1
|
Aregay A, Slunečko J, Bogovic P, Korva M, Resman Rus K, Knap N, Beicht J, Kubinski M, Saletti G, Steffen I, Strle F, Avšič-Županc T, Osterhaus AD, Rimmelzwaan GF. Poor virus-specific T-cell responses early after tick-borne encephalitis virus infection correlate with disease severity. Emerg Microbes Infect 2024; 13:2317909. [PMID: 39133062 PMCID: PMC10883091 DOI: 10.1080/22221751.2024.2317909] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/08/2024] [Indexed: 08/13/2024]
Abstract
Tick-borne encephalitis virus (TBEV) infection may cause acute central nervous system inflammation varying in clinical manifestations and severity. A possible correlation of TBEV-specific antibody and cell-mediated immune responses, shortly after infection, with clinical manifestations, severity and long-term outcome has been poorly investigated. In a cohort of thirty early tick-borne encephalitis (TBE) patients, we assessed the magnitude, specificity and functional properties of TBEV-specific T-cell and antibody responses. These responses early during disease were assessed in view of clinical manifestations, severity and long-term outcome. TBEV-specific T-cell responses to C, E, NS1, and NS5 proteins were significantly lower in patients with severe acute illness than in patients with mild TBE. Lower T-cell responses to E, NS1, and NS5 proteins also correlated with the development of meningoencephalomyelitis. Virus-specific antibody titres early after infection did not correlate with disease severity, clinical manifestations, or long-term outcome in this study, possibly due to the small number of patients of which matching serum and peripheral blood mononuclear cells were available. The findings suggest that virus-specific T cells afford a certain degree of protection against the development of severe TBEV-induced disease.
Collapse
Affiliation(s)
- Amare Aregay
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Jan Slunečko
- Faculty of Medicine, Institute for Microbiology and Immunology, University of Ljubljana, Ljubljana, Slovenia
| | - Petra Bogovic
- Department of Infectious Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Miša Korva
- Faculty of Medicine, Institute for Microbiology and Immunology, University of Ljubljana, Ljubljana, Slovenia
| | - Katarina Resman Rus
- Faculty of Medicine, Institute for Microbiology and Immunology, University of Ljubljana, Ljubljana, Slovenia
| | - Nataša Knap
- Faculty of Medicine, Institute for Microbiology and Immunology, University of Ljubljana, Ljubljana, Slovenia
| | - Jana Beicht
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Mareike Kubinski
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Giulietta Saletti
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Imke Steffen
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Franc Strle
- Department of Infectious Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Tatjana Avšič-Županc
- Faculty of Medicine, Institute for Microbiology and Immunology, University of Ljubljana, Ljubljana, Slovenia
| | - Albert D.M.E. Osterhaus
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Guus F. Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
2
|
Aregay A, Slunečko J, Korva M, Bogovic P, Resman Rus K, Knap N, Beicht J, Kubinski M, Saletti G, Avšič-Županc T, Steffen I, Strle F, Osterhaus ADME, Rimmelzwaan GF. Tick-borne encephalitis vaccine breakthrough infections induce aberrant T cell and antibody responses to non-structural proteins. NPJ Vaccines 2024; 9:141. [PMID: 39112523 PMCID: PMC11306791 DOI: 10.1038/s41541-024-00936-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024] Open
Abstract
Tick-borne encephalitis virus (TBEV) vaccine breakthrough (VBT) infections are not uncommon in endemic areas. The clinical and immunological outcomes have been poorly investigated. We assessed the magnitude and specificity of virus-specific antibody and T cell responses after TBE in previously vaccinated subjects and compared the results with those of unvaccinated TBE patients and study subjects that received vaccination without VBT infection. Symptomatic TBEV infection of unvaccinated study subjects induced virus-specific antibody responses to the E protein and non-structural protein 1 (NS1) as well as T cell responses to structural and other non-structural (NS) proteins. After VBT infections, significantly impaired NS1-specific antibody responses were observed, while the virus-specific T cell responses to the NS proteins were relatively strong. VBT infection caused predominantly moderate to severe disease during hospitalization. The level of TBEV EDIII- and NS1-specific antibodies in unvaccinated convalescent patients inversely correlated with TBE severity and neurological symptoms early after infection.
Collapse
Affiliation(s)
- Amare Aregay
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Jan Slunečko
- Institute for Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Miša Korva
- Institute for Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Petra Bogovic
- Department of Infectious Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Katarina Resman Rus
- Institute for Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Nataša Knap
- Institute for Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jana Beicht
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Mareike Kubinski
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Giulietta Saletti
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Tatjana Avšič-Županc
- Institute for Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Imke Steffen
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Franc Strle
- Department of Infectious Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Albert D M E Osterhaus
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Guus F Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany.
| |
Collapse
|
3
|
Ackermann-Gäumann R, Lang P, Zens KD. Defining the "Correlate(s) of Protection" to tick-borne encephalitis vaccination and infection - key points and outstanding questions. Front Immunol 2024; 15:1352720. [PMID: 38318179 PMCID: PMC10840404 DOI: 10.3389/fimmu.2024.1352720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024] Open
Abstract
Tick-borne Encephalitis (TBE) is a severe disease of the Central Nervous System (CNS) caused by the tick-borne encephalitis virus (TBEV). The generation of protective immunity after TBEV infection or TBE vaccination relies on the integrated responses of many distinct cell types at distinct physical locations. While long-lasting memory immune responses, in particular, form the basis for the correlates of protection against many diseases, these correlates of protection have not yet been clearly defined for TBE. This review addresses the immune control of TBEV infection and responses to TBE vaccination. Potential correlates of protection and the durability of protection against disease are discussed, along with outstanding questions in the field and possible areas for future research.
Collapse
Affiliation(s)
- Rahel Ackermann-Gäumann
- Microbiologie, ADMED Analyses et Diagnostics Médicaux, La Chaux-de-Fonds, Switzerland
- Swiss National Reference Center for Tick-transmitted Diseases, La Chaux-de-Fonds, Switzerland
| | - Phung Lang
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Kyra D. Zens
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
- Institute for Experimental Immunology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Tang J, Fu M, Xu C, Xue B, Zhou A, Chen S, Zhao H, Zhou Y, Chen J, Yang Q, Chen X. Development of a novel virus-like particle-based vaccine for preventing tick-borne encephalitis virus infection. Virol Sin 2023; 38:767-777. [PMID: 37328107 PMCID: PMC10590693 DOI: 10.1016/j.virs.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 06/12/2023] [Indexed: 06/18/2023] Open
Abstract
Tick-borne encephalitis virus (TBEV) is an important tick-borne pathogen that poses as a serious public health concern. The coverage and immunogenicity of the currently available vaccines against TBEV are relatively low; therefore, it is crucial to develop novel and effective vaccines against TBEV. The present study describes a novel strategy for the assembly of virus-like particles (VLPs) by co-expressing the structural (core/prM/E) and non-structural (NS2B/NS3Pro) proteins of TBEV. The efficacy of the VLPs was subsequently evaluated in C57BL/6 mice, and the resultant IgG serum could neutralize both Far-Eastern and European subtypes of TBEV. These findings indicated that the VLP-based vaccine elicited the production of cross-subtype reactive antibodies. The VLPs provided protection to mice lacking the type I interferon receptor (IFNAR-/-) against lethal TBEV challenge, with undetectable viral load in brain and intestinal tissues. Furthermore, the group that received the VLP vaccine did not exhibit significant pathological changes and the inflammatory factors were significantly suppressed compared to the control group. Immunization with the VLP vaccine induced the production of multiple-cytokine-producing antiviral CD4+ T cells in vivo, including TNF-α+, IL-2+, and IFN-γ+ T cells. Altogether, the findings suggest that noninfectious VLPs can serve as a potentially safe and effective vaccine candidate against diverse subtypes of TBEV.
