational Alzheimer Neurobiology, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
| | - Ove Almkvist
- Division of Translational Alzheimer Neurobiology, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Department of Geriatric Medicine, Karolinska University Hospital, Huddinge, Sweden; Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Irina Savitcheva
- Department of Radiology, Karolinska University Hospital, Huddinge, Sweden
| | - My Jonasson
- Radiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden; Department of Medical Physics, Uppsala University Hospital, Uppsala, Sweden
| | - Mark Lubberink
- Radiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden; Department of Medical Physics, Uppsala University Hospital, Uppsala, Sweden
| | - Anders Wall
- Radiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden; Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Gunnar Antoni
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Agneta Nordberg
- Division of Translational Alzheimer Neurobiology, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Department of Geriatric Medicine, Karolinska University Hospital, Huddinge, Sweden.
| |
Collapse
|
17
|
Banerjee G, Carare R, Cordonnier C, Greenberg SM, Schneider JA, Smith EE, Buchem MV, Grond JVD, Verbeek MM, Werring DJ. The increasing impact of cerebral amyloid angiopathy: essential new insights for clinical practice. J Neurol Neurosurg Psychiatry 2017; 88:982-994. [PMID: 28844070 PMCID: PMC5740546 DOI: 10.1136/jnnp-2016-314697] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/26/2017] [Accepted: 05/18/2017] [Indexed: 12/29/2022]
Abstract
Cerebral amyloid angiopathy (CAA) has never been more relevant. The last 5 years have seen a rapid increase in publications and research in the field, with the development of new biomarkers for the disease, thanks to advances in MRI, amyloid positron emission tomography and cerebrospinal fluid biomarker analysis. The inadvertent development of CAA-like pathology in patients treated with amyloid-beta immunotherapy for Alzheimer's disease has highlighted the importance of establishing how and why CAA develops; without this information, the use of these treatments may be unnecessarily restricted. Our understanding of the clinical and radiological spectrum of CAA has continued to evolve, and there are new insights into the independent impact that CAA has on cognition in the context of ageing and intracerebral haemorrhage, as well as in Alzheimer's and other dementias. While the association between CAA and lobar intracerebral haemorrhage (with its high recurrence risk) is now well recognised, a number of management dilemmas remain, particularly when considering the use of antithrombotics, anticoagulants and statins. The Boston criteria for CAA, in use in one form or another for the last 20 years, are now being reviewed to reflect these new wide-ranging clinical and radiological findings. This review aims to provide a 5-year update on these recent advances, as well as a look towards future directions for CAA research and clinical practice.
Collapse
Affiliation(s)
- Gargi Banerjee
- Stroke Research Centre, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, UK
| | - Roxana Carare
- Division of Clinical Neurosciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Charlotte Cordonnier
- Department of Neurology, Université de Lille, Inserm U1171, Degenerative and Vascular Cognitive Disorders, Centre Hospitalier Régional Universitaire de Lille, Lille, France
| | - Steven M Greenberg
- J P Kistler Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Julie A Schneider
- Departments of Pathology and Neurological Sciences, Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Eric E Smith
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Mark van Buchem
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen van der Grond
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marcel M Verbeek
- Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.,Departments of Neurology and Laboratory Medicine, Radboud Alzheimer Center, Nijmegen, The Netherlands
| | - David J Werring
- Stroke Research Centre, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
18
|
Charidimou A, Boulouis G, Gurol ME, Ayata C, Bacskai BJ, Frosch MP, Viswanathan A, Greenberg SM. Emerging concepts in sporadic cerebral amyloid angiopathy. Brain 2017; 140:1829-1850. [PMID: 28334869 DOI: 10.1093/brain/awx047] [Citation(s) in RCA: 327] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 01/17/2017] [Indexed: 12/27/2022] Open
Abstract
Sporadic cerebral amyloid angiopathy is a common, well-defined small vessel disease and a largely untreatable cause of intracerebral haemorrhage and contributor to age-related cognitive decline. The term 'cerebral amyloid angiopathy' now encompasses not only a specific cerebrovascular pathological finding, but also different clinical syndromes (both acute and progressive), brain parenchymal lesions seen on neuroimaging and a set of diagnostic criteria-the Boston criteria, which have resulted in increasingly detected disease during life. Over the past few years, it has become clear that, at the pathophysiological level, cerebral amyloid angiopathy appears to be in part a protein elimination failure angiopathy and that this dysfunction is a feed-forward process, which potentially leads to worsening vascular amyloid-β accumulation, activation of vascular injury pathways and impaired vascular physiology. From a clinical standpoint, cerebral amyloid angiopathy is characterized by individual focal lesions (microbleeds, cortical superficial siderosis, microinfarcts) and large-scale alterations (white matter hyperintensities, structural connectivity, cortical thickness), both cortical and subcortical. This review provides an interdisciplinary critical outlook on various emerging and changing concepts in the field, illustrating mechanisms associated with amyloid cerebrovascular pathology and neurological dysfunction.
