1
|
Nagel S, Meyer C, Pommerenke C. IRX-related homeobox gene MKX is a novel oncogene in acute myeloid leukemia. PLoS One 2024; 19:e0315196. [PMID: 39689089 DOI: 10.1371/journal.pone.0315196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/21/2024] [Indexed: 12/19/2024] Open
Abstract
Homeobox genes encode transcription factors which organize differentiation processes in all tissue types including the hematopoietic compartment. Recently, we have reported physiological expression of TALE-class homeobox gene IRX1 in early myelopoiesis restricted to the megakaryocyte-erythroid-progenitor stage and in early B-cell development to the pro-B-cell stage. In contrast, sister homeobox genes IRX2, IRX3 and IRX5 are aberrantly activated in the corresponding malignancies acute myeloid leukemia (AML) and B-cell progenitor acute lymphoid leukemia. Here, we examined the role of IRX-related homeobox gene MKX (also termed IRXL1 or mohawk) in normal and malignant hematopoiesis. Screening of public datasets revealed silent MKX in normal myelopoiesis and B-cell differentiation, and aberrant expression in subsets of AML and multiple myeloma (MM) cell lines and patients. To investigate its dysregulation and oncogenic function we used AML cell line OCI-AML3 as model which strongly expressed MKX at both RNA and protein levels. We found that IRX5, JUNB and NFkB activated MKX in this cell line, while downregulated GATA2 and STAT5 inhibited its expression. MKX downstream analysis was conducted by siRNA-mediated knockdown and RNA-sequencing in OCI-AML3, and by comparative expression profiling analysis of a public dataset from MM patients. Analysis of these data revealed activation of CCL2 which in turn promoted proliferation. Furthermore, MKX upregulated SESN3 and downregulated BCL2L11, which may together underlie decreased etoposide-induced apoptosis. Finally, myeloid differentiation genes CEBPD and GATA2 were respectively up- and downregulated by MKX. Taken together, our study identified MKX as novel aberrantly expressed homeobox gene in AML and MM, highlighting the function of IRX1 in normal myelopoiesis and B-cell development, and of IRX-related genes in corresponding malignancies. Our data merit further investigation of MKX and its deregulated target genes to serve as novel markers and/or potential therapeutic targets in AML patient subsets.
Collapse
Affiliation(s)
- Stefan Nagel
- Dept. of Human and Animal Cell Lines, Leibniz-Institute DSMZ, Braunschweig, Germany
| | - Corinna Meyer
- Dept. of Human and Animal Cell Lines, Leibniz-Institute DSMZ, Braunschweig, Germany
| | - Claudia Pommerenke
- Dept. of Human and Animal Cell Lines, Leibniz-Institute DSMZ, Braunschweig, Germany
| |
Collapse
|
2
|
Tan SL, Chan CK, Ahmad TS, Teo SH, Ng WM, Selvaratnam L, Kamarul T. Growth Differentiation Factor 5-Induced Mesenchymal Stromal Cells Enhance Tendon Healing. Tissue Eng Part C Methods 2024; 30:431-442. [PMID: 39162995 DOI: 10.1089/ten.tec.2024.0230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) have immense potential for use in musculoskeletal tissue regeneration; however, there is still a paucity of evidence on the effect of tenogenic MSCs (TMSCs) in tendon healing in vivo. This study aimed to determine the effects of growth differentiation factor 5 (GDF5)-induced rabbit MSCs (rbMSCs) on infraspinatus tendon healing in a New Zealand white rabbit model. In this study, bone marrow-derived rbMSCs were isolated, and 100 ng/mL GDF5 was used to induce tenogenic differentiation in rbMSC. The effects of GDF5 on rbMSC in vitro were assessed by total collagen assay, gene expression analysis, and immunofluorescence staining of tenogenic markers; native tenocytes isolated from rabbit tendon were used as a positive control. In in vivo, a window defect was created on the infraspinatus tendons bilaterally. After 3 weeks, the rabbits (n = 18) were randomly divided into six groups and repaired with various interventions: (1) surgical suture; (2) fibrin glue (FG); (3) suture and FG; (4) suture, FG, and rabbit tenocytes (rbTenocyte); (5) suture, FG, and rbMSCs, and (6) suture, FG, and TMSC. All animals were euthanized at 6 weeks postoperatively. The in vitro GDF5-induced rbMSCs (or TMSC) showed increased total collagen expression, augmented scleraxis (SCX), and type-I collagen (COL1A1) mRNA gene expression levels. Immunofluorescence showed similar expression in GDF5-induced rbMSC to that of rbTenocyte. In vivo histological analysis showed progressive tendon healing in the TMSC-treated group; cells with elongated nuclei aligned parallel to the collagen fibers, and the collagen fibers were in a more organized orientation, along with macroscopic evidence of tendon callus formation. Significant differences were observed in the cell-treated groups compared with the non-cell-treated groups. Histological scoring showed a significantly enhanced tendon healing in the TMSC- and rbMSC-treated groups compared with the rbTenocyte group. The SCX mRNA expression levels, at 6 weeks following repair, were significantly upregulated in the TMSC group. Immunofluorescence showed COL-1 bundles aligned in parallel orientation; this was further confirmed in atomic force microscopy imaging. SCX, TNC, and TNMD were detected in the TMSC group. In conclusion, GDF5 induces tenogenic differentiation in rbMSCs, and TMSC enhances tendon healing in vivo compared with conventional suture repair. Impact Statement Tendon tears and degeneration are debilitating clinical conditions. To date, the suture method is the only gold standard for repairing tendons. Mesenchymal stromal cells (MSCs) have been suggested for many years for their potential in tissue regeneration, especially in tendon-degenerative conditions. Growth differentiation factor 5 (GDF5) has been reported to induce human MSC into a tenogenic lineage (or TMSC), hence a potential cell source for tendon regeneration. This study reported on the potential of rabbit MSC to differentiate into TMSC via GDF5 induction and the potential of TMSC in tendon healing in a New Zealand white rabbit infraspinatus tendon model fulfilled with the 3R principle (reduce, reuse, and replace).
Collapse
Affiliation(s)
- Sik-Loo Tan
- Tissue Engineering Group, National Orthopaedics Centre of Excellent Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, Universiti Malaya , Kuala Lumpur, Malaysia
| | - Chee-Ken Chan
- NOCERAL, Department of Orthopaedic Surgery, Universiti Malaya , Kuala Lumpur, Malaysia
| | - T Sara Ahmad
- NOCERAL, Department of Orthopaedic Surgery, Universiti Malaya , Kuala Lumpur, Malaysia
| | - Seow-Hui Teo
- NOCERAL, Department of Orthopaedic Surgery, Universiti Malaya , Kuala Lumpur, Malaysia
| | - Wuey-Min Ng
- NOCERAL, Department of Orthopaedic Surgery, Universiti Malaya , Kuala Lumpur, Malaysia
| | - Lakshmi Selvaratnam
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Tunku Kamarul
- Tissue Engineering Group, National Orthopaedics Centre of Excellent Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, Universiti Malaya , Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Collagen Modulates the Biological Characteristics of WJ-MSCs in Basal and Osteoinduced Conditions. Stem Cells Int 2022; 2022:2116367. [PMID: 36071734 PMCID: PMC9441371 DOI: 10.1155/2022/2116367] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/10/2022] [Indexed: 12/04/2022] Open
Abstract
Transcriptomic analysis revealed mesenchymal stem/stromal cells (MSCs) from various origins exhibited distinct gene and protein expression profiles dictating their biological properties. Although collagen type 1 (COL) has been widely studied in bone marrow MSCs, its role in regulating cell fate of Wharton jelly- (WJ-) MSCs is not well understood. In this study, we investigated the effects of collagen on the characteristics of WJ-MSCs associated with proliferation, surface markers, adhesion, migration, self-renewal, and differentiation capabilities through gene expression studies. The isolated WJ-MSCs expressed positive surface markers but not negative markers. Gene expression profiles showed that COL not only maintained the pluripotency, self-renewal, and immunophenotype of WJ-MSCs but also primed cells toward lineage differentiations by upregulating BMP2 and TGFB1 genes. Upon osteoinduction, WJ-MSC-COL underwent osteogenesis by switching on the transcription of BMP6/7 and TGFB3 followed by activation of downstream target genes such as INS, IGF1, RUNX2, and VEGFR2 through p38 signalling. This molecular event was also accompanied by hypomethylation at the OCT4 promoter and increase of H3K9 acetylation. In conclusion, COL provides a conducive cellular environment in priming WJ-MSCs that undergo a lineage specification upon receiving an appropriate signal from extrinsic factor. These findings would contribute to better control of fate determination of MSCs for therapeutic applications related to bone disease.
