1
|
Segura-Roman A, Citron YR, Shin M, Sindoni N, Maya-Romero A, Rapp S, Goul C, Mancias JD, Zoncu R. Autophagosomes coordinate an AKAP11-dependent regulatory checkpoint that shapes neuronal PKA signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.06.606738. [PMID: 39211170 PMCID: PMC11361107 DOI: 10.1101/2024.08.06.606738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Protein Kinase A (PKA) is regulated spatially and temporally via scaffolding of its catalytic (Cα/β) and regulatory (RI/RII) subunits by the A-kinase-anchoring proteins (AKAP). PKA engages in poorly understood interactions with autophagy, a key degradation pathway for neuronal cell homeostasis, partly via its AKAP11 scaffold. Mutations in AKAP11 drive schizophrenia and bipolar disorders (SZ-BP) through unknown mechanisms. Through proteomic-based analysis of immunopurified lysosomes, we identify the Cα-RIα-AKAP11 holocomplex as a prominent autophagy-associated protein kinase complex. AKAP11 scaffolds Cα-RIα to the autophagic machinery via its LC3-interacting region (LIR), enabling both PKA regulation by upstream signals, and its autophagy-dependent degradation. We identify Ser83 on the RIα linker-hinge region as an AKAP11-dependent phospho-residue that modulates RIα-Cα binding and cAMP-induced PKA activation. Decoupling AKAP11-PKA from autophagy alters Ser83 phosphorylation, supporting an autophagy-dependent checkpoint for PKA signaling. Ablating AKAP11 in induced pluripotent stem cell-derived neurons reveals dysregulation of multiple pathways for neuronal homeostasis. Thus, the autophagosome is a novel platform that modulate PKA signaling, providing a possible mechanistic link to SZ/BP pathophysiology.
Collapse
|
2
|
Saima, Khan A, Ali S, Jiang J, Miao Z, Kamil A, Khan SN, Arold ST. Clinical genomics expands the link between erroneous cell division, primary microcephaly and intellectual disability. Neurogenetics 2024; 25:179-191. [PMID: 38795246 DOI: 10.1007/s10048-024-00759-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/09/2024] [Indexed: 05/27/2024]
Abstract
Primary microcephaly is a rare neurogenic and genetically heterogeneous disorder characterized by significant brain size reduction that results in numerous neurodevelopmental disorders (NDD) problems, including mild to severe intellectual disability (ID), global developmental delay (GDD), seizures and other congenital malformations. This disorder can arise from a mutation in genes involved in various biological pathways, including those within the brain. We characterized a recessive neurological disorder observed in nine young adults from five independent consanguineous Pakistani families. The disorder is characterized by microcephaly, ID, developmental delay (DD), early-onset epilepsy, recurrent infection, hearing loss, growth retardation, skeletal and limb defects. Through exome sequencing, we identified novel homozygous variants in five genes that were previously associated with brain diseases, namely CENPJ (NM_018451.5: c.1856A > G; p.Lys619Arg), STIL (NM_001048166.1: c.1235C > A; p.(Pro412Gln), CDK5RAP2 (NM_018249.6 c.3935 T > G; p.Leu1312Trp), RBBP8 (NM_203291.2 c.1843C > T; p.Gln615*) and CEP135 (NM_025009.5 c.1469A > G; p.Glu490Gly). These variants were validated by Sanger sequencing across all family members, and in silico structural analysis. Protein 3D homology modeling of wild-type and mutated proteins revealed substantial changes in the structure, suggesting a potential impact on function. Importantly, all identified genes play crucial roles in maintaining genomic integrity during cell division, with CENPJ, STIL, CDK5RAP2, and CEP135 being involved in centrosomal function. Collectively, our findings underscore the link between erroneous cell division, particularly centrosomal function, primary microcephaly and ID.
