1
|
Watanabe S, Kise Y, Yonezawa K, Inoue M, Shimizu N, Nureki O, Inaba K. Structure of full-length ERGIC-53 in complex with MCFD2 for cargo transport. Nat Commun 2024; 15:2404. [PMID: 38493152 PMCID: PMC10944485 DOI: 10.1038/s41467-024-46747-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 03/07/2024] [Indexed: 03/18/2024] Open
Abstract
ERGIC-53 transports certain subsets of newly synthesized secretory proteins and membrane proteins from the endoplasmic reticulum to the Golgi apparatus. Despite numerous structural and functional studies since its identification, the overall architecture and mechanism of action of ERGIC-53 remain unclear. Here we present cryo-EM structures of full-length ERGIC-53 in complex with its functional partner MCFD2. These structures reveal that ERGIC-53 exists as a homotetramer, not a homohexamer as previously suggested, and comprises a four-leaf clover-like head and a long stalk composed of three sets of four-helix coiled-coil followed by a transmembrane domain. 3D variability analysis visualizes the flexible motion of the long stalk and local plasticity of the head region. Notably, MCFD2 is shown to possess a Zn2+-binding site in its N-terminal lid, which appears to modulate cargo binding. Altogether, distinct mechanisms of cargo capture and release by ERGIC- 53 via the stalk bending and metal binding are proposed.
Collapse
Affiliation(s)
- Satoshi Watanabe
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, 980-8577, Japan.
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577, Japan.
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Miyagi, 980-8578, Japan.
| | - Yoshiaki Kise
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kento Yonezawa
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, 305-0801, Japan
- Center for Digital Green-innovation, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Mariko Inoue
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| | - Nobutaka Shimizu
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, 305-0801, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kenji Inaba
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, 980-8577, Japan.
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577, Japan.
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Miyagi, 980-8578, Japan.
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.
- Core Research for Evolutional Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), Tokyo, Japan.
| |
Collapse
|
2
|
Kim H, Yang I, Lim SI. Streamlined construction of robust heteroprotein complexes by self-induced in-cell disulfide pairing. Int J Biol Macromol 2024; 254:127965. [PMID: 37944724 DOI: 10.1016/j.ijbiomac.2023.127965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Biomolecules and their functional subdomains are essential building blocks in the creation of multifunctional nanocomplexes. Methyl-binding domain protein 2 (MBD2) and p66α stand out as small α-helical motifs with an ability to self-assemble into a heterodimeric coiled-coil, making them promising building units. Yet, their practical use is hindered by rapid dissociation upon dilution. In this study, novel fusion tags, MBD2 and p66α variants, were developed to covalently link during co-expression in E. coli SHuffle. Through strategic placement of cysteine at each α-helix's terminus, intracellular crosslinking occurred with high specificity and yield, facilitated by preserved α-helical interactions. This instant disulfide bonding in the oxidative cytoplasm of E. coli SHuffle efficiently overcame the need for inefficient in vitro oxidation and protein extraction prone to creating non-specific adducts and suboptimal bioprocesses. In contrast to their wild-type counterparts, the GFP-mCherry protein complex cross-linked by the fusion tags maintained the heterodimeric state even under extensive dilution. The fusion tags, when combined with the E. coli SHuffle system, allowed for the streamlined co-expression of a stable protein complex through self-induced intracellular cysteine coupling. The approach demonstrated herein holds great promise for producing multifunctional and robust heteroprotein complexes.
Collapse
Affiliation(s)
- Hyunji Kim
- Department of Chemical Engineering, Pukyong National University, Yongso-ro 45, Nam-gu, Busan, Republic of Korea
| | - Iji Yang
- Department of Chemical Engineering, Pukyong National University, Yongso-ro 45, Nam-gu, Busan, Republic of Korea
| | - Sung In Lim
- Department of Chemical Engineering, Pukyong National University, Yongso-ro 45, Nam-gu, Busan, Republic of Korea.