Collapse
|
4
|
Goh TX, Tan SL, Roebuck MM, Teo SH, Kamarul T. A systematic review of EV-piRNA in human body fluid and its role in disease progression. Tissue Eng Part C Methods 2022; 28:511-528. [PMID: 35959742 DOI: 10.1089/ten.tec.2022.0092] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The state of host cells is reflected in the cargo carried by their extracellular vesicles (EVs). This makes EV a potential source of biomarkers for human diseases. Piwi-interacting RNA (piRNA) regulates gene expression through epigenetic regulation and post-transcriptional gene silencing. Thus, piRNA profiles in EVs derived from human clinical samples could identify markers that characterize disease stages, and unveil their roles in disease pathology. This review aimed to report the expression profiles of EV-derived piRNA (EV-piRNA) in various human samples, as well as their role in each pathology. A systematic review was conducted to collate the findings of human EV-piRNA from original research articles published in indexed scientific journals up to 16th Feb 2022. Article searches were performed in PubMed, Web of Science, and Scopus databases, using a combination of keywords including 'EV' and 'piRNA'. A total of 775 non-redundant original articles were identified. After subjecting articles to inclusion and exclusion criteria, 34 articles were accepted for this review. The piRNA expression levels among the small RNA profiles of human-derived EVs range from 0.09% to 43.84%, with the lowest expression level reported in urine-derived EVs and the highest percentage in plasma-derived EVs. Differentially expressed EV-piRNAs have been identified in patients with specific disease conditions compared to their counterparts (healthy control), suggesting an association between piRNA and progression in various diseases. Seven articles identified piRNA putative target genes and/or the pathway enrichment of piRNA target genes, and one study demonstrated a direct tole of piRNA candidates in disease pathology. In conclusion, EV-piRNA has been isolated successfully from various human body fluids. EV-piRNA is a new research niche in human disease pathology. The expression profiles of EV-piRNA in various tissue types and disease conditions remain largely unexplored. Furthermore, there is currently a lack of guidelines on piRNA bioinformatics analysis, which could lead to inconsistent results and thus hinder the progression of piRNA discoveries. Lastly, the lack of published scientific evidence on the role of EV-piRNA supports the need for future research to focus on the functional analysis of EV-piRNA as part of the route in piRNA discoveries.
Collapse
Affiliation(s)
- Tuan Xin Goh
- University of Malaya Faculty of Medicine, Tissue Engineering Group (TEG), National Orthopaedic Center of Excellent Research & Learning (NOCERAL), Department of Orthopaedic Surgery, Kuala Lumpur, Malaysia;
| | - Sik Loo Tan
- University of Malaya Faculty of Medicine, Tissue Engineering Group (TEG), National Orthopaedic Center of Excellent Research & Learning (NOCERAL), Department of Orthopaedic Surgery, Kuala Lumpur, Malaysia;
| | - Margaret M Roebuck
- University of Liverpool Faculty of Health and Life Sciences, Department of Musculoskeletal & Ageing Science Institute of Life Course & Medical Sciences (ILCaMS) Faculty of Health & Life Sciences William Henry Duncan Building University of Liverpool, Liverpool, 6 West Derby Street Liverpool L7 8TX, United Kingdom of Great Britain and Northern Ireland;
| | - Seow-Hui Teo
- Division of Sports Injuries and Arthroscopic Surgery, National Orthopaedic Center of Excellence for Research & Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, MALAYSIA., Division of Sports Injuries and Arthroscopic Surgery, National Orthopaedic Center of Excellence for Research & Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Federal Territory, Kuala Lumpur, Malaysia;
| | - Tunku Kamarul
- University of Malaya Faculty of Medicine, Tissue Engineering Group (TEG), National Orthopaedic Center of Excellent Research & Learning (NOCERAL), Department of Orthopaedic Surgery, Kuala Lumpur, Wilayah Persekutuan, Malaysia;
| |
Collapse
|
5
|
Koch DW, Berglund AK, Messenger KM, Gilbertie JM, Ellis IM, Schnabel LV. Interleukin-1β in tendon injury enhances reparative gene and protein expression in mesenchymal stem cells. Front Vet Sci 2022; 9:963759. [PMID: 36032300 PMCID: PMC9410625 DOI: 10.3389/fvets.2022.963759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Tendon injury in the horse carries a high morbidity and monetary burden. Despite appropriate therapy, reinjury is estimated to occur in 50–65% of cases. Although intralesional mesenchymal stem cell (MSC) therapy has improved tissue architecture and reinjury rates, the mechanisms by which they promote repair are still being investigated. Additionally, reevaluating our application of MSCs in tendon injury is necessary given recent evidence that suggests MSCs exposed to inflammation (deemed MSC licensing) have an enhanced reparative effect. However, applying MSC therapy in this context is limited by the inadequate quantification of the temporal cytokine profile in tendon injury, which hinders our ability to administer MSCs into an environment that could potentiate their effect. Therefore, the objectives of this study were to define the temporal cytokine microenvironment in a surgically induced model of equine tendon injury using ultrafiltration probes and subsequently evaluate changes in MSC gene and protein expression following in vitro inflammatory licensing with cytokines of similar concentration as identified in vivo. In our in vivo surgically induced tendon injury model, IL-1β and IL-6 were the predominant pro-inflammatory cytokines present in tendon ultrafiltrate where a discrete peak in cytokine concentration occurred within 48 h following injury. Thereafter, MSCs were licensed in vitro with IL-1β and IL-6 at a concentration identified from the in vivo study; however, only IL-1β induced upregulation of multiple genes beneficial to tendon healing as identified by RNA-sequencing. Specifically, vascular development, ECM synthesis and remodeling, chemokine and growth factor function alteration, and immunomodulation and tissue reparative genes were significantly upregulated. A significant increase in the protein expression of IL-6, VEGF, and PGE2 was confirmed in IL-1β-licensed MSCs compared to naïve MSCs. This study improves our knowledge of the temporal tendon cytokine microenvironment following injury, which could be beneficial for the development and determining optimal timing of administration of regenerative therapies. Furthermore, these data support the need to further study the benefit of MSCs administered within the inflamed tendon microenvironment or exogenously licensed with IL-1β in vitro prior to treatment as licensed MSCs could enhance their therapeutic benefit in the healing tendon.
Collapse
Affiliation(s)
- Drew W. Koch
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
| | - Alix K. Berglund
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
| | - Kristen M. Messenger
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Jessica M. Gilbertie
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
| | - Ilene M. Ellis
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Lauren V. Schnabel
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
- *Correspondence: Lauren V. Schnabel
| |
Collapse
|
6
|
Donderwinkel I, Tuan RS, Cameron NR, Frith JE. Tendon tissue engineering: Current progress towards an optimized tenogenic differentiation protocol for human stem cells. Acta Biomater 2022; 145:25-42. [PMID: 35470075 DOI: 10.1016/j.actbio.2022.04.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/10/2022] [Accepted: 04/18/2022] [Indexed: 12/19/2022]
Abstract
Tendons are integral to our daily lives by allowing movement and locomotion but are frequently injured, leading to patient discomfort and impaired mobility. Current clinical procedures are unable to fully restore the native structure of the tendon, resulting in loss of full functionality, and the weakened tissue following repair often re-ruptures. Tendon tissue engineering, involving the combination of cells with biomaterial scaffolds to form new tendon tissue, holds promise to improve patient outcomes. A key requirement for efficacy in promoting tendon tissue formation is the optimal differentiation of the starting cell populations, most commonly adult tissue-derived mesenchymal stem/stromal cells (MSCs), into tenocytes, the predominant cellular component of tendon tissue. Currently, a lack of consensus on the protocols for effective tenogenic differentiation is hampering progress in tendon tissue engineering. In this review, we discuss the current state of knowledge regarding human stem cell differentiation towards tenocytes and tendon tissue formation. Tendon development and healing mechanisms are described, followed by a comprehensive overview of the current protocols for tenogenic differentiation, including the effects of biochemical and biophysical cues, and their combination, on tenogenesis. Lastly, a synthesis of the key features of these protocols is used to design future approaches. The holistic evaluation of current knowledge should facilitate and expedite the development of efficacious stem cell tenogenic differentiation protocols with future impact in tendon tissue engineering. STATEMENT OF SIGNIFICANCE: The lack of a widely-adopted tenogenic differentiation protocol has been a major hurdle in the tendon tissue engineering field. Building on current knowledge on tendon development and tendon healing, this review surveys peer-reviewed protocols to present a holistic evaluation and propose a pathway to facilitate and expedite the development of a consensus protocol for stem cell tenogenic differentiation and tendon tissue engineering.