Collapse
Affiliation(s)
- Andreas Charidimou
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, MA, USA
| | - Gregoire Boulouis
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, MA, USA
| | - M Edip Gurol
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, MA, USA
| | - Cenk Ayata
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.,Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Brian J Bacskai
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16th St., Charlestown, MA 02129, USA
| | - Matthew P Frosch
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16th St., Charlestown, MA 02129, USA.,C.S. Kubik Laboratory for Neuropathology, Department of Pathology, Massachusetts General Hospital and Harvard Medical School, 114, 16th St., Charlestown, MA 02129, USA
| | - Anand Viswanathan
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, MA, USA
| | - Steven M Greenberg
- Hemorrhagic Stroke Research Program, Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, MA, USA.,Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16th St., Charlestown, MA 02129, USA
| |
Collapse
|
19
|
Charidimou A, Farid K, Baron JC. Amyloid-PET in sporadic cerebral amyloid angiopathy: A diagnostic accuracy meta-analysis. Neurology 2017; 89:1490-1498. [PMID: 28855406 DOI: 10.1212/wnl.0000000000004539] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/02/2017] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE To perform a meta-analysis synthesizing evidence of the value and accuracy of amyloid-PET in diagnosing patients with sporadic cerebral amyloid angiopathy (CAA). METHODS In a PubMed systematic literature search, we identified all case-control studies with extractable data relevant for the sensitivity and specificity of amyloid-PET positivity in symptomatic patients with CAA (cases) vs healthy participants or patients with spontaneous deep intracerebral hemorrhage (ICH) (control groups). Using a hierarchical (multilevel) logistic regression model, we calculated pooled diagnostic test accuracy. RESULTS Seven studies, including 106 patients with CAA (>90% with probable CAA) and 151 controls, were eligible and included in the meta-analysis. The studies were of moderate to high quality and varied in several methodological aspects, including definition of PET-positive and PET-negative cases and relevant cutoffs. The sensitivity of amyloid-PET for CAA diagnosis ranged from 60% to 91% and the specificity from 56% to 90%. The overall pooled sensitivity was 79% (95% confidence interval [CI] 62-89) and specificity was 78% (95% CI 67-86) for CAA diagnosis. A predefined subgroup analysis of studies restricted to symptomatic patients presenting with lobar ICH CAA (n = 58 vs 86 controls) resulted in 79% sensitivity (95% CI 61-90%) and 84% specificity (95% CI 65-93%). In prespecified bivariate diagnostic accuracy meta-analysis of 2 studies using 18F-florbetapir-PET, the sensitivity for CAA-ICH diagnosis was 90% (95% CI 76-100%) and specificity was 88% (95% CI 74-100%). CONCLUSIONS Amyloid-PET appears to have moderate to good diagnostic accuracy in differentiating patients with probable CAA from cognitively normal healthy controls or patients with deep ICH. Given that amyloid-PET labels both cerebrovascular and parenchymal amyloid, a negative scan might be useful to rule out CAA in the appropriate clinical setting.
Collapse
Affiliation(s)
- Andreas Charidimou
- From the Massachusetts General Hospital (A.C.), Stroke Research Center, Harvard Medical School, Boston; Department of Nuclear Medicine (K.F.), Martinique University Hospital, Fort-de-France, French West Indies; and Department of Neurology (J.-C.B.), Centre Hospitalier Sainte Anne, Inserm U894, Sorbonne Paris Cité, France.