| |
Collapse
|
3
|
Gao L, Ouyang H, Pei C, Zhou H, Yang J, Jin C. Emp47 and Vip36 are required for polarized growth and protein trafficking between ER and Golgi apparatus in opportunistic fungal pathogen Aspergillus fumigatus. Fungal Genet Biol 2021; 158:103638. [PMID: 34798270 DOI: 10.1016/j.fgb.2021.103638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/18/2022]
Abstract
In Aspergillus fumigatus, an opportunistic fungal pathogen causing fatal invasive aspergillosis, N-glycosylation is vital for polarized growth. To investigate its mechanism, two putative L-type lectin genes emp47 (AFUB_032470) and vip36 (AFUB_027870) were identified in A. fumigatus. Deletion of the emp47 or vip36 gene resulted in delayed germination and abnormal polarity. Also, the Δemp47 displayed an increased resistance to azoles whereas the Δvip36 showed an increased susceptibility to amphotericin B. Secretome analysis revealed that 205 proteins were differentially secreted in the Δemp47 and 145 of them were reduced, while 153 proteins displayed a differential secretion and 134 of them were increased in the Δvip36 as compared with that of the wild-type strain. Also, potential cargo glycoproteins of Emp47 and Vip36 were identified by comparative secretome analysis. Our results suggest that Emp47 is responsible for the transport of proteins from endoplasmic reticulum (ER) to Golgi, while Vip36 acts in protein retrieval from Golgi to ER.
Collapse
Affiliation(s)
- Linlu Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Haomiao Ouyang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Caixia Pei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hui Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinghua Yang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China.
| | - Cheng Jin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
4
|
Lujan P, Campelo F. Should I stay or should I go? Golgi membrane spatial organization for protein sorting and retention. Arch Biochem Biophys 2021; 707:108921. [PMID: 34038703 DOI: 10.1016/j.abb.2021.108921] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/12/2021] [Accepted: 05/03/2021] [Indexed: 12/23/2022]
Abstract
The Golgi complex is the membrane-bound organelle that lies at the center of the secretory pathway. Its main functions are to maintain cellular lipid homeostasis, to orchestrate protein processing and maturation, and to mediate protein sorting and export. These functions are not independent of one another, and they all require that the membranes of the Golgi complex have a well-defined biochemical composition. Importantly, a finely-regulated spatiotemporal organization of the Golgi membrane components is essential for the correct performance of the organelle. In here, we review our current mechanistic and molecular understanding of how Golgi membranes are spatially organized in the lateral and axial directions to fulfill their functions. In particular, we highlight the current evidence and proposed models of intra-Golgi transport, as well as the known mechanisms for the retention of Golgi residents and for the sorting and export of transmembrane cargo proteins. Despite the controversies, conflicting evidence, clashes between models, and technical limitations, the field has moved forward and we have gained extensive knowledge in this fascinating topic. However, there are still many important questions that remain to be completely answered. We hope that this review will help boost future investigations on these issues.
Collapse
Affiliation(s)
- Pablo Lujan
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Barcelona, Spain.
| | - Felix Campelo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Barcelona, Spain.
| |
Collapse
|
5
|
Kato K, Nakayoshi T, Kurimoto E, Oda A. Modification of the pH Dependence of Assembly of Yeast Cargo Receptor Emp47p Coiled-Coil Domains: Computational Design and Experimental Mutagenesis. J Phys Chem B 2021; 125:2222-2230. [PMID: 33646773 DOI: 10.1021/acs.jpcb.0c10194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The coiled-coil domains of the putative yeast cargo receptors Emp46p and Emp47p (Emp46pcc and Emp47pcc) assemble into heterocomplexes at neutral pH. Upon lowering the pH, the complex dissociates and reassembles into homo-oligomers. A glutamate residue (E303) located on the hydrophobic surface of Emp46pcc serves as the pH-sensing switch for assembly and segregation, and we have suggested that its side chains are protonated in the heterocomplex, even at neutral pH. To examine this hypothesis, we constructed two structural models in which the side chains of E303 were negatively charged or protonated and analyzed the effects of these charged states on the structure of the heterocomplex using molecular dynamics (MD) simulations. The calculated structures suggested the side chains of E303 to be protonated in the heterocomplex, even at neutral pH. Based on these computational results, the pH dependence of Emp47pcc homo-oligomer assembly was experimentally modified by a glutamate mutation on its hydrophobic surface. The Q306E mutant of Emp47pcc underwent a structural transition at physiological pH. Our results suggest a method for modifying pH-dependent protein-protein interactions.