Collapse
|
7
|
Ramos‐Mucci L, Sarmiento P, Little D, Snelling S. Research perspectives-Pipelines to human tendon transcriptomics. J Orthop Res 2022; 40:993-1005. [PMID: 35239195 PMCID: PMC9007907 DOI: 10.1002/jor.25315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/23/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023]
Abstract
Tendon transcriptomics is a rapidly growing field in musculoskeletal biology. The ultimate aim of many current tendon transcriptomic studies is characterization of in vitro, ex vivo, or in vivo, healthy, and diseased tendon microenvironments to identify the underlying pathways driving human tendon pathology. The transcriptome interfaces between genomic, proteomic, and metabolomic signatures of the tendon cellular niche and the response of this niche to stimuli. Some of the greatest bottlenecks in tendon transcriptomics relate to the availability and quality of human tendon tissue, hence animal tissues are frequently used even though human tissue is most translationally relevant. Here, we review the variability associated with human donor and procurement factors, such as whether the tendon is cadaveric or a clinical remnant, and how these variables affect the quality and relevance of the transcriptomes obtained. Moreover, age, sex, and health demographic variables impact the human tendon transcriptome. Tendons present tissue-specific challenges for cell, nuclei, and RNA extraction that include a dense extracellular matrix, low cellularity, and therefore low RNA yield of variable quality. Consideration of these factors is particularly important for single-cell and single-nuclei resolution transcriptomics due to the necessity for unbiased and representative cell or nuclei populations. Different cell, nuclei, and RNA extraction methods, library preparation, and quality control methods are used by the tendon research community and attention should be paid to these when designing and reporting studies. We discuss the different components and challenges of human tendon transcriptomics, and propose pipelines, quality control, and reporting guidelines for future work in the field.
Collapse
Affiliation(s)
- Lorenzo Ramos‐Mucci
- Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal ScienceUniversity of OxfordOxfordUK
| | - Paula Sarmiento
- Department of Biomedical EngineeringPurdue UniversityWest LafayetteIndianaUSA
| | - Dianne Little
- Department of Biomedical EngineeringPurdue UniversityWest LafayetteIndianaUSA
- Department of Basic Medical SciencesPurdue UniversityWest LafayetteIndianaUSA
| | - Sarah Snelling
- Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal ScienceUniversity of OxfordOxfordUK
| |
Collapse
|
8
|
Role of Yes-associated protein (YAP) in regulation of mesenchymal stem cell tenogenic differentiation. J Mol Histol 2022; 53:273-283. [DOI: 10.1007/s10735-022-10059-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 01/06/2022] [Indexed: 10/19/2022]
|
9
|
Ciardulli MC, Lovecchio J, Scala P, Lamparelli EP, Dale TP, Giudice V, Giordano E, Selleri C, Forsyth NR, Maffulli N, Della Porta G. 3D Biomimetic Scaffold for Growth Factor Controlled Delivery: An In-Vitro Study of Tenogenic Events on Wharton's Jelly Mesenchymal Stem Cells. Pharmaceutics 2021; 13:pharmaceutics13091448. [PMID: 34575523 PMCID: PMC8465418 DOI: 10.3390/pharmaceutics13091448] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/05/2021] [Accepted: 09/08/2021] [Indexed: 11/25/2022] Open
Abstract
The present work described a bio-functionalized 3D fibrous construct, as an interactive teno-inductive graft model to study tenogenic potential events of human mesenchymal stem cells collected from Wharton’s Jelly (hWJ-MSCs). The 3D-biomimetic and bioresorbable scaffold was functionalized with nanocarriers for the local controlled delivery of a teno-inductive factor, i.e., the human Growth Differentiation factor 5 (hGDF-5). Significant results in terms of gene expression were obtained. Namely, the up-regulation of Scleraxis (350-fold, p ≤ 0.05), type I Collagen (8-fold), Decorin (2.5-fold), and Tenascin-C (1.3-fold) was detected at day 14; on the other hand, when hGDF-5 was supplemented in the external medium only (in absence of nanocarriers), a limited effect on gene expression was evident. Teno-inductive environment also induced pro-inflammatory, (IL-6 (1.6-fold), TNF (45-fold, p ≤ 0.001), and IL-12A (1.4-fold)), and anti-inflammatory (IL-10 (120-fold) and TGF-β1 (1.8-fold)) cytokine expression upregulation at day 14. The presented 3D construct opens perspectives for the study of drug controlled delivery devices to promote teno-regenerative events.
Collapse
Affiliation(s)
- Maria Camilla Ciardulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (M.C.C.); (P.S.); (E.P.L.); (V.G.); (C.S.); (N.M.)
| | - Joseph Lovecchio
- Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi” (DEI), University of Bologna, Via dell’Università 50, 47522 Cesena, Italy; (J.L.); (E.G.)
| | - Pasqualina Scala
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (M.C.C.); (P.S.); (E.P.L.); (V.G.); (C.S.); (N.M.)
| | - Erwin Pavel Lamparelli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (M.C.C.); (P.S.); (E.P.L.); (V.G.); (C.S.); (N.M.)
| | - Tina Patricia Dale
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire ST4 7QB, UK; (T.P.D.); (N.R.F.)
| | - Valentina Giudice
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (M.C.C.); (P.S.); (E.P.L.); (V.G.); (C.S.); (N.M.)
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
| | - Emanuele Giordano
- Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi” (DEI), University of Bologna, Via dell’Università 50, 47522 Cesena, Italy; (J.L.); (E.G.)
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Via Tolara di Sopra 41/E, 40064 Ozzano dell’Emilia, Italy
- Advanced Research Center on Electronic Systems (ARCES), University of Bologna, Via Vincenzo Toffano 2/2, 40125 Bologna, Italy
| | - Carmine Selleri
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (M.C.C.); (P.S.); (E.P.L.); (V.G.); (C.S.); (N.M.)
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
- Clinical Pharmacology, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
| | - Nicholas Robert Forsyth
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire ST4 7QB, UK; (T.P.D.); (N.R.F.)
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (M.C.C.); (P.S.); (E.P.L.); (V.G.); (C.S.); (N.M.)
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire ST4 7QB, UK; (T.P.D.); (N.R.F.)
- Centre for Sport and Exercise Medicine, Barts and The London School of Medicine, Queen Mary University of London, London E1 4NL, UK
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (M.C.C.); (P.S.); (E.P.L.); (V.G.); (C.S.); (N.M.)
- Research Centre for Biomaterials BIONAM, Università di Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
- Correspondence: ; Tel.: +39-089-965-234
| |
Collapse
|
10
|
Application of Stem Cell Therapy for ACL Graft Regeneration. Stem Cells Int 2021; 2021:6641818. [PMID: 34381504 PMCID: PMC8352687 DOI: 10.1155/2021/6641818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/19/2021] [Accepted: 06/30/2021] [Indexed: 02/07/2023] Open
Abstract
Graft regeneration after anterior cruciate ligament (ACL) reconstruction surgery is a complex three-stage process, which usually takes a long duration and often results in fibrous scar tissue formation that exerts a detrimental impact on the patients' prognosis. Hence, as a regeneration technique, stem cell transplantation has attracted increasing attention. Several different stem cell types have been utilized in animal experiments, and almost all of these have shown good capacity in improving tendon-bone regeneration. Various differentiation inducers have been widely applied together with stem cells to enhance specific lineage differentiation, such as recombinant gene transfection, growth factors, and biomaterials. Among the various different types of stem cells, bone marrow-derived mesenchymal stem cells (BMSCs) have been investigated the most, while ligament stem progenitor cells (LDSCs) have demonstrated the best potential in generating tendon/ligament lineage cells. In the clinic, 4 relevant completed trials have been reported, but only one trial with BMSCs showed improved outcomes, while 5 relevant trials are still in progress. This review describes the process of ACL graft regeneration after implantation and summarizes the current application of stem cells from bench to bedside, as well as discusses future perspectives in this field.
Collapse
|
11
|
Citeroni MR, Ciardulli MC, Russo V, Della Porta G, Mauro A, El Khatib M, Di Mattia M, Galesso D, Barbera C, Forsyth NR, Maffulli N, Barboni B. In Vitro Innovation of Tendon Tissue Engineering Strategies. Int J Mol Sci 2020; 21:E6726. [PMID: 32937830 PMCID: PMC7555358 DOI: 10.3390/ijms21186726] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Abstract
Tendinopathy is the term used to refer to tendon disorders. Spontaneous adult tendon healing results in scar tissue formation and fibrosis with suboptimal biomechanical properties, often resulting in poor and painful mobility. The biomechanical properties of the tissue are negatively affected. Adult tendons have a limited natural healing capacity, and often respond poorly to current treatments that frequently are focused on exercise, drug delivery, and surgical procedures. Therefore, it is of great importance to identify key molecular and cellular processes involved in the progression of tendinopathies to develop effective therapeutic strategies and drive the tissue toward regeneration. To treat tendon diseases and support tendon regeneration, cell-based therapy as well as tissue engineering approaches are considered options, though none can yet be considered conclusive in their reproduction of a safe and successful long-term solution for full microarchitecture and biomechanical tissue recovery. In vitro differentiation techniques are not yet fully validated. This review aims to compare different available tendon in vitro differentiation strategies to clarify the state of art regarding the differentiation process.