Collapse
Affiliation(s)
- Saima
- Department of Biotechnology, Abdul Wali Khan University, Mardan, 23200, Khyber Pakhtunkhwa, Pakistan
| | - Amjad Khan
- Department of Zoology, University of Lakki Marwat, Lakki, 28420, Khyber Pakhtunkhwa, Pakistan.
- Institute for Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.
- Alexander Von Humboldt Fellowship Foundation, Berlin, Germany.
| | - Sajid Ali
- Department of Biotechnology, Abdul Wali Khan University, Mardan, 23200, Khyber Pakhtunkhwa, Pakistan
| | - Jiuhong Jiang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Zhichao Miao
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Atif Kamil
- Department of Biotechnology, Abdul Wali Khan University, Mardan, 23200, Khyber Pakhtunkhwa, Pakistan
- Department of Internal Medicine, Brody Medicine School, East Carolina University, Greenville, NC, USA
| | - Shahid Niaz Khan
- Department of Zoology, Kohat University of Science & Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Stefan T Arold
- Biological and Environmental Science and Engineering Division, Computational Biology Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
3
|
Sha Y, Liang W, Mo C, Hou X, Ou M. Multi‑dimensional analysis reveals NCKAP5L is a promising biomarker for the diagnosis and prognosis of human cancers, especially colorectal cancer. Oncol Lett 2024; 27:53. [PMID: 38192666 PMCID: PMC10773189 DOI: 10.3892/ol.2023.14186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/15/2023] [Indexed: 01/10/2024] Open
Abstract
The Nck-associated protein 5-like (NCKAP5L) gene, also known as Cep169, is associated with certain cancers. However, the diagnosis and prognosis value of NCKAP5L in several types of human cancer, including colorectal cancer, is not fully understood. In the present study, a comprehensive pan-cancer analysis of NCKAP5L was performed using several approaches, including gene expression and alteration, protein phosphorylation, immune infiltration, survival prognosis analyses and gene enrichment using the following: The University of California Santa Cruz Genome Browser Human Dec. 2013 (GRCh38/hg38) Assembly, Tumor Immune Estimation Resource (version 2), Human Protein Atlas, Gene Expression Profiling Interactive Analysis (version 2), University of Alabama at Birmingham Cancer Data Analysis portal, the Kaplan-Meier Plotter, cBioportal, Search Tool for the Retrieval of Interacting Genes/Proteins, Jvenn and the Metascape server. The role of NCKAP5L in colorectal cancer was further assessed by reverse transcription-quantitative PCR. The results demonstrated that NCKAP5L was upregulated in the majority of cancer types, including colorectal cancer. The high expression of NCKAP5L was significantly correlated with patient survival prognosis and immune infiltration of cancer-associated fibroblasts in numerous types of cancer, including colorectal cancer. Furthermore, Gene Ontology analysis identified that NCKAP5L may serve an important role in metabolic and cellular processes in human cancers. In summary, the data from the present study demonstrate that NCKAP5L is a potential tumor biomarker for the diagnosis and prognosis of human cancers, especially colorectal cancer.
