1
|
Lysines Acetylome and Methylome Profiling of H3 and H4 Histones in Trichostatin A-Treated Stem Cells. Int J Mol Sci 2021; 22:ijms22042063. [PMID: 33669725 PMCID: PMC7921975 DOI: 10.3390/ijms22042063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Trichostatin A ([R-(E,E)]-7-[4-(dimethylamino) phenyl]-N-hydroxy- 4,6-dimethyl- 7-oxo-2,4-heptadienamide, TSA) affects chromatin state through its potent histone deacetylase inhibitory activity. Interfering with the removal of acetyl groups from lysine residues in histones is one of many epigenetic regulatory processes that control gene expression. Histone deacetylase inhibition drives cells toward the differentiation stage, favoring the activation of specific genes. In this paper, we investigated the effects of TSA on H3 and H4 lysine acetylome and methylome profiling in mice embryonic stem cells (ES14), treated with trichostatin A (TSA) by using a new, untargeted approach, consisting of trypsin-limited proteolysis experiments coupled with MALDI-MS and LC-MS/MS analyses. The method was firstly set up on standard chicken core histones to probe the optimized conditions in terms of enzyme:substrate (E:S) ratio and time of proteolysis and, then, applied to investigate the global variations of the acetylation and methylation state of lysine residues of H3 and H4 histone in the embryonic stem cells (ES14) stimulated by TSA and addressed to differentiation. The proposed strategy was found in its simplicity to be extremely effective in achieving the identification and relative quantification of some of the most significant epigenetic modifications, such as acetylation and lysine methylation. Therefore, we believe that it can be used with equal success in wider studies concerning the characterization of all epigenetic modifications.
Collapse
|
2
|
Dominoni DM, de Jong M, Bellingham M, O'Shaughnessy P, van Oers K, Robinson J, Smith B, Visser ME, Helm B. Dose-response effects of light at night on the reproductive physiology of great tits (Parus major): Integrating morphological analyses with candidate gene expression. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2018; 329:473-487. [PMID: 30058288 PMCID: PMC6220976 DOI: 10.1002/jez.2214] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 06/04/2018] [Accepted: 06/28/2018] [Indexed: 01/07/2023]
Abstract
Artificial light at night (ALAN) is increasingly recognized as a potential threat to wildlife and ecosystem health. Among the ecological effects of ALAN, changes in reproductive timing are frequently reported, but the mechanisms underlying this relationship are still poorly understood. Here, we experimentally investigated these mechanisms by assessing dose‐dependent photoperiodic responses to ALAN in the great tit (Parus major). We individually exposed photosensitive male birds to one of three nocturnal light levels (0.5, 1.5, and 5 lux), or to a dark control. Subsequent histological and molecular analyses on their testes indicated a dose‐dependent reproductive response to ALAN. Specifically, different stages of gonadal growth were activated after exposure to different levels of light at night. mRNA transcript levels of genes linked to the development of germ cells (stra8 and spo11) were increased under 0.5 lux compared to the dark control. The 0.5 and 1.5 lux groups showed slight increases in testis size and transcript levels associated with steroid synthesis (lhr and hsd3b1) and spermatogenesis (fshr, wt1, sox9, and cldn11), although spermatogenesis was not detected in histological analysis. In contrast, all birds under 5 lux had 10 to 30 times larger testes than birds in all other groups, with a parallel strong increase in mRNA transcript levels and clear signs of spermatogenesis. Across treatments, the volume of the testes was generally a good predictor of testicular transcript levels. Overall, our findings indicate that even small changes in nocturnal light intensity can increase, or decrease, effects on the reproductive physiology of wild organisms.
Collapse
Affiliation(s)
- Davide M Dominoni
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK.,Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Maaike de Jong
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Michelle Bellingham
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Peter O'Shaughnessy
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Kees van Oers
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Jane Robinson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Bethany Smith
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Marcel E Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Barbara Helm
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK.,GELIFES, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
3
|
JAK-STAT signaling regulation of chicken embryonic stem cell differentiation into male germ cells. In Vitro Cell Dev Biol Anim 2017; 53:728-743. [PMID: 28597334 DOI: 10.1007/s11626-017-0167-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 04/26/2017] [Indexed: 12/14/2022]
Abstract
The Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling is crucial in chicken germ stem cell differentiation, but its role in the regulation of germ cell differentiation is unknown. To address this, cucurbitacin I or interleukin 6 was used to inhibit or activate JAK-STAT signaling during embryonic stem cells (ESCs) differentiation. The expression of downstream JAK-STAT signaling molecules was assessed by Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR). PAS, and immunohistochemical staining of frozen sections was used to determine the appearance of primordial germ cells (PGCs) and, later, spermatogonial stem cells (SSCs) during gonadal development. Inhibition of the JAK-STAT signaling resulted in decreased expression of JAK2 and STAT3 as well as of PGCs markers; moreover, the proportion of CVH and C-KIT positive cells as well as the yield of PGCs were remarkably decreased, and the gonad was smaller than that of control samples. Conversely, activation of JAK-STAT resulted in increased expression of JAK2 and STAT3 as well as that of PGC marker CVH. In addition, the proportion of CVH and C-KIT-positive cells as well as the PGC yield was increased, and the gonad was significantly larger than that from control samples. Collectively, our results suggested that JAK-STAT effectively promoted the formation of PGCs in the genital ridge during early embryogenesis in vivo and played a positive role in the regulation of ESC to SSC differentiation in vitro, with JAK2 and STAT3 functioning as pivotal factors for intracellular signal transduction.
Collapse
|