Collapse
Affiliation(s)
- Maria Rita Citeroni
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| | - Maria Camilla Ciardulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy; (M.C.C.); (G.D.P.); (N.M.)
| | - Valentina Russo
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy; (M.C.C.); (G.D.P.); (N.M.)
- Interdepartment Centre BIONAM, Università di Salerno, via Giovanni Paolo I, 84084 Fisciano (SA), Italy
| | - Annunziata Mauro
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| | - Mohammad El Khatib
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| | - Miriam Di Mattia
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| | - Devis Galesso
- Fidia Farmaceutici S.p.A., via Ponte della Fabbrica 3/A, 35031 Abano Terme (PD), Italy; (D.G.); (C.B.)
| | - Carlo Barbera
- Fidia Farmaceutici S.p.A., via Ponte della Fabbrica 3/A, 35031 Abano Terme (PD), Italy; (D.G.); (C.B.)
| | - Nicholas R. Forsyth
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Thornburrow Drive, Stoke on Trent ST4 7QB, UK;
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy; (M.C.C.); (G.D.P.); (N.M.)
- Department of Musculoskeletal Disorders, Faculty of Medicine and Surgery, University of Salerno, Via San Leonardo 1, 84131 Salerno, Italy
- Centre for Sports and Exercise Medicine, Barts and The London School of Medicine and Dentistry, Mile End Hospital, Queen Mary University of London, 275 Bancroft Road, London E1 4DG, UK
- School of Pharmacy and Bioengineering, Keele University School of Medicine, Thornburrow Drive, Stoke on Trent ST5 5BG, UK
| | - Barbara Barboni
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| |
Collapse
|
12
|
Ciardulli MC, Marino L, Lamparelli EP, Guida M, Forsyth NR, Selleri C, Della Porta G, Maffulli N. Dose-Response Tendon-Specific Markers Induction by Growth Differentiation Factor-5 in Human Bone Marrow and Umbilical Cord Mesenchymal Stem Cells. Int J Mol Sci 2020; 21:E5905. [PMID: 32824547 PMCID: PMC7460605 DOI: 10.3390/ijms21165905] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/10/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells derived from human bone marrow (hBM-MSCs) are utilized in tendon tissue-engineering protocols while extra-embryonic cord-derived, including from Wharton's Jelly (hWJ-MSCs), are emerging as useful alternatives. To explore the tenogenic responsiveness of hBM-MSCs and hWJ-MSCs to human Growth Differentiation Factor 5 (hGDF-5) we supplemented each at doses of 1, 10, and 100 ng/mL of hGDF-5 and determined proliferation, morphology and time-dependent expression of tenogenic markers. We evaluated the expression of collagen types 1 (COL1A1) and 3 (COL3A1), Decorin (DCN), Scleraxis-A (SCX-A), Tenascin-C (TNC) and Tenomodulin (TNMD) noting the earliest and largest increase with 100 ng/mL. With 100 ng/mL, hBM-MSCs showed up-regulation of SCX-A (1.7-fold) at Day 1, TNC (1.3-fold) and TNMD (12-fold) at Day 8. hWJ-MSCs, at the same dose, showed up-regulation of COL1A1 (3-fold), DCN (2.7-fold), SCX-A (3.8-fold) and TNC (2.3-fold) after three days of culture. hWJ-MSCs also showed larger proliferation rate and marked aggregation into a tubular-shaped system at Day 7 (with 100 ng/mL of hGDF-5). Simultaneous to this, we explored the expression of pro-inflammatory (IL-6, TNF, IL-12A, IL-1β) and anti-inflammatory (IL-10, TGF-β1) cytokines across for both cell types. hBM-MSCs exhibited a better balance of pro-inflammatory and anti-inflammatory cytokines up-regulating IL-1β (11-fold) and IL-10 (10-fold) at Day 8; hWJ-MSCs, had a slight expression of IL-12A (1.5-fold), but a greater up-regulation of IL-10 (2.5-fold). Type 1 collagen and tenomodulin proteins, detected by immunofluorescence, confirming the greater protein expression when 100 ng/mL were supplemented. In the same conditions, both cell types showed specific alignment and shape modification with a length/width ratio increase, suggesting their response in activating tenogenic commitment events, and they both potential use in 3D in vitro tissue-engineering protocols.
Collapse
Affiliation(s)
- Maria Camilla Ciardulli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 1, 84084 Baronissi (SA), Italy; (M.C.C.); (L.M.); (E.P.L.); (C.S.); (N.M.)
| | - Luigi Marino
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 1, 84084 Baronissi (SA), Italy; (M.C.C.); (L.M.); (E.P.L.); (C.S.); (N.M.)
| | - Erwin Pavel Lamparelli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 1, 84084 Baronissi (SA), Italy; (M.C.C.); (L.M.); (E.P.L.); (C.S.); (N.M.)
| | - Maurizio Guida
- Department of Neuroscience and Reproductive Science and Dentistry, University of Naples “Federico II”, Via Pansini, 5, 80131 Naples, Italy;
| | - Nicholas Robert Forsyth
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent ST4 7QB, UK;
| | - Carmine Selleri
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 1, 84084 Baronissi (SA), Italy; (M.C.C.); (L.M.); (E.P.L.); (C.S.); (N.M.)
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 1, 84084 Baronissi (SA), Italy; (M.C.C.); (L.M.); (E.P.L.); (C.S.); (N.M.)
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 1, 84084 Baronissi (SA), Italy; (M.C.C.); (L.M.); (E.P.L.); (C.S.); (N.M.)
- Mile End Hospital, Centre for Sports and Exercise Medicine, Queen Mary University of London, Barts and the London School of Medicine and Dentistry, 275 Bancroft Road, London E1 4DG, UK
| |
Collapse
|
13
|
Stockwin LH. Alveolar soft-part sarcoma (ASPS) resembles a mesenchymal stromal progenitor: evidence from meta-analysis of transcriptomic data. PeerJ 2020; 8:e9394. [PMID: 32596059 PMCID: PMC7307565 DOI: 10.7717/peerj.9394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022] Open
Abstract
Alveolar soft-part sarcoma (ASPS) is an extremely rare malignancy characterized by the unbalanced translocation der(17)t(X;17)(p11;q25). This translocation generates a fusion protein, ASPL-TFE3, that drives pathogenesis through aberrant transcriptional activity. Although considerable progress has been made in identifying ASPS therapeutic vulnerabilities (e.g., MET inhibitors), basic research efforts are hampered by the lack of appropriate in vitro reagents with which to study the disease. In this report, previously unmined microarray data for the ASPS cell line, ASPS-1, was analyzed relative to the NCI sarcoma cell line panel. These data were combined with meta-analysis of pre-existing ASPS patient microarray and RNA-seq data to derive a platform-independent ASPS transcriptome. Results demonstrated that ASPS-1, in the context of the NCI sarcoma cell panel, had some similarities to normal mesenchymal cells and connective tissue sarcomas. The cell line was characterized by high relative expression of transcripts such as CRYAB, MT1G, GCSAML, and SV2B. Notably, ASPS-1 lacked mRNA expression of myogenesis-related factors MYF5, MYF6, MYOD1, MYOG, PAX3, and PAX7. Furthermore, ASPS-1 had a predicted mRNA surfaceome resembling an undifferentiated mesenchymal stromal cell through expression of GPNMB, CD9 (TSPAN29), CD26 (DPP4), CD49C (ITGA3), CD54 (ICAM1), CD63 (TSPAN30), CD68 (SCARD1), CD130 (IL6ST), CD146 (MCAM), CD147 (BSG), CD151 (SFA-1), CD166 (ALCAM), CD222 (IGF2R), CD230 (PRP), CD236 (GPC), CD243 (ABCB1), and CD325 (CDHN). Subsequent re-analysis of ASPS patient data generated a consensus expression profile with considerable overlap between studies. In common with ASPS-1, elevated expression was noted for CTSK, DPP4, GPNMB, INHBE, LOXL4, PSG9, SLC20A1, STS, SULT1C2, SV2B, and UPP1. Transcripts over-expressed only in ASPS patient samples included ABCB5, CYP17A1, HIF1A, MDK, P4HB, PRL, and PSAP. These observations are consistent with that expected for a mesenchymal progenitor cell with adipogenic, osteogenic, or chondrogenic potential. In summary, the consensus data generated in this study highlight the unique and highly conserved nature of the ASPS transcriptome. Although the ability of the ASPL-TFE3 fusion to perturb mRNA expression must be acknowledged, the prevailing ASPS transcriptome resembles that of a mesenchymal stromal progenitor.