| | - Karim Farid
- From the Massachusetts General Hospital (A.C.), Stroke Research Center, Harvard Medical School, Boston; Department of Nuclear Medicine (K.F.), Martinique University Hospital, Fort-de-France, French West Indies; and Department of Neurology (J.-C.B.), Centre Hospitalier Sainte Anne, Inserm U894, Sorbonne Paris Cité, France
| | - Jean-Claude Baron
- From the Massachusetts General Hospital (A.C.), Stroke Research Center, Harvard Medical School, Boston; Department of Nuclear Medicine (K.F.), Martinique University Hospital, Fort-de-France, French West Indies; and Department of Neurology (J.-C.B.), Centre Hospitalier Sainte Anne, Inserm U894, Sorbonne Paris Cité, France
| |
Collapse
|
20
|
Farid K, Charidimou A, Baron JC. Amyloid positron emission tomography in sporadic cerebral amyloid angiopathy: A systematic critical update. NEUROIMAGE-CLINICAL 2017; 15:247-263. [PMID: 28560150 PMCID: PMC5435601 DOI: 10.1016/j.nicl.2017.05.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/02/2017] [Accepted: 05/04/2017] [Indexed: 01/07/2023]
Abstract
Sporadic cerebral amyloid angiopathy (CAA) is a very common small vessel disease of the brain, showing preferential and progressive amyloid-βdeposition in the wall of small arterioles and capillaries of the leptomeninges and cerebral cortex. CAA now encompasses not only a specific cerebrovascular pathological trait, but also different clinical syndromes - including spontaneous lobar intracerebral haemorrhage (ICH), dementia and ‘amyloid spells’ - an expanding spectrum of brain parenchymal MRI lesions and a set of diagnostic criteria – the Boston criteria, which have resulted in increasingly detecting CAA during life. Although currently available validated diagnostic criteria perform well in multiple lobar ICH, a formal diagnosis is currently lacking unless a brain biopsy is performed. This is partly because in practice CAA MRI biomarkers provide only indirect evidence for the disease. An accurate diagnosis of CAA in different clinical settings would have substantial impact for ICH risk stratification and antithrombotic drug use in elderly people, but also for sample homogeneity in drug trials. It has recently been demonstrated that vascular (in addition to parenchymal) amyloid-βdeposition can be detected and quantified in vivo by positron emission tomography (PET) amyloid tracers. This non-invasive approach has the potential to provide a molecular signature of CAA, and could in turn have major clinical impact. However, several issues around amyloid-PET in CAA remain unsettled and hence its diagnostic utility is limited. In this article we systematically review and critically appraise the published literature on amyloid-PET (PiB and other tracers) in sporadic CAA. We focus on two key areas: (a) the diagnostic utility of amyloid-PET in CAA and (b) the use of amyloid-PET as a window to understand pathophysiological mechanism of the disease. Key issues around amyloid-PET imaging in CAA, including relevant technical aspects are also covered in depth. A total of six small-scale studies have addressed (or reported data useful to address) the diagnostic utility of late-phase amyloid PET imaging in CAA, and one additional study dealt with early PiB images as a proxy of brain perfusion. Across these studies, amyloid PET imaging has definite diagnostic utility (currently tested only in probable CAA): it helps rule out CAA if negative, whether compared to healthy controls or to hypertensive deep ICH controls. If positive, however, differentiation from underlying incipient Alzheimer's disease (AD) can be challenging and so far, no approach (regional values, ratios, visual assessment) seems sufficient and specific enough, although early PiB data seem to hold promise. Based on the available evidence reviewed, we suggest a tentative diagnostic flow algorithm for amyloid-PET use in the clinical setting of suspected CAA, combining early- and late-phase PiB-PET images. We also identified ten mechanistic amyloid-PET studies providing early but promising proof-of-concept data on CAA pathophysiology and its various manifestations including key MRI lesions, cognitive impairment and large scale brain alterations. Key open questions that should be addressed in future studies of amyloid-PET imaging in CAA are identified and highlighted. CAA is a major cause of brain haemorrhage and cognitive impairment in aged subjects. Without brain biopsy, its current diagnosis largely relies on indirect MRI markers. Amyloid PET may provide a non-invasive molecular signature to formally diagnose CAA. Based on our review, amyloid PET has excellent sensitivity but specificity is unclear. Amyloid PET is also useful to investigate mechanisms underlying CAA manifestations.