Collapse
Affiliation(s)
- Yu Sha
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, P.R. China
| | - Wenken Liang
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, P.R. China
| | - Chune Mo
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, P.R. China
| | - Xianliang Hou
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, P.R. China
| | - Minglin Ou
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, P.R. China
| |
Collapse
|
4
|
Rahimian M, Askari M, Salehi N, Riccio A, Jaafarinia M, Almadani N, Totonchi M. A novel missense variant in CDK5RAP2 associated with non-obstructive azoospermia. Taiwan J Obstet Gynecol 2023; 62:830-837. [PMID: 38008501 DOI: 10.1016/j.tjog.2023.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2023] [Indexed: 11/28/2023] Open
Abstract
OBJECTIVE The most severe type of male infertility is non-obstructive azoospermia (NOA), where there is no sperm in the ejaculate due to failure of spermatogenesis, affecting 10%-20% of infertile men with azoospermia. Genetic studies have identified dozens of NOA genes. The main aim of the present study is to identify a novel monogenic mutation that may cause NOA. MATERIALS AND METHODS We studied the pedigree of a consanguineous family with three NOA and one fertile brother by a family-based exome-sequencing, segregation analysis, insilico protein modeling and single-cell RNA sequencing data analysis. RESULTS Bioinformatics analysis followed by sanger sequencing revealed that three NOA brothers were homozygous for a rare missense variant in Cyclin Dependent Kinase Regulatory Subunit Associated Protein 2 (Centrosomin) CDK5RAP2 (NM_018249:exon26:c.A4003T:p.R1335W, rs761196443). Protein modeling demonstrated that CDK5RAP2, Arg1335Trp resided nearby the Microtubule Associated Protein RP/EB Family Member 1 (EB1/MAPRE1) interaction site. As a consequence of the R1335W mutation, the positively charged Arginine was replaced by to the hydrophobic tryptophan residue, possibly leading to local instability in the structure and perturbation in the CDK5RAP2-MAPRE1 interaction. CONCLUSION Our study reports a novel missense variant of CDK5RAP2 that segregates in homozygosity with male infertility and NOA in a consanguineous family. In silico structural predictions and gene expression data indicate a potential role of the CDK5RAP2 variant in causing defective centrosomic maturation during spermatogenesis.
Collapse
Affiliation(s)
- Mouness Rahimian
- Department of Genetics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Masomeh Askari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Najmeh Salehi
- School of Biological Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Andrea Riccio
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Mojtaba Jaafarinia
- Department of Genetics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Navid Almadani
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mehdi Totonchi
- School of Biological Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran; Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy; Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| |
Collapse
|
5
|
Yudin NS, Larkin DM. Candidate genes for domestication and resistance to cold climate according to whole genome sequencing data of Russian cattle and sheep breeds. Vavilovskii Zhurnal Genet Selektsii 2023; 27:463-470. [PMID: 37867610 PMCID: PMC10587008 DOI: 10.18699/vjgb-23-56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 10/24/2023] Open
Abstract
It is known that different species of animals, when living in the same environmental conditions, can form similar phenotypes. The study of the convergent evolution of several species under the influence of the same environmental factor makes it possible to identify common mechanisms of genetic adaptation. Local cattle and sheep breeds have been formed over thousands of years under the influence of domestication, as well as selection aimed at adaptation to the local environment and meeting human needs. Previously, we identified a number of candidate genes in genome regions potentially selected during domestication and adaptation to the climatic conditions of Russia, in local breeds of cattle and sheep using whole genome genotyping data. However, these data are of low resolution and do not reveal most nucleotide substitutions. The aim of the work was to create, using the whole genome sequencing data, a list of genes associated with domestication, selection and adaptation in Russian cattle and sheep breeds, as well as to identify candidate genes and metabolic pathways for selection for cold adaptation. We used our original data on the search for signatures of selection in the genomes of Russian cattle (Yakut, Kholmogory, Buryat, Wagyu) and sheep (Baikal, Tuva) breeds. We used the HapFLK, DCMS, FST and PBS methods to identify DNA regions with signatures of selection. The number of candidate genes in potentially selective regions was 946 in cattle and 151 in sheep. We showed that the studied Russian cattle and sheep breeds have at least 10 genes in common, apparently involved in the processes of adaptation/selection, including adaptation to a cold climate, including the ASTN2, PM20D1, TMEM176A, and GLIS1 genes. Based on the intersection with the list of selected genes in at least two Arctic/Antarctic mammal species, 20 and 8 genes, have been identified in cattle and sheep, respectively, that are potentially involved in cold adaptation. Among them, the most promising for further research are the ASPH, NCKAP5L, SERPINF1, and SND1 genes. Gene ontology analysis indicated the existence of possible common biochemical pathways for adaptation to cold in domestic and wild mammals associated with cytoskeleton disassembly and apoptosis.