Collapse
|
14
|
Guan S, Zhang K, Li J. Recent Advances in Extracellular Matrix for Engineering Stem Cell Responses. Curr Med Chem 2019; 26:6321-6338. [DOI: 10.2174/0929867326666190704121309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/02/2018] [Accepted: 01/25/2019] [Indexed: 02/06/2023]
Abstract
Stem cell transplantation is an advanced medical technology, which brings hope for the
treatment of some difficult diseases in the clinic. Attributed to its self-renewal and differential
ability, stem cell research has been pushed to the forefront of regenerative medicine and has become
a hot topic in tissue engineering. The surrounding extracellular matrix has physical functions
and important biological significance in regulating the life activities of cells, which may play crucial
roles for in situ inducing specific differentiation of stem cells. In this review, we discuss the
stem cells and their engineering application, and highlight the control of the fate of stem cells, we
offer our perspectives on the various challenges and opportunities facing the use of the components
of extracellular matrix for stem cell attachment, growth, proliferation, migration and differentiation.
Collapse
Affiliation(s)
- Shuaimeng Guan
- School of Life Science, Zhengzhou University, Zhengzhou 450000, China
| | - Kun Zhang
- School of Life Science, Zhengzhou University, Zhengzhou 450000, China
| | - Jingan Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
15
|
Matrix Nanopatterning Regulates Mesenchymal Differentiation through Focal Adhesion Size and Distribution According to Cell Fate. Biomimetics (Basel) 2019; 4:biomimetics4020043. [PMID: 31242712 PMCID: PMC6630613 DOI: 10.3390/biomimetics4020043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/29/2019] [Accepted: 06/21/2019] [Indexed: 12/31/2022] Open
Abstract
Extracellular matrix remodeling plays a pivotal role during mesenchyme patterning into different lineages. Tension exerted from cell membrane receptors bound to extracellular matrix ligands is transmitted by the cytoskeleton to the cell nucleus inducing gene expression. Here, we used dendrimer-based arginine–glycine–aspartic acid (RGD) uneven nanopatterns, which allow the control of local surface adhesiveness at the nanoscale, to unveil the adhesive requirements of mesenchymal tenogenic and osteogenic commitments. Cell response was found to depend on the tension resulting from cell–substrate interactions, which affects nuclear morphology and is regulated by focal adhesion size and distribution.
Collapse
|
16
|
Mienaltowski MJ, Cánovas A, Fates VA, Hampton AR, Pechanec MY, Islas-Trejo A, Medrano JF. Transcriptome profiles of isolated murine Achilles tendon proper- and peritenon-derived progenitor cells. J Orthop Res 2019; 37:1409-1418. [PMID: 29926971 DOI: 10.1002/jor.24076] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 06/18/2018] [Indexed: 02/04/2023]
Abstract
Progenitor cells of the tendon proper and peritenon have unique properties that could impact their utilization in tendon repair strategies. While a few markers have been found to aid in distinguishing progenitors cells from each region, there is great value in identifying more markers. In this study, we hypothesized that RNAseq could be used to improve our understanding of those markers that define these cell types. Transcriptome profiles were generated for pools of mouse Achilles tendon progenitor cells from both regions and catalogues of potential markers were generated. Moreover, common (e.g., glycoprotein, signaling, and proteinaceous extracellular matrix) and unique (e.g., cartilage development versus angiogenesis and muscle contraction) biological processes and molecular functions were described for progenitors from each region. Real-time quantitative PCR of a subset of genes was used to gain insight into the heterogeneity amongst individual progenitor colonies from each region. Markers like Scx, Mkx, Thbs4, and Wnt10a were consistently able to distinguish tendon proper progenitors from peritenon progenitors; expression variability for other genes suggested greater cell type complexity for potential peritenon progenitor markers. This is the first effort to define Achilles tendon progenitor markers by region. Further efforts to investigate the value of these cataloged markers are required by screening more individual colonies of progenitors for more markers. Clinical Significance: Findings from this study advance efforts in the discernment of cell type specific markers for tendon proper and peritenon progenitor cells; insight into marker sets could improve tracking and sorting strategies for these cells for future therapeutic strategies. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1409-1418, 2019.
Collapse
Affiliation(s)
- Michael J Mienaltowski
- Department of Animal Science, University of California Davis, 2251 Meyer Hall, One Shields Ave, Davis, California, 95616
| | - Angela Cánovas
- Department of Animal Science, University of California Davis, 2251 Meyer Hall, One Shields Ave, Davis, California, 95616.,Department of Animal Biosciences, University of Guelph, Ontario, Canada
| | - Valerie A Fates
- Department of Animal Science, University of California Davis, 2251 Meyer Hall, One Shields Ave, Davis, California, 95616
| | - Angela R Hampton
- Department of Animal Science, University of California Davis, 2251 Meyer Hall, One Shields Ave, Davis, California, 95616
| | - Monica Y Pechanec
- Department of Animal Science, University of California Davis, 2251 Meyer Hall, One Shields Ave, Davis, California, 95616
| | - Alma Islas-Trejo
- Department of Animal Science, University of California Davis, 2251 Meyer Hall, One Shields Ave, Davis, California, 95616
| | - Juan F Medrano
- Department of Animal Science, University of California Davis, 2251 Meyer Hall, One Shields Ave, Davis, California, 95616
| |
Collapse
|
17
|
Aynardi M, Zahoor T, Mitchell R, Loube J, Feltham T, Manandhar L, Paudel S, Schon L, Zhang Z. Orthotopic Transplantation of Achilles Tendon Allograft in Rats: With or without Incorporation of Autologous Mesenchymal Stem Cells. Cell Transplant 2019; 27:245-255. [PMID: 29637821 PMCID: PMC5898692 DOI: 10.1177/0963689717745891] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The biology and function of orthotopic transplantation of Achilles tendon allograft are unknown. Particularly, the revitalization of Achilles allograft is a clinical concern. Achilles allografts were harvested from donor rats and stored at -80 °C. Subcutaneous adipose tissue was harvested from the would-be allograft recipient rats for isolation of mesenchymal stem cells (MSCs). MSCs were cultured with growth differentiation factor-5 (GDF-5) and applied onto Achilles allografts on the day of transplantation. After the native Achilles tendon was resected from the left hind limb of the rats, Achilles allograft, with or without autologous MSCs, was implanted and sutured with calf muscles proximally and calcaneus distally. Animal gait was recorded presurgery and postsurgery weekly. The animals were sacrificed at week 4, and the transplanted Achilles allografts were collected for biomechanical testing and histology. The operated limbs had altered gait. By week 4, the paw print intensity, stance time, and duty cycle (percentage of the stance phase in a step cycle) of the reconstructed limbs were mostly recovered to the baselines recorded before surgery. Maximum load of failure was not different between Achilles allografts, with or without MSCs, and the native tendons. The Achilles allograft supplemented with MSCs had higher cellularity than the Achilles allograft without MSCs. Deposition of fine collagen (type III) fibers was active in Achilles allograft, with or without MSCs, but it was more evenly distributed in the allografts that were incubated with MSCs. In conclusion, orthotopically transplanted Achilles allograft healed with host tissues, regained strength, and largely restored Achilles function in 4 wk in rats. It is therefore a viable option for the reconstruction of a large Achilles tendon defect. Supplementation of MSCs improved repopulation of Achilles allograft, but large animal models, with long-term follow up and cell tracking, may be required to fully appreciate the functional benefits of MSCs.