Collapse
Affiliation(s)
- Karim Farid
- Department of Nuclear Medicine, Martinique University Hospital, Fort-de-France, Martinique
| | - Andreas Charidimou
- Massachusetts General Hospital, Department of Neurology, Stroke Research Center, Harvard Medical School, Boston, MA, USA
| | - Jean-Claude Baron
- U894, Centre Hospitalier Sainte Anne, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
21
|
Rodriguez-Vieitez E, Leuzy A, Chiotis K, Saint-Aubert L, Wall A, Nordberg A. Comparability of [ 18F]THK5317 and [ 11C]PIB blood flow proxy images with [ 18F]FDG positron emission tomography in Alzheimer's disease. J Cereb Blood Flow Metab 2017; 37:740-749. [PMID: 27107028 PMCID: PMC5381463 DOI: 10.1177/0271678x16645593] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
For amyloid positron emission tomography tracers, the simplified reference tissue model derived ratio of influx rate in target relative to reference region (R1) has been shown to serve as a marker of brain perfusion, and, due to the strong coupling between perfusion and metabolism, as a proxy for glucose metabolism. In the present study, 11 prodromal Alzheimer's disease and nine Alzheimer's disease dementia patients underwent [18F]THK5317, carbon-11 Pittsburgh Compound-B ([11C]PIB), and 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) positron emission tomography to assess the possible use of early-phase [18F]THK5317 and R1 as proxies for brain perfusion, and thus, for glucose metabolism. Discriminative performance (prodromal vs Alzheimer's disease dementia) of [18F]THK5317 (early-phase SUVr and R1) was compared with that of [11C]PIB (early-phase SUVr and R1) and [18F]FDG. Strong positive correlations were found between [18F]THK5317 (early-phase, R1) and [18F]FDG, particularly in frontal and temporoparietal regions. Differences in correlations between early-phase and R1 ([18F]THK5317 and [11C]PIB) and [18F]FDG, were not statistically significant, nor were differences in area under the curve values in the discriminative analysis. Our findings suggest that early-phase [18F]THK5317 and R1 provide information on brain perfusion, closely related to glucose metabolism. As such, a single positron emission tomography study with [18F]THK5317 may provide information about both tau pathology and brain perfusion in Alzheimer's disease, with potential clinical applications.
Collapse
Affiliation(s)
| | - Antoine Leuzy
- 1 Department NVS, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Anders Wall
- 2 Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Agneta Nordberg
- 1 Department NVS, Karolinska Institutet, Stockholm, Sweden.,3 Department of Geriatric Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
22
|
Dual-phase amyloid PET: hitting two birds with one stone. Eur J Nucl Med Mol Imaging 2016; 43:1300-3. [DOI: 10.1007/s00259-016-3393-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 10/21/2022]
|
23
|
Strømland Ø, Jakubec M, Furse S, Halskau Ø. Detection of misfolded protein aggregates from a clinical perspective. J Clin Transl Res 2016; 2:11-26. [PMID: 30873457 PMCID: PMC6410640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 03/22/2016] [Accepted: 03/22/2016] [Indexed: 11/29/2022] Open
Abstract
Neurodegenerative Protein Misfolding Diseases (PMDs), such as Alzheimer's (AD), Parkinson's (PD) and prion diseases, are generally difficult to diagnose before irreversible damage to the central nervous system damage has occurred. Detection of the misfolded proteins that ultimately lead to these conditions offers a means for providing early detection and diagnosis of this class of disease. In this review, we discuss recent developments surrounding protein misfolding diseases with emphasis on the cytotoxic oligomers implicated in their aetiology. We also discuss the relationship of misfolded proteins with biological membranes. Finally, we discuss how far techniques for providing early diagnoses for PMDs have advanced and describe promising clinical approaches. We conclude that antibodies with specificity towards oligomeric species of AD and PD and lectins with specificity for particular glycosylation, show promise. However, it is not clear which approach may yield a reliable clinical test first. Relevance for patients: Individuals suffering from protein misfolding diseases will likely benefit form earlier, less- or even non-invasive diagnosis techniques. The current state and possible future directions for these are subject of this review.
Collapse
Affiliation(s)
- Øyvind Strømland
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | - Martin Jakubec
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | - Samuel Furse
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | - Øyvind Halskau
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| |
Collapse
|
24
|
Imaging characteristic of dual-phase 18F-florbetapir (AV-45/Amyvid) PET for the concomitant detection of perfusion deficits and beta-amyloid deposition in Alzheimer’s disease and mild cognitive impairment. Eur J Nucl Med Mol Imaging 2016; 43:1304-14. [DOI: 10.1007/s00259-016-3359-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 02/28/2016] [Indexed: 10/22/2022]
|