Collapse
Affiliation(s)
- Jielin Tang
- Guangzhou National Laboratory, Guangzhou, 510005, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Muqing Fu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Chonghui Xu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Bao Xue
- Guangzhou National Laboratory, Guangzhou, 510005, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Anqi Zhou
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Sijie Chen
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - He Zhao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yuan Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jizheng Chen
- Guangzhou National Laboratory, Guangzhou, 510005, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China
| | - Qi Yang
- Guangzhou National Laboratory, Guangzhou, 510005, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Xinwen Chen
- Guangzhou National Laboratory, Guangzhou, 510005, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
5
|
Stone ET, Pinto AK. T Cells in Tick-Borne Flavivirus Encephalitis: A Review of Current Paradigms in Protection and Disease Pathology. Viruses 2023; 15:958. [PMID: 37112938 PMCID: PMC10146733 DOI: 10.3390/v15040958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
The family Flaviviridae is comprised of a diverse group of arthropod-borne viruses that are the etiological agents of globally relevant diseases in humans. Among these, infection with several of these flaviviruses-including West Nile virus (WNV), Zika virus (ZIKV), Japanese encephalitis virus (JEV), tick-borne encephalitis virus (TBEV), and Powassan virus (POWV)-can result in neuroinvasive disease presenting as meningitis or encephalitis. Factors contributing to the development and resolution of tick-borne flavivirus (TBEV, POWV) infection and neuropathology remain unclear, though many recently undertaken studies have described the virus-host interactions underlying encephalitic disease. With access to neural tissues despite the selectively permeable blood-brain barrier, T cells have emerged as one notable contributor to neuroinflammation. The goal of this review is to summarize the recent advances in tick-borne flavivirus immunology-particularly with respect to T cells-as it pertains to the development of encephalitis. We found that although T cell responses are rarely evaluated in a clinical setting, they are integral in conjunction with antibody responses to restricting the entry of TBFV into the CNS. The extent and means by which they can drive immune pathology, however, merits further study. Understanding the role of the T cell compartment in tick-borne flavivirus encephalitis is instrumental for improving vaccine safety and efficacy, and has implications for treatments and interventions for human disease.
Collapse
Affiliation(s)
| | - Amelia K. Pinto
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO 63103, USA
| |
Collapse
|
6
|
Kubinski M, Beicht J, Zdora I, Biermann J, Puff C, Gerlach T, Tscherne A, Baumgärtner W, Osterhaus ADME, Sutter G, Prajeeth CK, Rimmelzwaan GF. A recombinant Modified Vaccinia virus Ankara expressing prME of tick-borne encephalitis virus affords mice full protection against TBEV infection. Front Immunol 2023; 14:1182963. [PMID: 37153588 PMCID: PMC10160477 DOI: 10.3389/fimmu.2023.1182963] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 03/30/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction Tick-borne encephalitis virus (TBEV) is an important human pathogen that can cause a serious disease involving the central nervous system (tick-borne encephalitis, TBE). Although approved inactivated vaccines are available, the number of TBE cases is rising, and breakthrough infections in fully vaccinated subjects have been reported in recent years. Methods In the present study, we generated and characterized a recombinant Modified Vaccinia virus Ankara (MVA) for the delivery of the pre-membrane (prM) and envelope (E) proteins of TBEV (MVA-prME). Results MVA-prME was tested in mice in comparison with a licensed vaccine FSME-IMMUN® and proved to be highly immunogenic and afforded full protection against challenge infection with TBEV. Discussion Our data indicate that MVA-prME holds promise as an improved next-generation vaccine for the prevention of TBE.
Collapse
Affiliation(s)
- Mareike Kubinski
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Jana Beicht
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Isabel Zdora
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Center for Systems Neuroscience, Hannover Graduate School for Neurosciences, Infection Medicine, and Veterinary Sciences (HGNI), Hannover, Germany
| | - Jeannine Biermann
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Christina Puff
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Thomas Gerlach
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Alina Tscherne
- Division of Virology, Institute for Infectious Diseases and Zoonoses, Ludwig Maximilian University Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Center for Systems Neuroscience, Hannover Graduate School for Neurosciences, Infection Medicine, and Veterinary Sciences (HGNI), Hannover, Germany
| | - Albert D. M. E. Osterhaus
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Gerd Sutter
- Division of Virology, Institute for Infectious Diseases and Zoonoses, Ludwig Maximilian University Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Chittappen Kandiyil Prajeeth
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Guus F. Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- *Correspondence: Guus F. Rimmelzwaan,
| |
Collapse
|
7
|
Soltani Khaboushan A, Pahlevan-Fallahy MT, Shobeiri P, Teixeira AL, Rezaei N. Cytokines and chemokines profile in encephalitis patients: A meta-analysis. PLoS One 2022; 17:e0273920. [PMID: 36048783 PMCID: PMC9436077 DOI: 10.1371/journal.pone.0273920] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 08/17/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Encephalitis is caused by autoimmune or infectious agents marked by brain inflammation. Investigations have reported altered concentrations of the cytokines in encephalitis. This study was conducted to determine the relationship between encephalitis and alterations of cytokine levels in cerebrospinal fluid (CSF) and serum. METHODS We found possibly suitable studies by searching PubMed, Embase, Scopus, and Web of Science, systematically from inception to August 2021. 23 articles were included in the meta-analysis. To investigate sources of heterogeneity, subgroup analysis and sensitivity analysis were conducted. The protocol of the study has been registered in PROSPERO with a registration ID of CRD42021289298. RESULTS A total of 23 met our eligibility criteria to be included in the meta-analysis. A total of 12 cytokines were included in the meta-analysis of CSF concentration. Moreover, 5 cytokines were also included in the serum/plasma concentration meta-analysis. According to the analyses, patients with encephalitis had higher CSF amounts of IL-6, IL-8, IL-10, CXCL10, and TNF-α than healthy controls. The alteration in the concentration of IL-2, IL-4, IL-17, CCL2, CXCL9, CXCL13, and IFN-γ was not significant. In addition, the serum/plasma levels of the TNF-α were increased in encephalitis patients, but serum/plasma concentration of the IL-6, IL-10, CXCL10, and CXCL13 remained unchanged. CONCLUSIONS This meta-analysis provides evidence for higher CSF concentrations of IL-6, IL-8, IL-10, CXCL10, and TNF-α in encephalitis patients compared to controls. The diagnostic and prognostic value of these cytokines and chemokines should be investigated in future studies.