Collapse
Affiliation(s)
| | | | - Reed Mitchell
- 3 MedStar Union Memorial Hospital, Baltimore, MD, USA
| | - Jeffrey Loube
- 3 MedStar Union Memorial Hospital, Baltimore, MD, USA
| | | | | | | | - Lew Schon
- 3 MedStar Union Memorial Hospital, Baltimore, MD, USA
| | - Zijun Zhang
- 3 MedStar Union Memorial Hospital, Baltimore, MD, USA
| |
Collapse
|
18
|
Santoro Belangero P, Antônio Figueiredo E, Cohen C, de Seixas Alves F, Hiromi Yanaguizawa W, Cardoso Smith M, Vicente Andreoli C, de Castro Pochini A, Teresa de Seixas Alves M, Ejnisman B, Cohen M, Ferreira Leal M. Changes in the expression of matrix extracellular genes and TGFB family members in rotator cuff tears. J Orthop Res 2018; 36:2542-2553. [PMID: 29614203 DOI: 10.1002/jor.23907] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 03/18/2018] [Indexed: 02/04/2023]
Abstract
Lack of synthesis of extracellular matrix compounds may contribute to degeneration of the tendons. Thus, we aimed to evaluate the expression of extracellular matrix and TGFB family members in ruptured and non-ruptured tendons of the rotator cuff, as well as the effect of clinical factors on gene expression in tendon samples, and the relationship between histological findings and altered gene expression. Injured and non-injured supraspinatus tendon samples and subscapular non-injured tendon samples were collected from 38 patients with rotator cuff tears. Non-injured supraspinatus tendons were obtained from eight controls. Specimens were used for histological evaluation, quantification of collagen fibers, and mRNA and protein expression analyses. Increased COL1A1, COL1A2, COL3A1, COL5A1, FN1, TNC, and TGFBR1 mRNA expression was observed in the tear samples (p < 0.05). Duration of symptoms was correlated with the levels of collagen type I/III fibers (p = 0.032; ρ = 0.0447) and FN1 immunostaining (p = 0.031; ρ = 0.417). Smoking was associated with increased frequency of microcysts, myxoid degeneration, and COL5A1, FN1, TNC, and TGFB1 mRNA expression (p < 0.05). FN1 immunostaining was correlated with the number of years of smoking (p = 0.048; ρ = 0.384). Lower levels of collagen type I/III fibers were detected in samples with fissures (0 = 0.046). High frequency of microcysts was associated with increased COL5A1, FN1, and TNC expression (p < 0.05, for all comparisons). Neovascularization was associated with reduced FN1 (p = 0.035) and TGFBR1 expression (p = 0.034). Our findings show differential expression of matrix extracellular genes and TGFB family members in the degeneration process involved in rotator cuff tears. These molecular alterations are influenced by clinical factors. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:2542-2553, 2018.
Collapse
Affiliation(s)
- Paulo Santoro Belangero
- Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo, Rua Borges Lagoa, 783, São Paulo, São Paulo, 04038-032, Brazil
| | - Eduardo Antônio Figueiredo
- Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo, Rua Borges Lagoa, 783, São Paulo, São Paulo, 04038-032, Brazil
| | - Carina Cohen
- Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo, Rua Borges Lagoa, 783, São Paulo, São Paulo, 04038-032, Brazil
| | - Felipe de Seixas Alves
- Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo, Rua Borges Lagoa, 783, São Paulo, São Paulo, 04038-032, Brazil.,Departamento de Patologia, Universidade Federal de São Paulo, São Paulo, São Paulo, 04038-032, Brazil
| | - Wânia Hiromi Yanaguizawa
- Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo, Rua Borges Lagoa, 783, São Paulo, São Paulo, 04038-032, Brazil.,Departamento de Patologia, Universidade Federal de São Paulo, São Paulo, São Paulo, 04038-032, Brazil
| | - Marília Cardoso Smith
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo, São Paulo, 04023-001, Brazil
| | - Carlos Vicente Andreoli
- Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo, Rua Borges Lagoa, 783, São Paulo, São Paulo, 04038-032, Brazil
| | - Alberto de Castro Pochini
- Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo, Rua Borges Lagoa, 783, São Paulo, São Paulo, 04038-032, Brazil
| | | | - Benno Ejnisman
- Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo, Rua Borges Lagoa, 783, São Paulo, São Paulo, 04038-032, Brazil
| | - Moises Cohen
- Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo, Rua Borges Lagoa, 783, São Paulo, São Paulo, 04038-032, Brazil
| | - Mariana Ferreira Leal
- Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo, Rua Borges Lagoa, 783, São Paulo, São Paulo, 04038-032, Brazil.,Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo, São Paulo, 04023-001, Brazil
| |
Collapse
|
19
|
Ramaswamy S, Walker WH, Aliberti P, Sethi R, Marshall GR, Smith A, Nourashrafeddin S, Belgorosky A, Chandran UR, Hedger MP, Plant TM. The testicular transcriptome associated with spermatogonia differentiation initiated by gonadotrophin stimulation in the juvenile rhesus monkey (Macaca mulatta). Hum Reprod 2018; 32:2088-2100. [PMID: 28938749 DOI: 10.1093/humrep/dex270] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 08/02/2017] [Indexed: 01/02/2023] Open
Abstract
STUDY QUESTION What is the genetic landscape within the testis of the juvenile rhesus monkey (Macaca mulatta) that underlies the decision of undifferentiated spermatogonia to commit to a pathway of differentiation when puberty is induced prematurely by exogenous LH and FSH stimulation? SUMMARY ANSWER Forty-eight hours of gonadotrophin stimulation of the juvenile monkey testis resulted in the appearance of differentiating B spermatogonia and the emergence of 1362 up-regulated and 225 down-regulated testicular mRNAs encoding a complex network of proteins ranging from enzymes regulating Leydig cell steroidogenesis to membrane receptors, and from juxtacrine and paracrine factors to transcriptional factors governing spermatogonial stem cell fate. WHAT IS KNOWN ALREADY Our understanding of the cell and molecular biology underlying the fate of undifferentiated spermatogonia is based largely on studies of rodents, particularly of mice, but in the case of primates very little is known. The present study represents the first attempt to comprehensively address this question in a highly evolved primate. STUDY DESIGN, SIZE, DURATION Global gene expression in the testis from juvenile rhesus monkeys that had been stimulated with recombinant monkey LH and FSH for 48 h (N = 3) or 96 h (N = 4) was compared to that from vehicle treated animals (N = 3). Testicular cell types and testosterone secretion were also monitored. PARTICIPANTS/MATERIALS, SETTING, METHODS Precocious testicular puberty was initiated in juvenile rhesus monkeys, 14-24 months of age, using a physiologic mode of intermittent stimulation with i.v. recombinant monkey LH and FSH that within 48 h produced 'adult' levels of circulating LH, FSH and testosterone. Mitotic activity was monitored by immunohistochemical assays of 5-bromo-2'-deoxyuridine and 5-ethynyl-2'-deoxyuridine incorporation. Animals were bilaterally castrated and RNA was extracted from the right testis. Global gene expression was determined using RNA-Seq. Differentially expressed genes (DEGs) were identified and evaluated by pathway analysis. mRNAs of particular interest were also quantitated using quantitative RT-PCR. Fractions of the left testis were used for histochemistry or immunoflouresence. MAIN RESULTS AND THE ROLE OF CHANCE Differentiating type B spematogonia were observed after both 48 and 96 h of gonadotrophin stimulation. Pathway analysis identified five super categories of over-represented DEGs. Repression of GFRA1 (glial cell line-derived neurotrophic factor family receptor alpha 1) and NANOS2 (nanos C2HC-type zinc finger 2) that favor spermatogonial stem cell renewal was noted after 48 and 96 h of LH and FSH stimulation. Additionally, changes in expression of numerous genes involved in regulating the Notch pathway, cell adhesion, structural plasticity and modulating the immune system were observed. Induction of genes associated with the differentiation of spermatogonia stem cells (SOHLH1(spermatogenesis- and oogenesis-specific basic helix-loop-helix 1), SOHLH2 and KIT (V-Kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog)) was not observed. Expression of the gene encoding STRA8 (stimulated by retinoic acid 8), a protein generally considered to mark activation of retinoic acid signaling, was below our limit of detection. LARGE SCALE DATA The entire mRNA data set for vehicle and gonadotrophin treated animals (N = 10) has been deposited in the GEO-NCBI repository (GSE97786). LIMITATIONS REASONS FOR CAUTION The limited number of monkeys per group and the dilution of low abundance germ cell transcripts by mRNAs contributed from somatic cells likely resulted in an underestimation of the number of differentially expressed germ cell genes. WIDER IMPLICATIONS OF THE FINDINGS The findings that expression of GDNF (a major promoter of spermatogonial stem cell renewal) was not detected in the control juvenile testes, expression of SOHLH1, SOHLH2 and KIT, promoters of spermatogonial differentiation in mice, were not up-regulated in association with the gonadotrophin-induced generation of differentiating spermatogonia, and that robust activation of the retinoic acid signaling pathway was not observed, could not have been predicted. These unexpected results underline the importance of non-human primate models in translating data derived from animal research to the human situation. STUDY FUNDING/COMPETING INTEREST(S) The work described was funded by NIH grant R01 HD072189 to T.M.P. P.A. was supported by an Endocrine Society Summer Research Fellowship Award and CONICET (Argentine Research Council), S.N. by a grant from Vali-e-Asr Reproductive Health Research Center of Tehran University of Medical Sciences (grant #24335-39-92) to Dr Batool Hosseini Rashidi, and M.P.H. by grants from the National Health and Medical Research Council of Australia, and the Victorian State Government's Operational Infrastructure Support Program. The authors have nothing to disclose.