Collapse
Affiliation(s)
- Koichi Kato
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyama-ku, Nagoya, Aichi 463-8521, Japan.,Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi 468-8503, Japan
| | - Tomoki Nakayoshi
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi 468-8503, Japan
| | - Eiji Kurimoto
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi 468-8503, Japan
| | - Akifumi Oda
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi 468-8503, Japan.,Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
6
|
Kato K, Furuhashi T, Kato K, Oda A, Kurimoto E. The assembly mechanism of coiled-coil domains of the yeast cargo receptors Emp46p/47p and the mutational alteration of pH-dependency of complex formation. J Biochem 2018; 163:441-446. [PMID: 29361014 DOI: 10.1093/jb/mvy011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/01/2017] [Indexed: 12/12/2022] Open
Abstract
The coiled-coil domains of the putative yeast cargo receptors Emp46p and Emp47p are responsible for their complex-formation in the Endoplasmic Reticulum. In vitro experiments using coiled-coil domains (Emp46pcc/47pcc) have indicated that formation of the hetero-complex is pH-dependent and that amino acid Glu303 of Emp46pcc is a key residue in this process. In this study, we investigated the effects of various mutations on complex formation and discovered the mechanism for its pH-dependency, which is that dissociation of the complex at low pH arises mainly from stabilization of Emp46pcc itself. Moreover, destabilization by the introduction of a histidine residue in Emp46pcc to repel a lysine residue in Emp47pcc, caused an upward shift in the pH profile of complex formation. Another mutation in Emp46pcc, a proline to an alanine (P291A), increased the stability of the helical structure, especially at low pH and shifted the transition pH upward. Combination of these pH-shifting mutations had an additive effect on the pH profile of complex formation. Thus, we successfully constructed coiled-coils that can react to a wide range of pH, encompassing more appropriate values for use in sensing physiological pH changes in the cell.
Collapse
Affiliation(s)
- Koichi Kato
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Takahisa Furuhashi
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Koichi Kato
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan.,Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Akifumi Oda
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Eiji Kurimoto
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| |
Collapse
|
7
|
Ishii K, Zhou M, Uchiyama S. Native mass spectrometry for understanding dynamic protein complex. Biochim Biophys Acta Gen Subj 2017; 1862:275-286. [PMID: 28965879 DOI: 10.1016/j.bbagen.2017.09.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/17/2017] [Accepted: 09/19/2017] [Indexed: 12/13/2022]
Abstract
Biomolecules have evolved to perform specific and sophisticated activities in a highly coordinated manner organizing into multi-component complexes consisting of proteins, nucleic acids, cofactors or ligands. Understanding such complexes represents a task in earnest for modern bioscience. Traditional structural techniques when extrapolating to macromolecules of ever increasing sizes are confronted with limitations posed by the difficulty in enrichment, solubility, stability as well as lack of homogeneity of these complexes. Alternative approaches are therefore prompted to bridge the gap, one of which is native mass spectrometry. Here we demonstrate the strength of native mass spectrometry, used alone or in combination with other biophysical methods such as analytical ultracentrifugation, small-angle neutron scattering, and small-angle X-ray scattering etc., in addressing dynamic aspects of protein complexes including structural reorganization, subunit exchange, as well as the assembly/disassembly processes in solution that are dictated by transient non-covalent interactions. We review recent studies from our laboratories and others applying native mass spectrometry to both soluble and membrane-embedded assemblies. This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato.
Collapse
Affiliation(s)
- Kentaro Ishii
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Min Zhou
- Institute of Bio-analytical Chemistry, School of Chemical Engineering, Nanjing University of Science and Technology, No. 200 Xiaolingwei Street, Nanjing 210094, China.
| | - Susumu Uchiyama
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan; Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|