Collapse
Affiliation(s)
- Alireza Soltani Khaboushan
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammad-Taha Pahlevan-Fallahy
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Parnian Shobeiri
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Non–Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Antônio L. Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Nima Rezaei
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Sycheva AL, Komech EA, Pogorelyy MV, Minervina AA, Urazbakhtin SZ, Salnikova MA, Vorovitch MF, Kopantzev EP, Zvyagin IV, Komkov AY, Mamedov IZ, Lebedev YB. Inactivated tick-borne encephalitis vaccine elicits several overlapping waves of T cell response. Front Immunol 2022; 13:970285. [PMID: 36091004 PMCID: PMC9449805 DOI: 10.3389/fimmu.2022.970285] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/05/2022] [Indexed: 12/02/2022] Open
Abstract
The development and implementation of vaccines have been growing exponentially, remaining one of the major successes of healthcare over the last century. Nowadays, active regular immunizations prevent epidemics of many viral diseases, including tick-borne encephalitis (TBE). Along with the generation of virus-specific antibodies, a highly effective vaccine should induce T cell responses providing long-term immune defense. In this study, we performed longitudinal high-throughput T cell receptor (TCR) sequencing to characterize changes in individual T cell repertoires of 11 donors immunized with an inactivated TBE vaccine. After two-step immunization, we found significant clonal expansion of both CD4+ and CD8+ T cells, ranging from 302 to 1706 vaccine-associated TCRβ clonotypes in different donors. We detected several waves of T cell clonal expansion generated by distinct groups of vaccine-responding clones. Both CD4+ and CD8+ vaccine-responding T cell clones formed 17 motifs in TCRβ sequences shared by donors with identical HLA alleles. Our results indicate that TBE vaccination leads to a robust T cell response due to the production of a variety of T cell clones with a memory phenotype, which recognize a large set of epitopes.
Collapse
Affiliation(s)
- Anastasiia L. Sycheva
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - Ekaterina A. Komech
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
- Department of Molecular Technologies, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Mikhail V. Pogorelyy
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Anastasia A. Minervina
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Shamil Z. Urazbakhtin
- Computational Systems Biochemistry Research Group, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Maria A. Salnikova
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Mikhail F. Vorovitch
- Laboratory of Tick-Borne Encephalitis and Other Encephalitis, Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS (FSASI “Chumakov FSC R&D IBP RAS”), Moscow, Russia
- Department of Organization and Technology of Production of Immune-and-Biological Products, Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Eugene P. Kopantzev
- Department of Genomics and Postgenomic Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - Ivan V. Zvyagin
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
- Department of Molecular Technologies, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Alexander Y. Komkov
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
- Laboratory of Cytogenetics and Molecular Genetics, Dmitry Rogachev National Medical and Research Centre of Paediatric Haematology, Oncology and Immunology, Moscow, Russia
| | - Ilgar Z. Mamedov
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - Yuri B. Lebedev
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
- Department of Molecular Technologies, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
9
|
Stone ET, Hassert M, Geerling E, Wagner C, Brien JD, Ebel GD, Hirsch AJ, German C, Smith JL, Pinto AK. Balanced T and B cell responses are required for immune protection against Powassan virus in virus-like particle vaccination. Cell Rep 2022; 38:110388. [PMID: 35172138 PMCID: PMC8919300 DOI: 10.1016/j.celrep.2022.110388] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/07/2021] [Accepted: 01/24/2022] [Indexed: 12/29/2022] Open
Abstract
Powassan virus (POWV) is a tick-borne pathogen for which humans are an incidental host. POWV infection can be fatal or result in long-term neurological sequelae; however, there are no approved vaccinations for POWV. Integral to efficacious vaccine development is the identification of correlates of protection, which we accomplished in this study by utilizing a murine model of POWV infection. Using POWV lethal and sub-lethal challenge models, we show that (1) robust B and T cell responses are necessary for immune protection, (2) POWV lethality can be attributed to both viral- and host-mediated drivers of disease, and (3) knowledge of the immune correlates of protection against POWV can be applied in a virus-like particle (VLP)-based vaccination approach that provides protection from lethal POWV challenge. Identification of these immune protection factors is significant as it will aid in the rational design of POWV vaccines.
Collapse
Affiliation(s)
- E Taylor Stone
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, MO 63104, USA
| | - Mariah Hassert
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, MO 63104, USA
| | - Elizabeth Geerling
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, MO 63104, USA
| | - Colleen Wagner
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, MO 63104, USA
| | - James D Brien
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, MO 63104, USA
| | - Gregory D Ebel
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Alec J Hirsch
- The Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA; Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Cody German
- The Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA; Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Jessica L Smith
- The Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA; Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Amelia K Pinto
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, MO 63104, USA.
| |
Collapse
|
10
|
Harrison N, Grabmeier-Pfistershammer K, Graf A, Trapin D, Tauber P, Aberle JH, Stiasny K, Schmidt R, Greinix H, Rabitsch W, Ramharter M, Burgmann H, Pickl WF, Bahrs C. Tick-Borne Encephalitis Specific Lymphocyte Response after Allogeneic Hematopoietic Stem Cell Transplantation Predicts Humoral Immunity after Vaccination. Vaccines (Basel) 2021; 9:vaccines9080908. [PMID: 34452033 PMCID: PMC8402406 DOI: 10.3390/vaccines9080908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/29/2021] [Accepted: 08/11/2021] [Indexed: 12/19/2022] Open
Abstract
The aim of this prospective study was to assess lymphocyte proliferative and cytokine response prior to and following tick-borne encephalitis (TBE) immunization among patients after allogeneic hematopoietic stem cell transplantation (HSCT). Seventeen adult patients 11–13 months after HSCT and eight unvaccinated healthy adults received up to three TBE vaccinations. Following in vitro stimulation with TBE-antigen, lymphocyte proliferation and cytokine secretion (IL-2, IL-10, IL-13, TNF-alpha, IFN-gamma, GM-CSF) were analyzed by thymidine incorporation assay and the Luminex system. Ten patients (59%) showed significant baseline TBE-specific lymphocyte proliferation (stimulation index (SI) > 3) prior to vaccination, but none of the unvaccinated controls (p = 0.002). All patients with a TBE-specific antibody response after two vaccinations (at least 2-fold increase of neutralization test titers) exhibited a strong TBE-specific lymphocyte proliferative response at baseline (SI > 10). Patients with sibling donors had a significantly stronger baseline TBE-specific lymphocyte proliferative and IL-13 cytokine response than patients with unrelated donors (p < 0.05). In conclusion, a relevant proportion of patients showed TBE-specific lymphocyte proliferative and cytokine responses prior to vaccination after HSCT, which predicted the humoral response to the vaccine. Patients with vaccinated sibling donors were more likely to elicit a cellular immune response than patients with unrelated donors of unknown vaccination status.
Collapse
Affiliation(s)
- Nicole Harrison
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria; (N.H.); (H.B.)
| | - Katharina Grabmeier-Pfistershammer
- Division of Cellular Immunology and Immunohematology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (K.G.-P.); (D.T.); (P.T.); (W.F.P.)
| | - Alexandra Graf
- Section of Medical Statistics, Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, 1090 Vienna, Austria;
| | - Doris Trapin
- Division of Cellular Immunology and Immunohematology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (K.G.-P.); (D.T.); (P.T.); (W.F.P.)
| | - Peter Tauber
- Division of Cellular Immunology and Immunohematology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (K.G.-P.); (D.T.); (P.T.); (W.F.P.)
| | - Judith H. Aberle
- Center for Virology, Medical University of Vienna, 1090 Vienna, Austria; (J.H.A.); (K.S.)
| | - Karin Stiasny
- Center for Virology, Medical University of Vienna, 1090 Vienna, Austria; (J.H.A.); (K.S.)
| | - Ralf Schmidt
- Division of Virology, Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria;
| | - Hildegard Greinix
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria;
| | - Werner Rabitsch
- Bone Marrow Transplantation Unit, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria;
| | - Michael Ramharter
- Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine & I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20359 Hamburg, Germany;
| | - Heinz Burgmann
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria; (N.H.); (H.B.)
| | - Winfried F. Pickl
- Division of Cellular Immunology and Immunohematology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; (K.G.-P.); (D.T.); (P.T.); (W.F.P.)
| | - Christina Bahrs
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria; (N.H.); (H.B.)