Collapse
Affiliation(s)
- Suresh Ramaswamy
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine and Magee-Womens Research Institute, Pittsburgh, PA 15213, USA
| | - William H Walker
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine and Magee-Womens Research Institute, Pittsburgh, PA 15213, USA
| | - Paula Aliberti
- Endocrine Service, Hospital de Pediatría Garrahan, Buenos Aires, Argentina
| | - Rahil Sethi
- Department of Biomedical Informatics, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15206, USA
| | - Gary R Marshall
- Department of Natural Sciences, Chatham University, Pittsburgh, PA 15232, USA
| | - Alyxzandria Smith
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine and Magee-Womens Research Institute, Pittsburgh, PA 15213, USA
| | - Seyedmehdi Nourashrafeddin
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine and Magee-Womens Research Institute, Pittsburgh, PA 15213, USA
| | - Alicia Belgorosky
- Endocrine Service, Hospital de Pediatría Garrahan, Buenos Aires, Argentina
| | - Uma R Chandran
- Department of Biomedical Informatics, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15206, USA
| | - Mark P Hedger
- Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Tony M Plant
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine and Magee-Womens Research Institute, Pittsburgh, PA 15213, USA
| |
Collapse
|
20
|
Viganò M, Perucca Orfei C, de Girolamo L, Pearson JR, Ragni E, De Luca P, Colombini A. Housekeeping Gene Stability in Human Mesenchymal Stem and Tendon Cells Exposed to Tenogenic Factors. Tissue Eng Part C Methods 2018; 24:360-367. [PMID: 29676207 DOI: 10.1089/ten.tec.2017.0518] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The use of biochemical inducers of mesenchymal stem cell (MSC) differentiation into tenogenic lineage represents an investigated aspect of tendon disorder treatment. Bone morphogenetic protein 12 (BMP-12) is a widely studied factor, representing along with ascorbic acid (AA) and basic fibroblast growth factor (bFGF) one of the most promising stimulus in this context so far. Quantitative gene expression of specific tenogenic marker is commonly used to assess the efficacy of these supplements. Nevertheless, the reliability of these data is strongly associated with the choice of stable housekeeping genes. To date, no published studies have evaluated the stability of housekeeping genes in MSCs during tenogenic induction. Three candidate housekeeping genes (YWHAZ, RPL13A, and GAPDH) in human MSCs from bone marrow (BMSCs), adipose tissue (ASCs), and tendon cells (TCs) supplemented with BMP-12 or AA and bFGF in comparison with control untreated cells for 3 and 10 days were evaluated. GeNorm, NormFinder, and BestKeeper tools and the comparative ΔCt method were used to evaluate housekeeping gene stability and the overall ranking was determined by using by the RefFinder algorithm. In all culture conditions, YWHAZ was the most stable gene and RPL13A was the second choice. YWHAZ and RPL13A were the two most stable genes also for ASCs and BMSCs, regardless of the time point analyzed, and for TCs at 10 days of tenogenic induction. Only for TCs at 3 days of tenogenic induction were GAPDH and YWHAZ the best performers. In conclusion, our findings will be useful for the proper selection of housekeeping genes in studies involving MSCs cultured in the presence of tenogenic factors, to obtain accurate and high-quality data from quantitative gene expression analysis.
Collapse
Affiliation(s)
- Marco Viganò
- 1 Orthopaedic Biotechnology Lab, IRCCS Galeazzi Orthopaedic Institute , Milan, Italy
| | | | - Laura de Girolamo
- 1 Orthopaedic Biotechnology Lab, IRCCS Galeazzi Orthopaedic Institute , Milan, Italy
| | - John R Pearson
- 2 Nano-imaging Unit, Andalusian Centre for Nanomedicine and Biotechnology, BIONAND , Málaga, Spain
| | - Enrico Ragni
- 1 Orthopaedic Biotechnology Lab, IRCCS Galeazzi Orthopaedic Institute , Milan, Italy
| | - Paola De Luca
- 1 Orthopaedic Biotechnology Lab, IRCCS Galeazzi Orthopaedic Institute , Milan, Italy
| | - Alessandra Colombini
- 1 Orthopaedic Biotechnology Lab, IRCCS Galeazzi Orthopaedic Institute , Milan, Italy
| |
Collapse
|
21
|
Zhang YJ, Chen X, Li G, Chan KM, Heng BC, Yin Z, Ouyang HW. Concise Review: Stem Cell Fate Guided By Bioactive Molecules for Tendon Regeneration. Stem Cells Transl Med 2018; 7:404-414. [PMID: 29573225 PMCID: PMC5905226 DOI: 10.1002/sctm.17-0206] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 01/29/2018] [Indexed: 12/22/2022] Open
Abstract
Tendon disorders, which are commonly presented in the clinical setting, disrupt the patients' normal work and life routines, and they damage the careers of athletes. However, there is still no effective treatment for tendon disorders. In the field of tissue engineering, the potential of the therapeutic application of exogenous stem cells to treat tendon pathology has been demonstrated to be promising. With the development of stem cell biology and chemical biology, strategies that use inductive tenogenic factors to program stem cell fate in situ are the most easily and readily translatable to clinical applications. In this review, we focus on bioactive molecules that can potentially induce tenogenesis in adult stem cells, and we summarize the various differentiation factors found in comparative studies. Moreover, we discuss the molecular regulatory mechanisms of tenogenesis, and we examine the various challenges in developing standardized protocols for achieving efficient and reproducible tenogenesis. Finally, we discuss and predict future directions for tendon regeneration. Stem Cells Translational Medicine 2018;7:404-414.
Collapse
Affiliation(s)
- Yan-Jie Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Xiao Chen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, People's Republic of China
| | - Gang Li
- China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, People's Republic of China.,Faculty of Medicine, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, People's Republic of China.,Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, People's Republic of China
| | - Kai-Ming Chan
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Faculty of Medicine, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, People's Republic of China
| | - Boon Chin Heng
- Faculty of Dentistry, Department of Endodontology, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Zi Yin
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, People's Republic of China.,Faculty of Medicine, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, People's Republic of China.,Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, People's Republic of China
| | - Hong-Wei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, People's Republic of China
| |
Collapse
|
22
|
Su Y, Denbeigh JM, Camilleri ET, Riester SM, Parry JA, Wagner ER, Yaszemski MJ, Dietz AB, Cool SM, van Wijnen AJ, Kakar S. Extracellular matrix protein production in human adipose-derived mesenchymal stem cells on three-dimensional polycaprolactone (PCL) scaffolds responds to GDF5 or FGF2. GENE REPORTS 2017; 10:149-156. [PMID: 29868646 DOI: 10.1016/j.genrep.2017.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Purpose The poor healing potential of intra-articular ligament injuries drives a need for the development of novel, viable 'neo-ligament' alternatives. Ex vivo approaches combining stem cell engineering, 3-dimensional biocompatible scaffold design and enhancement of biological and biomechanical functionality via the introduction of key growth factors and morphogens, represent a promising solution to ligament regeneration. Methods We investigated growth, differentiation and extracellular matrix (ECM) protein production of human adipose-derived mesenchymal stem/stromal cells (MSCs), cultured in 5% human platelet lysate (PL) and seeded on three-dimensional polycaprolactone (PCL) scaffolds, in response to the connective-tissue related ligands fibroblast growth factor 2 (basic) (FGF2) and growth and differentiation factor-5 (GDF5). Phenotypic alterations of MSCs under different biological conditions were examined using cell viability assays, real time qPCR analysis of total RNA, as well as immunofluorescence microscopy. Results Phenotypic conversion of MSCs into ECM producing fibroblastic cells proceeds spontaneously in the presence of human platelet lysate. Administration of FGF2 and/or GDF5 enhances production of mRNAs for several ECM proteins including Collagen types I and III, as well as Tenomodulin (e.g., COL1A1, TNMD), but not Tenascin-C (TNC). Differences in the in situ deposition of ECM proteins Collagen type III and Tenascin-C were validated by immunofluorescence microscopy. Summary Treatment of MSCs with FGF2 and GDF5 was not synergistic and occasionally antagonistic for ECM production. Our results suggest that GDF5 alone enhances the conversion of MSCs to fibroblastic cells possessing a phenotype consistent with that of connective-tissue fibroblasts.