- Institute of Infectious Diseases and Infection Control, Jena University Hospital/Friedrich-Schiller University, 07747 Jena, Germany
- Correspondence: ; Tel.: +43-14040044400; Fax: +43-14040044180
| |
Collapse
|
11
|
Steffen R, Erber W, Schmitt HJ. Can the booster interval for the tick-borne encephalitis (TBE) vaccine 'FSME-IMMUN' be prolonged? - A systematic review. Ticks Tick Borne Dis 2021; 12:101779. [PMID: 34298356 DOI: 10.1016/j.ttbdis.2021.101779] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 05/24/2021] [Accepted: 06/14/2021] [Indexed: 12/30/2022]
Abstract
Tick-borne encephalitis (TBE) vaccines are effective and well tolerated. However, their acceptance and use by the public in endemic areas are suboptimal. To some extent this is due to the complicated dosing schedule requiring frequent boosters at variable intervals that even change with age. Simplification of the dosing schedule has failed so far as it is debated if the persistence of TBE virus (TBEV) antibodies is the only relevant factor for protection or if immune memory plays a decisive role as well. The objective here is to present the available evidence to determine the need for boosters and their interval after a primary series of three doses of FSME-IMMUN. A systematic literature review was conducted with a focus on serology, particularly seropersistence, immune memory, effectiveness, and vaccine breakthroughs (VB) of FSME-IMMUN. While after a 3-dose primary series seropositivity persisted for more than 10 years in >90% of younger subjects, it dropped to 37.5% in those 60 years or older. In contrast, field effectiveness of FSME-IMMUN remains high in irregularly vaccinated subjects and thus does not correlate well with the percentage of subjects achieving an arbitrarily defined threshold of persisting antibodies. FSME-IMMUN booster doses led to increases in antibody responses within 7 days. VB are rare and remain poorly understood. VB did not increase, and vaccine effectiveness did not significantly decrease with time since completion of the primary vaccination series or with the time since administration of the last vaccine dose. For all these reasons, data identified from this systematic review suggest that seropersistence alone does not explain the high effectiveness of FSME-IMMUN irrespective of the time since the last vaccine dose was administered. Induction of immunological memory characterized by a rapid and sustained secondary immune response is proving to be an alternative mechanism of action for protection against TBE. In this context Switzerland and Finland have adopted a longer booster interval (i.e., 10 years) following the three-dose primary immunization schedule without any evidence of harm at a population level. Longer booster intervals will likely drive up vaccine uptake. There is a lack of data to base an interval recommendation beyond 10 years.
Collapse
Affiliation(s)
- R Steffen
- Epidemiology, Biostatistics and Prevention Institute, Department of Public and Global Health, Division of Infectious Diseases, World Health Organization Collaborating Centre for Travelers' Health, University of Zurich, Switzerland; Division of Epidemiology, Human Genetics & Environmental Sciences, University of Texas School of Public Health, Houston, TX, USA.
| | - W Erber
- Pfizer Inc., Vienna, Austria
| | | |
Collapse
|
12
|
In Vitro Characterization of the Innate Immune Pathways Engaged by Live and Inactivated Tick-Borne Encephalitis Virus. Vaccines (Basel) 2021; 9:vaccines9060664. [PMID: 34204532 PMCID: PMC8234070 DOI: 10.3390/vaccines9060664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 12/28/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) infection can lead to inflammation of the central nervous system. The disease can be effectively prevented by whole inactivated virus vaccines. Here, we investigated the innate immune profile induced in vitro by the antigen component of the vaccines, inactivated TBEV (I-TBEV), to gain insights into the mechanism of action of the TBE vaccine as compared to the live virus. To this end, we exposed human peripheral blood mononuclear cells (PBMCs) to inactivated and live TBEV and assessed cellular responses by RNA sequencing. Both inactivated and live TBEV significantly induced an interferon-dominated gene signature and an increased RIG-I-like receptor (RLR) expression. Using pathway-specific inhibitors, we assessed the involvement of pattern recognition receptors in the sensing of inactivated or live TBEV. Only RLR pathway inhibition significantly suppressed the downstream cascade induced by I-TBEV, while responses to the replicating virus were impacted by the inhibition of RIG-I-like, as well as Toll-like, receptors. Our results show that inactivated and live TBEV predominantly engaged an interferon response in our in vitro PBMC platform, and indicate RLRs as the main pattern recognition receptors involved in I-TBEV sensing.
Collapse
|
13
|
Kubinski M, Beicht J, Gerlach T, Volz A, Sutter G, Rimmelzwaan GF. Tick-Borne Encephalitis Virus: A Quest for Better Vaccines against a Virus on the Rise. Vaccines (Basel) 2020; 8:E451. [PMID: 32806696 PMCID: PMC7564546 DOI: 10.3390/vaccines8030451] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV), a member of the family Flaviviridae, is one of the most important tick-transmitted viruses in Europe and Asia. Being a neurotropic virus, TBEV causes infection of the central nervous system, leading to various (permanent) neurological disorders summarized as tick-borne encephalitis (TBE). The incidence of TBE cases has increased due to the expansion of TBEV and its vectors. Since antiviral treatment is lacking, vaccination against TBEV is the most important protective measure. However, vaccination coverage is relatively low and immunogenicity of the currently available vaccines is limited, which may account for the vaccine failures that are observed. Understanding the TBEV-specific correlates of protection is of pivotal importance for developing novel and improved TBEV vaccines. For affording robust protection against infection and development of TBE, vaccines should induce both humoral and cellular immunity. In this review, the adaptive immunity induced upon TBEV infection and vaccination as well as novel approaches to produce improved TBEV vaccines are discussed.
Collapse
Affiliation(s)
- Mareike Kubinski
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation (TiHo), Buenteweg 17, 30559 Hannover, Germany; (M.K.); (J.B.); (T.G.)
| | - Jana Beicht
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation (TiHo), Buenteweg 17, 30559 Hannover, Germany; (M.K.); (J.B.); (T.G.)
| | - Thomas Gerlach
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation (TiHo), Buenteweg 17, 30559 Hannover, Germany; (M.K.); (J.B.); (T.G.)
| | - Asisa Volz
- Institute of Virology, University of Veterinary Medicine Hannover, Foundation (TiHo), Buenteweg 17, 30559 Hannover, Germany;
| | - Gerd Sutter
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-University (LMU) Munich, Veterinaerstr. 13, 80539 Munich, Germany;
| | - Guus F. Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation (TiHo), Buenteweg 17, 30559 Hannover, Germany; (M.K.); (J.B.); (T.G.)