Collapse
Affiliation(s)
- Yan Su
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN.,Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | | | | | - Scott M Riester
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN
| | - Joshua A Parry
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN
| | - Eric R Wagner
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN
| | - Michael J Yaszemski
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN.,Department of Biomedical Engineering and Physiology, Mayo Clinic College of Medicine, Rochester, MN
| | - Allan B Dietz
- Department of Laboratory Medicine & Pathology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN
| | - Simon M Cool
- Institute of Medical Biology, Agency for Science, Technology and Research (ASTAR), 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore; Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN.,Masonic Cancer Center, University of Minnesota, Minneapolis MN.,Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN
| | - Sanjeev Kakar
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN
| |
Collapse
|
23
|
Liu Y, Suen CW, Zhang JF, Li G. Current concepts on tenogenic differentiation and clinical applications. J Orthop Translat 2017; 9:28-42. [PMID: 29662797 PMCID: PMC5822963 DOI: 10.1016/j.jot.2017.02.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/21/2017] [Accepted: 02/23/2017] [Indexed: 12/16/2022] Open
Abstract
Tendon is a tissue that transmits force from muscle to bone. Chronic or acute tendon injuries are very common, and are always accompanied by pain and a limited range of motion in patients. In clinical settings, management of tendon injuries still remains a big challenge. Cell therapies, such as the application of stem cells for tenogenic differentiation, were suggested to be an ideal strategy for clinical translation. However, there is still a lack of specific methods for tenogenic differentiation due to the limited understanding of tendon biology currently. This review focuses on the summary of current published strategies for tenogenic differentiation, such as the application of growth factors, mechanical stimulation, biomaterials, coculture, or induced pluripotent stem cells. Current clinical applications of stem cells for treatment of tendon injuries and their limitations have also been discussed in this review.
Collapse
Affiliation(s)
- Yang Liu
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Chun-Wai Suen
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Jin-fang Zhang
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Gang Li
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Corresponding author. Department of Orthopaedics and Traumatology and Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, 30-32 Ngan Shing Street, Shatin, New Territories, Hong Kong, China.Department of Orthopaedics and Traumatology and Li Ka Shing Institute of Health SciencesPrince of Wales HospitalThe Chinese University of Hong Kong30-32 Ngan Shing StreetShatinNew TerritoriesHong Kong, China
| |
Collapse
|
24
|
Different combinations of growth factors for the tenogenic differentiation of bone marrow mesenchymal stem cells in monolayer culture and in fibrin-based three-dimensional constructs. Differentiation 2017; 95:44-53. [PMID: 28319735 DOI: 10.1016/j.diff.2017.03.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 02/13/2017] [Accepted: 03/06/2017] [Indexed: 12/22/2022]
Abstract
Tendon injuries are severe burdens in clinics. The poor tendon healing is related to an ineffective response of resident cells and inadequate vascularization. Thanks to the high proliferation and multi-lineage differentiation capability, bone marrow-derived mesenchymal stem cells (BMSCs) are a promising cell source to support the tendon repair. To date, the association of various growth factors to induce the in vitro tenogenic differentiation of multipotent progenitor cells is poorly investigated. This study aimed to investigate the tenogenic differentiation of rabbit BMSCs by testing the combination of bone morphogenetic proteins (BMP-12 and 14) with transforming growth factor beta (TGF-β) and vascular endothelial growth factor (VEGF) both in 2D and 3D cultures within fibrin-based constructs. After 7 and 14 days, the tenogenic differentiation was assessed by analyzing cell metabolism and collagen content, the gene expression of tenogenic markers and the histological cell distribution and collagen deposition within 3D constructs. Our results demonstrated that the association of BMP-14 with TGF-β3 and VEGF enhanced the BMSC tenogenic differentiation both in 2D and 3D cultures. This study supports the use of fibrin as hydrogel-based matrix to generate spheroids loaded with tenogenic differentiated BMSCs that could be used to treat tendon lesions in the future.
Collapse
|
25
|
Biomaterials as Tendon and Ligament Substitutes: Current Developments. REGENERATIVE STRATEGIES FOR THE TREATMENT OF KNEE JOINT DISABILITIES 2017. [DOI: 10.1007/978-3-319-44785-8_17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Cai WW, Wang LJ, Li SJ, Zhang XP, Li TT, Wang YH, Yang X, Xie J, Li JD, Liu SJ, Xu W, He S, Cheng Z, Fan QL, Zhang RP. Effective tracking of bone mesenchymal stem cells in vivo by magnetic resonance imaging using melanin-based gadolinium 3+ nanoparticles. J Biomed Mater Res A 2016; 105:131-137. [PMID: 27588709 DOI: 10.1002/jbm.a.35891] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/12/2016] [Accepted: 08/30/2016] [Indexed: 12/29/2022]
Abstract
Tracking transplanted stem cells is necessary to clarify cellular properties and improve transplantation success. In this study, we designed and synthesized melanin-based gadolinium3+ (Gd3+ )-chelate nanoparticles (MNP-Gd3+ ) of ∼7 nm for stem cell tracking in vivo. MNP-Gd3+ possesses many beneficial properties, such as its high stability and sensitivity, shorter T1 relaxation time, higher cell labeling efficiency, and lower cytotoxicity compared with commercial imaging agents. We found that the T1 relaxivity (r1 ) of MNP-Gd3+ was significantly higher than that of Gd-DTPA; the nanoparticles were taken up by bone mesenchymal stem cells (BMSCs) via endocytosis and were broadly distributed in the cytoplasm. Based on an in vitro MTT assay, no cytotoxicity of labeled stem cells was observed for MNP-Gd3+ concentrations of less than 800 µg/mL. Furthermore, we tracked MNP-Gd3+ -labeled BMSCs in vivo using 3.0T MRI equipment. After intramuscular injection, MNP-Gd3+ -labeled BMSCs were detected, even after four weeks, by 3T MRI. We concluded that MNP-Gd3+ nanoparticles at appropriate concentrations can be used to effectively monitor and track BMSCs in vivo. MNP-Gd3+ nanoparticles have potential as a new positive MRI contrast agent in clinical applications. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 131-137, 2017.
Collapse
Affiliation(s)
- Wen-Wen Cai
- Medical Imaging Department, First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Ling-Jie Wang
- Medical Imaging Department, First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Si-Jin Li
- Molecular Imaging Precision Medical Collaborative Innovation Center, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Xi-Ping Zhang
- Department of Tumor Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang Province, 310022, China
| | - Ting-Ting- Li
- Molecular Imaging Precision Medical Collaborative Innovation Center, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Ying-Hua Wang
- Medical Imaging Department, First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Xi Yang
- Medical Imaging Department, First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Jun Xie
- Medical Imaging Department, First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Jian-Ding Li
- Medical Imaging Department, First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Shi-Jie Liu
- Medical Imaging Department, First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Wen Xu
- Medical Imaging Department, First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Sheng He
- Medical Imaging Department, First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Zhen Cheng
- Molecular Imaging Program at Stanford Stanford University, Stanford, California, 94305-5484
| | - Qu-Li Fan
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing City, Jiangsu Province, 210023, China
| | - Rui-Ping Zhang
- Medical Imaging Department, First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| |
Collapse
|
27
|
Qiao GH, Zhao F, Cheng S, Luo MH. Multipotent mesenchymal stromal cells are fully permissive for human cytomegalovirus infection. Virol Sin 2016; 31:219-28. [PMID: 27105639 DOI: 10.1007/s12250-016-3754-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/05/2016] [Indexed: 01/03/2023] Open
Abstract
Congenital human cytomegalovirus (HCMV) infection is a leading infectious cause of birth defects. Previous studies have reported birth defects with multiple organ maldevelopment in congenital HCMV-infected neonates. Multipotent mesenchymal stromal cells (MSCs) are a group of stem/progenitor cells that are multi-potent and can self-renew, and they play a vital role in multi-organ formation. Whether MSCs are susceptible to HCMV infection is unclear. In this study, MSCs were isolated from Wharton's jelly of the human umbilical cord and identified by their plastic adherence, surface marker pattern, and differentiation capacity. Then, the MSCs were infected with the HCMV Towne strain, and infection status was assessed via determination of viral entry, replication initiation, viral protein expression, and infectious virion release using western blotting, immunofluorescence assays, and plaque forming assays. The results indicate that the isolated MSCs were fully permissive for HCMV infection and provide a preliminary basis for understanding the pathogenesis of HCMV infection in non-nervous system diseases, including multi-organ malformation during fetal development.
Collapse
Affiliation(s)
- Guan-Hua Qiao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Fei Zhao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Shuang Cheng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Min-Hua Luo
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|