| |
Collapse
|
14
|
Koblischke M, Spitzer FS, Florian DM, Aberle SW, Malafa S, Fae I, Cassaniti I, Jungbauer C, Knapp B, Laferl H, Fischer G, Baldanti F, Stiasny K, Heinz FX, Aberle JH. CD4 T Cell Determinants in West Nile Virus Disease and Asymptomatic Infection. Front Immunol 2020; 11:16. [PMID: 32038660 PMCID: PMC6989424 DOI: 10.3389/fimmu.2020.00016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/07/2020] [Indexed: 12/30/2022] Open
Abstract
West Nile (WN) virus infection of humans is frequently asymptomatic, but can also lead to WN fever or neuroinvasive disease. CD4 T cells and B cells are critical in the defense against WN virus, and neutralizing antibodies, which are directed against the viral glycoprotein E, are an accepted correlate of protection. For the efficient production of these antibodies, B cells interact directly with CD4 helper T cells that recognize peptides from E or the two other structural proteins (capsid-C and membrane-prM/M) of the virus. However, the specific protein sites yielding such helper epitopes remain unknown. Here, we explored the CD4 T cell response in humans after WN virus infection using a comprehensive library of overlapping peptides covering all three structural proteins. By measuring T cell responses in 29 individuals with either WN virus disease or asymptomatic infection, we showed that CD4 T cells focus on peptides in specific structural elements of C and at the exposed surface of the pre- and postfusion forms of the E protein. Our data indicate that these immunodominant epitopes are recognized in the context of multiple different HLA molecules. Furthermore, we observed that immunodominant antigen regions are structurally conserved and similarly targeted in other mosquito-borne flaviviruses, including dengue, yellow fever, and Zika viruses. Together, these findings indicate a strong impact of virion protein structure on epitope selection and antigenicity, which is an important issue to consider in future vaccine design.
Collapse
Affiliation(s)
| | | | - David M Florian
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Stephan W Aberle
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Stefan Malafa
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Ingrid Fae
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Irene Cassaniti
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Christof Jungbauer
- Blood Service for Vienna, Lower Austria and Burgenland, Austrian Red Cross, Vienna, Austria
| | | | - Hermann Laferl
- Sozialmedizinisches Zentrum Süd, Kaiser-Franz-Josef-Spital, Vienna, Austria
| | - Gottfried Fischer
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Fausto Baldanti
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Karin Stiasny
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Franz X Heinz
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Judith H Aberle
- Center for Virology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
15
|
Varnaitė R, Blom K, Lampen MH, Vene S, Thunberg S, Lindquist L, Ljunggren HG, Rombo L, Askling HH, Gredmark-Russ S. Magnitude and Functional Profile of the Human CD4 + T Cell Response throughout Primary Immunization with Tick-Borne Encephalitis Virus Vaccine. THE JOURNAL OF IMMUNOLOGY 2020; 204:914-922. [PMID: 31924650 DOI: 10.4049/jimmunol.1901115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/10/2019] [Indexed: 12/30/2022]
Abstract
Tick-borne encephalitis (TBE) is a viral infection of the CNS caused by TBE virus. With no specific treatment available, the only protection is a formalin-inactivated whole virus vaccine. Primary immunization with European TBE vaccines, as recommended by the manufacturers, consists of three vaccine doses administered within a 1-y period. Protection from vaccination is believed to be mediated by Abs, yet T cells may also have a protective role. We set out to characterize the human CD4+ T cell response throughout primary TBE immunization. The responses were evaluated before vaccination and 1 mo after each vaccine dose. A heterogeneous magnitude of CD4+ T cell-mediated memory responses was observed in regard to lymphoblast expansion and cytokine production (IFN-γ, IL-2, and TNF), with the highest median magnitude detected after the second dose of vaccine. Stimulation with an overlapping peptide library based on structural TBE virus proteins E and C revealed that CD4+ T cells concomitantly producing IL-2 and TNF dominated the responses from vaccinees after each vaccine dose, whereas a control cohort of TBE patients responded mainly with all three cytokines. CD107a expression was not upregulated upon peptide stimulation in the vaccinees. However, CD154 (CD40L) expression on cytokine-positive memory CD4+ T cells significantly increased after the second vaccine dose. Taken together, TBE vaccination induced CD4+ T cell responses dominated by IL-2 and TNF production together with CD154 upregulation and a lower IFN-γ response compared with TBE patients. This response pattern was consistent after all three doses of TBE vaccine.
Collapse
Affiliation(s)
- Renata Varnaitė
- Center for Infectious Medicine, ANA Futura, Department of Medicine Huddinge, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Kim Blom
- Center for Infectious Medicine, ANA Futura, Department of Medicine Huddinge, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Margit H Lampen
- Center for Infectious Medicine, ANA Futura, Department of Medicine Huddinge, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Sirkka Vene
- The Public Health Agency of Sweden, 171 65 Stockholm, Sweden
| | - Sarah Thunberg
- Department of Oncology and Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Lars Lindquist
- Division of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, ANA Futura, Department of Medicine Huddinge, Karolinska Institutet, 141 52 Stockholm, Sweden.,Division of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Lars Rombo
- Centre for Clinical Research, Sörmland Region, Uppsala University, 631 88 Eskilstuna, Sweden
| | - Helena H Askling
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, 171 76 Stockholm, Sweden; and.,Department of Communicable Disease Control and Prevention, Sörmland County, 631 88 Eskilstuna, Sweden
| | - Sara Gredmark-Russ
- Center for Infectious Medicine, ANA Futura, Department of Medicine Huddinge, Karolinska Institutet, 141 52 Stockholm, Sweden; .,Division of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, 141 86 Stockholm, Sweden
| |
Collapse
|
16
|
Chng MHY, Lim MQ, Rouers A, Becht E, Lee B, MacAry PA, Lye DC, Leo YS, Chen J, Fink K, Rivino L, Newell EW. Large-Scale HLA Tetramer Tracking of T Cells during Dengue Infection Reveals Broad Acute Activation and Differentiation into Two Memory Cell Fates. Immunity 2019; 51:1119-1135.e5. [PMID: 31757672 DOI: 10.1016/j.immuni.2019.10.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 08/01/2019] [Accepted: 10/21/2019] [Indexed: 12/25/2022]
Abstract
T cells play important multifaceted roles during dengue infection, and understanding their responses is important for defining correlates of protective immunity and identifying effective vaccine antigens. Using mass cytometry and a highly multiplexed peptide-HLA (human leukocyte antigen) tetramer staining strategy, we probed T cells from dengue patients-a total of 430 dengue and control candidate epitopes-together with key markers of activation, trafficking, and differentiation. During acute disease, dengue-specific CD8+ T cells expressed a distinct profile of activation and trafficking receptors that distinguished them from non-dengue-specific T cells. During convalescence, dengue-specific T cells differentiated into two major cell fates, CD57+ CD127--resembling terminally differentiated senescent memory cells and CD127+ CD57--resembling proliferation-capable memory cells. Validation in an independent cohort showed that these subsets remained at elevated frequencies up to one year after infection. These analyses aid our understanding of the generation of T cell memory in dengue infection or vaccination.
Collapse
Affiliation(s)
- Melissa Hui Yen Chng
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Mei Qiu Lim
- Emerging Infectious Diseases Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Angeline Rouers
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Etienne Becht
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Bernett Lee
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Paul A MacAry
- Immunology Programme, Department of Microbiology and Immunology, Life Science Institute, National University of Singapore, Singapore 117456, Singapore
| | - David Chien Lye
- National Centre for Infectious Diseases, Singapore 308442, Singapore; Tan Tock Seng Hospital, Singapore 308433, Singapore; Lee Kong Chian School of Medicine, Singapore 308232, Singapore; Yong Loo Lin School of Medicine, Singapore 119228, Singapore
| | - Yee Sin Leo
- National Centre for Infectious Diseases, Singapore 308442, Singapore; Tan Tock Seng Hospital, Singapore 308433, Singapore; Lee Kong Chian School of Medicine, Singapore 308232, Singapore; Yong Loo Lin School of Medicine, Singapore 119228, Singapore; Saw Swee Hock School of Public Health, Singapore 117549, Singapore
| | - Jinmiao Chen
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Katja Fink
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Laura Rivino
- Emerging Infectious Diseases Programme, Duke-NUS Medical School, Singapore 169857, Singapore; School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK.
| | - Evan W Newell
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| |
Collapse
|
17
|
Velay A, Paz M, Cesbron M, Gantner P, Solis M, Soulier E, Argemi X, Martinot M, Hansmann Y, Fafi-Kremer S. Tick-borne encephalitis virus: molecular determinants of neuropathogenesis of an emerging pathogen. Crit Rev Microbiol 2019; 45:472-493. [PMID: 31267816 DOI: 10.1080/1040841x.2019.1629872] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Tick-borne encephalitis virus (TBEV) is a zoonotic agent causing severe encephalitis. The transmission cycle involves the virus, the Ixodes tick vector, and a vertebrate reservoir, such as small mammals (rodents, or shrews). Humans are accidentally involved in this transmission cycle. Tick-borne encephalitis (TBE) has been a growing public health problem in Europe and Asia over the past 30 years. The mechanisms involved in the development of TBE are very complex and likely multifactorial, involving both host and viral factors. The purpose of this review is to provide an overview of the current literature on TBE neuropathogenesis in the human host and to demonstrate the emergence of common themes in the molecular pathogenesis of TBE in humans. We discuss and review data on experimental study models and on both viral (molecular genetics of TBEV) and host (immune response, and genetic background) factors involved in TBE neuropathogenesis in the context of human infection.
Collapse
Affiliation(s)
- Aurélie Velay
- Virology Laboratory, University Hospital of Strasbourg , Strasbourg , France.,INSERM, IRM UMR_S 1109 , Strasbourg , France
| | - Magali Paz
- Virology Laboratory, University Hospital of Strasbourg , Strasbourg , France
| | - Marlène Cesbron
- Virology Laboratory, University Hospital of Strasbourg , Strasbourg , France
| | - Pierre Gantner
- Virology Laboratory, University Hospital of Strasbourg , Strasbourg , France.,INSERM, IRM UMR_S 1109 , Strasbourg , France
| | - Morgane Solis
- Virology Laboratory, University Hospital of Strasbourg , Strasbourg , France.,INSERM, IRM UMR_S 1109 , Strasbourg , France
| | | | - Xavier Argemi
- Service des maladies infectieuses et tropicales, Hôpitaux Universitaires de Strasbourg , Strasbourg , France
| | - Martin Martinot
- Service de Médecine Interne et de Rhumatologie, Hôpitaux Civils de Colmar , Colmar , France
| | - Yves Hansmann
- Service des maladies infectieuses et tropicales, Hôpitaux Universitaires de Strasbourg , Strasbourg , France
| | - Samira Fafi-Kremer
- Virology Laboratory, University Hospital of Strasbourg , Strasbourg , France.,INSERM, IRM UMR_S 1109 , Strasbourg , France
| |
Collapse
|
18
|
Tick-borne encephalitis in Europe and Russia: Review of pathogenesis, clinical features, therapy, and vaccines. Antiviral Res 2019; 164:23-51. [PMID: 30710567 DOI: 10.1016/j.antiviral.2019.01.014] [Citation(s) in RCA: 222] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/10/2018] [Accepted: 01/22/2019] [Indexed: 02/07/2023]
Abstract
Tick-borne encephalitis (TBE) is an illness caused by tick-borne encephalitis virus (TBEV) infection which is often limited to a febrile illness, but may lead to very aggressive downstream neurological manifestations. The disease is prevalent in forested areas of Europe and northeastern Asia, and is typically caused by infection involving one of three TBEV subtypes, namely the European (TBEV-Eu), the Siberian (TBEV-Sib), or the Far Eastern (TBEV-FE) subtypes. In addition to the three main TBEV subtypes, two other subtypes; i.e., the Baikalian (TBEV-Bkl) and the Himalayan subtype (TBEV-Him), have been described recently. In Europe, TBEV-Eu infection usually results in only mild TBE associated with a mortality rate of <2%. TBEV-Sib infection also results in a generally mild TBE associated with a non-paralytic febrile form of encephalitis, although there is a tendency towards persistent TBE caused by chronic viral infection. TBE-FE infection is considered to induce the most severe forms of TBE. Importantly though, viral subtype is not the sole determinant of TBE severity; both mild and severe cases of TBE are in fact associated with infection by any of the subtypes. In keeping with this observation, the overall TBE mortality rate in Russia is ∼2%, in spite of the fact that TBEV-Sib and TBEV-FE subtypes appear to be inducers of more severe TBE than TBEV-Eu. On the other hand, TBEV-Sib and TBEV-FE subtype infections in Russia are associated with essentially unique forms of TBE rarely seen elsewhere if at all, such as the hemorrhagic and chronic (progressive) forms of the disease. For post-exposure prophylaxis and TBE treatment in Russia and Kazakhstan, a specific anti-TBEV immunoglobulin is currently used with well-documented efficacy, but the use of specific TBEV immunoglobulins has been discontinued in Europe due to concerns regarding antibody-enhanced disease in naïve individuals. Therefore, new treatments are essential. This review summarizes available data on the pathogenesis and clinical features of TBE, plus different vaccine preparations available in Europe and Russia. In addition, new treatment possibilities, including small molecule drugs and experimental immunotherapies are reviewed. The authors caution that their descriptions of approved or experimental therapies should not be considered to be recommendations for patient care.
Collapse
|
19
|
Li G, Teleki C, Wang T. Memory T Cells in Flavivirus Vaccination. Vaccines (Basel) 2018; 6:E73. [PMID: 30340377 PMCID: PMC6313919 DOI: 10.3390/vaccines6040073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 12/30/2022] Open
Abstract
Flaviviruses include many medically important viruses, such as Dengue virus (DENV), Japanese encephalitis (JEV), tick-borne encephalitis (TBEV), West Nile (WNV), yellow fever (YFV), and Zika viruses (ZIKV). Currently, there are licensed human vaccines for DENV, JEV, TBEV and YFV, but not for WNV or ZIKV. Memory T cells play a central role in adaptive immunity and are important for host protection during flavivirus infection. In this review, we discuss recent findings from animal models and clinical trials and provide new insights into the role of memory T cells in host protective immunity upon vaccination with the licensed flavivirus vaccines.
Collapse
Affiliation(s)
- Guangyu Li
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Cody Teleki
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Tian Wang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Institute for Human Infections & Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
20
|
Aberle JH, Koblischke M, Stiasny K. CD4 T cell responses to flaviviruses. J Clin Virol 2018; 108:126-131. [PMID: 30312909 DOI: 10.1016/j.jcv.2018.09.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 09/25/2018] [Accepted: 09/30/2018] [Indexed: 12/17/2022]
Abstract
Flaviviruses pose an increasing threat to global health with their potential to cause severe disease in millions of people. Protective and long-lived immunity is closely linked to the generation of CD4 T cells, which provide B cell help and support high affinity neutralizing antibody responses. Research performed during the last years revealed important new insights into the antigen specificities and diverse effector functions of CD4 T cell responses to flaviviruses. Moreover, the identification of mechanisms involved in the regulation of T cell specificity and function provides significant advances in our understanding of how durable protective immunity is established. Here, we summarize what is known about human CD4 T cell responses to flaviviruses, with a special emphasis on CD4 T cells that provide direct help to B cells producing neutralizing and protective antibodies. We review recent progress in the identification of epitope sites in the context of the atomic structures of flavivirus proteins and highlight specific influences that shape the human CD4 T cell response in the context of infection or vaccination. Finally, we discuss challenges facing vaccine efforts to generate appropriate CD4 T cell responses, as well as recent strategies to enhance T cell-mediated antibody responses.
Collapse
Affiliation(s)
- Judith H Aberle
- Center for Virology, Medical University of Vienna, Vienna, Austria.
| | | | - Karin Stiasny
- Center for Virology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
21
|
Blom K, Cuapio A, Sandberg JT, Varnaite R, Michaëlsson J, Björkström NK, Sandberg JK, Klingström J, Lindquist L, Gredmark Russ S, Ljunggren HG. Cell-Mediated Immune Responses and Immunopathogenesis of Human Tick-Borne Encephalitis Virus-Infection. Front Immunol 2018; 9:2174. [PMID: 30319632 PMCID: PMC6168641 DOI: 10.3389/fimmu.2018.02174] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 09/03/2018] [Indexed: 12/15/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) is a flavivirus that belongs to the Flaviviridae family. TBEV is transmitted to humans primarily from infected ticks. The virus causes tick-borne encephalitis (TBE), an acute viral disease that affects the central nervous system (CNS). Infection can lead to acute neurological symptoms of significant severity due to meningitis or meningo(myelo)encephalitis. TBE can cause long-term suffering and has been recognized as an increasing public health problem. TBEV-affected areas currently include large parts of central and northern Europe as well as northern Asia. Infection with TBEV triggers a humoral as well as a cell-mediated immune response. In contrast to the well-characterized humoral antibody-mediated response, the cell-mediated immune responses elicited to natural TBEV-infection have been poorly characterized until recently. Here, we review recent progress in our understanding of the cell-mediated immune response to human TBEV-infection. A particular emphasis is devoted to studies of the response mediated by natural killer (NK) cells and CD8 T cells. The studies described include results revealing the temporal dynamics of the T cell- as well as NK cell-responses in relation to disease state and functional characterization of these cells. Additionally, we discuss specific immunopathological aspects of TBEV-infection in the CNS.
Collapse
Affiliation(s)
- Kim Blom
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Angelica Cuapio
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - J. Tyler Sandberg
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Renata Varnaite
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jakob Michaëlsson
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Niklas K. Björkström
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Johan K. Sandberg
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jonas Klingström
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lars Lindquist
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Unit of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sara Gredmark Russ
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Hans-Gustaf Ljunggren
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
22
|
Zheng Z, Yang J, Jiang X, Liu Y, Zhang X, Li M, Zhang M, Fu M, Hu K, Wang H, Luo MH, Gong P, Hu Q. Tick-Borne Encephalitis Virus Nonstructural Protein NS5 Induces RANTES Expression Dependent on the RNA-Dependent RNA Polymerase Activity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:53-68. [PMID: 29760190 DOI: 10.4049/jimmunol.1701507] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 04/30/2018] [Indexed: 01/08/2023]
Abstract
Tick-borne encephalitis virus (TBEV) is one of the flaviviruses that targets the CNS and causes encephalitis in humans. The mechanism of TBEV that causes CNS destruction remains unclear. It has been reported that RANTES-mediated migration of human blood monocytes and T lymphocytes is specifically induced in the brain of mice infected with TBEV, which causes ensuing neuroinflammation and may contribute to brain destruction. However, the viral components responsible for RANTES induction and the underlying mechanisms remain to be fully addressed. In this study, we demonstrate that the NS5, but not other viral proteins of TBEV, induces RANTES production in human glioblastoma cell lines and primary astrocytes. TBEV NS5 appears to activate the IFN regulatory factor 3 (IRF-3) signaling pathway in a manner dependent on RIG-I/MDA5, which leads to the nuclear translocation of IRF-3 to bind with RANTES promoter. Further studies reveal that the activity of RNA-dependent RNA polymerase (RdRP) but not the RNA cap methyltransferase is critical for TBEV NS5-induced RANTES expression, and this is likely due to RdRP-mediated synthesis of dsRNA. Additional data indicate that the residues at K359, D361, and D664 of TBEV NS5 are critical for RdRP activity and RANTES induction. Of note, NS5s from other flaviviruses, including Japanese encephalitis virus, West Nile virus, Zika virus, and dengue virus, can also induce RANTES expression, suggesting the significance of NS5-induced RANTES expression in flavivirus pathogenesis. Our findings provide a foundation for further understanding how flaviviruses cause neuroinflammation and a potential viral target for intervention.
Collapse
Affiliation(s)
- Zifeng Zheng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jieyu Yang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xuan Jiang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yalan Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China;
| | - Xiaowei Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Mei Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mudan Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou 510623, China; and
| | - Ming Fu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Hanzhong Wang
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Min-Hua Luo
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Gong
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Qinxue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China;
- Institute for Infection and Immunity, St George's, University of London, London SW17 0RE, United Kingdom
| |
Collapse
|
23
|
Koblischke M, Stiasny K, Aberle SW, Malafa S, Tsouchnikas G, Schwaiger J, Kundi M, Heinz FX, Aberle JH. Structural Influence on the Dominance of Virus-Specific CD4 T Cell Epitopes in Zika Virus Infection. Front Immunol 2018; 9:1196. [PMID: 29899743 PMCID: PMC5989350 DOI: 10.3389/fimmu.2018.01196] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/14/2018] [Indexed: 12/30/2022] Open
Abstract
Zika virus (ZIKV) has recently caused explosive outbreaks in Pacific islands, South- and Central America. Like with other flaviviruses, protective immunity is strongly dependent on potently neutralizing antibodies (Abs) directed against the viral envelope protein E. Such Ab formation is promoted by CD4 T cells through direct interaction with B cells that present epitopes derived from E or other structural proteins of the virus. Here, we examined the extent and epitope dominance of CD4 T cell responses to capsid (C) and envelope proteins in Zika patients. All patients developed ZIKV-specific CD4 T cell responses, with substantial contributions of C and E. In both proteins, immunodominant epitopes clustered at sites that are structurally conserved among flaviviruses but have highly variable sequences, suggesting a strong impact of protein structural features on immunodominant CD4 T cell responses. Our data are particularly relevant for designing flavivirus vaccines and their evaluation in T cell assays and provide insights into the importance of viral protein structure for epitope selection and antigenicity.
Collapse
Affiliation(s)
| | - Karin Stiasny
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Stephan W Aberle
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Stefan Malafa
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | | | - Julia Schwaiger
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Michael Kundi
- Center for Public Health, Medical University of Vienna, Vienna, Austria
| | - Franz X Heinz
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Judith H Aberle
- Center for Virology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
24
|
Ignatieva EV, Igoshin AV, Yudin NS. A database of human genes and a gene network involved in response to tick-borne encephalitis virus infection. BMC Evol Biol 2017; 17:259. [PMID: 29297316 PMCID: PMC5751789 DOI: 10.1186/s12862-017-1107-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023] Open
Abstract
BACKGROUND Tick-borne encephalitis is caused by the neurotropic, positive-sense RNA virus, tick-borne encephalitis virus (TBEV). TBEV infection can lead to a variety of clinical manifestations ranging from slight fever to severe neurological illness. Very little is known about genetic factors predisposing to severe forms of disease caused by TBEV. The aims of the study were to compile a catalog of human genes involved in response to TBEV infection and to rank genes from the catalog based on the number of neighbors in the network of pairwise interactions involving these genes and TBEV RNA or proteins. RESULTS Based on manual review and curation of scientific publications a catalog comprising 140 human genes involved in response to TBEV infection was developed. To provide access to data on all genes, the TBEVhostDB web resource ( http://icg.nsc.ru/TBEVHostDB/ ) was created. We reconstructed a network formed by pairwise interactions between TBEV virion itself, viral RNA and viral proteins and 140 genes/proteins from TBEVHostDB. Genes were ranked according to the number of interactions in the network. Two genes/proteins (CCR5 and IFNAR1) that had maximal number of interactions were revealed. It was found that the subnetworks formed by CCR5 and IFNAR1 and their neighbors were a fragments of two key pathways functioning during the course of tick-borne encephalitis: (1) the attenuation of interferon-I signaling pathway by the TBEV NS5 protein that targeted peptidase D; (2) proinflammation and tissue damage pathway triggered by chemokine receptor CCR5 interacting with CD4, CCL3, CCL4, CCL2. Among nine genes associated with severe forms of TBEV infection, three genes/proteins (CCR5, IL10, ARID1B) were found to have protein-protein interactions within the network, and two genes/proteins (IFNL3 and the IL10, that was just mentioned) were up- or down-regulated in response to TBEV infection. Based on this finding, potential mechanisms for participation of CCR5, IL10, ARID1B, and IFNL3 in the host response to TBEV infection were suggested. CONCLUSIONS A database comprising 140 human genes involved in response to TBEV infection was compiled and the TBEVHostDB web resource, providing access to all genes was created. This is the first effort of integrating and unifying data on genetic factors that may predispose to severe forms of diseases caused by TBEV. The TBEVHostDB could potentially be used for assessment of risk factors for severe forms of tick-borne encephalitis and for the design of personalized pharmacological strategies for the treatment of TBEV infection.
Collapse
Affiliation(s)
- Elena V Ignatieva
- Laboratory of Evolutionary Bioinformatics and Theoretical Genetics, The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia. .,Center for Brain Neurobiology and Neurogenetics, The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia. .,Novosibirsk State University, Novosibirsk, 630090, Russia.
| | - Alexander V Igoshin
- Laboratory of Infectious Disease Genomics, The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Nikolay S Yudin
- Laboratory of Infectious Disease Genomics, The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
25
|
Koblischke M, Mackroth MS, Schwaiger J, Fae I, Fischer G, Stiasny K, Heinz FX, Aberle JH. Protein structure shapes immunodominance in the CD4 T cell response to yellow fever vaccination. Sci Rep 2017; 7:8907. [PMID: 28827760 PMCID: PMC5566484 DOI: 10.1038/s41598-017-09331-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/17/2017] [Indexed: 12/25/2022] Open
Abstract
The live attenuated yellow fever (YF) vaccine is a highly effective human vaccine and induces long-term protective neutralizing antibodies directed against the viral envelope protein E. The generation of such antibodies requires the help of CD4 T cells which recognize peptides derived from proteins in virus particles internalized and processed by E-specific B cells. The CD4 T helper cell response is restricted to few immunodominant epitopes, but the mechanisms of their selection are largely unknown. Here, we report that CD4 T cell responses elicited by the YF-17D vaccine are focused to hotspots of two helices of the viral capsid protein and to exposed strands and loops of E. We found that the locations of immunodominant epitopes within three-dimensional protein structures exhibit a high degree of overlap between YF virus and the structurally homologous flavivirus tick-borne encephalitis virus, although amino acid sequence identity of the epitope regions is only 15-45%. The restriction of epitopes to exposed E protein surfaces and their strikingly similar positioning within proteins of distantly related flaviviruses are consistent with a strong influence of protein structure that shapes CD4 T cell responses and provide leads for a rational design of immunogens for vaccination.
Collapse
Affiliation(s)
| | - Maria S Mackroth
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia Schwaiger
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Ingrid Fae
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Gottfried Fischer
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Karin Stiasny
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Franz X Heinz
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Judith H Aberle
- Center for Virology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
26
|
Holbrook MR. Historical Perspectives on Flavivirus Research. Viruses 2017; 9:E97. [PMID: 28468299 PMCID: PMC5454410 DOI: 10.3390/v9050097] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/13/2017] [Accepted: 04/21/2017] [Indexed: 12/21/2022] Open
Abstract
The flaviviruses are small single-stranded RNA viruses that are typically transmitted by mosquito or tick vectors. These "arboviruses" are found around the world and account for a significant number of cases of human disease. The flaviviruses cause diseases ranging from mild or sub-clinical infections to lethal hemorrhagic fever or encephalitis. In many cases, survivors of neurologic flavivirus infections suffer long-term debilitating sequelae. Much like the emergence of West Nile virus in the United States in 1999, the recent emergence of Zika virus in the Americas has significantly increased the awareness of mosquito-borne viruses. The diseases caused by several flaviviruses have been recognized for decades, if not centuries. However, there is still a lot that is unknown about the flaviviruses as the recent experience with Zika virus has taught us. The objective of this review is to provide a general overview and some historical perspective on several flaviviruses that cause significant human disease. In addition, available medical countermeasures and significant gaps in our understanding of flavivirus biology are also discussed.
Collapse
Affiliation(s)
- Michael R Holbrook
- NIAID Integrated Research Facility, 8200 Research Plaza, Ft. Detrick, Frederick, MD 21702, USA.
| |
Collapse
|
27
|
Sendi P, Hirzel C, Pfister S, Ackermann-Gäumann R, Grandgirard D, Hewer E, Nirkko AC. Fatal Outcome of European Tick-borne Encephalitis after Vaccine Failure. Front Neurol 2017; 8:119. [PMID: 28421031 PMCID: PMC5377060 DOI: 10.3389/fneur.2017.00119] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 03/15/2017] [Indexed: 12/30/2022] Open
Abstract
Tick-borne encephalitis is a viral disease affecting the central nervous system. It is endemic in Switzerland with 200–250 notified cases annually. Active immunization is effective for persons in all age groups. Vaccine failure is rare, in particular after a completed vaccination course. Here, we describe the case of 67-year-old man with a fatal outcome despite vaccination. The diagnosis was confirmed by extensive postmortem analyses. The diagnostic challenges of vaccine failure in tick-borne encephalitis and the dynamics of the immune response in vaccination breakthrough are discussed.
Collapse
Affiliation(s)
- Parham Sendi
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland.,Bern University Hospital, Department of Infectious Diseases, Bern, Switzerland
| | - Cédric Hirzel
- Bern University Hospital, Department of Infectious Diseases, Bern, Switzerland
| | - Stefan Pfister
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Rahel Ackermann-Gäumann
- Spiez Laboratory, Swiss National Reference Centre for Tick-transmitted Diseases, Federal Office for Civil Protection, Spiez, Switzerland
| | - Denis Grandgirard
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Ekkehard Hewer
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Arto C Nirkko
- Department of Neurology, Schlaf-Wach-Epilepsie-Zentrum (SWEZ), University of Bern, Bern, Switzerland
| |
Collapse
|