Collapse
Affiliation(s)
- N S Yudin
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - D M Larkin
- Royal Veterinary College, University of London, London, United Kingdom
| |
Collapse
|
6
|
Griffith DOL. Genomic and transcriptomic somatic alterations of hepatocellular carcinoma in non-cirrhotic livers. Cancer Genet 2022; 264-265:90-99. [DOI: 10.1016/j.cancergen.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/07/2022] [Accepted: 04/20/2022] [Indexed: 11/26/2022]
|
7
|
Abstract
In this review, Phan et al. discuss the different models that have been proposed to explain how centrosome dysfunction impairs cortical development, and review the evidence supporting a unified model in which centrosome defects reduce cell proliferation in the developing cortex by prolonging mitosis and activating a mitotic surveillance pathway. Last, they also extend their discussion to centrosome-independent microcephaly mutations, such as those involved in DNA replication and repair Primary microcephaly is a brain growth disorder characterized by a severe reduction of brain size and thinning of the cerebral cortex. Many primary microcephaly mutations occur in genes that encode centrosome proteins, highlighting an important role for centrosomes in cortical development. Centrosomes are microtubule organizing centers that participate in several processes, including controlling polarity, catalyzing spindle assembly in mitosis, and building primary cilia. Understanding which of these processes are altered and how these disruptions contribute to microcephaly pathogenesis is a central unresolved question. In this review, we revisit the different models that have been proposed to explain how centrosome dysfunction impairs cortical development. We review the evidence supporting a unified model in which centrosome defects reduce cell proliferation in the developing cortex by prolonging mitosis and activating a mitotic surveillance pathway. Finally, we also extend our discussion to centrosome-independent microcephaly mutations, such as those involved in DNA replication and repair.
Collapse
|
8
|
A Comprehensive Genome-Wide and Phenome-Wide Examination of BMI and Obesity in a Northern Nevadan Cohort. G3-GENES GENOMES GENETICS 2020; 10:645-664. [PMID: 31888951 PMCID: PMC7003082 DOI: 10.1534/g3.119.400910] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The aggregation of Electronic Health Records (EHR) and personalized genetics leads to powerful discoveries relevant to population health. Here we perform genome-wide association studies (GWAS) and accompanying phenome-wide association studies (PheWAS) to validate phenotype-genotype associations of BMI, and to a greater extent, severe Class 2 obesity, using comprehensive diagnostic and clinical data from the EHR database of our cohort. Three GWASs of 500,000 variants on the Illumina platform of 6,645 Healthy Nevada participants identified several published and novel variants that affect BMI and obesity. Each GWAS was followed with two independent PheWASs to examine associations between extensive phenotypes (incidence of diagnoses, condition, or disease), significant SNPs, BMI, and incidence of extreme obesity. The first GWAS examines associations with BMI in a cohort with no type 2 diabetics, focusing exclusively on BMI. The second GWAS examines associations with BMI in a cohort that includes type 2 diabetics. In the second GWAS, type 2 diabetes is a comorbidity, and thus becomes a covariate in the statistical model. The intersection of significant variants of these two studies is surprising. The third GWAS is a case vs. control study, with cases defined as extremely obese (Class 2 or 3 obesity), and controls defined as participants with BMI between 18.5 and 25. This last GWAS identifies strong associations with extreme obesity, including established variants in the FTO and NEGR1 genes, as well as loci not yet linked to obesity. The PheWASs validate published associations between BMI and extreme obesity and incidence of specific diagnoses and conditions, yet also highlight novel links. This study emphasizes the importance of our extensive longitudinal EHR database to validate known associations and identify putative novel links with BMI and obesity.
Collapse
|
9
|
Gibboney S, Orvis J, Kim K, Johnson CJ, Martinez-Feduchi P, Lowe EK, Sharma S, Stolfi A. Effector gene expression underlying neuron subtype-specific traits in the Motor Ganglion of Ciona. Dev Biol 2020; 458:52-63. [PMID: 31639337 PMCID: PMC6987015 DOI: 10.1016/j.ydbio.2019.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/11/2019] [Accepted: 10/16/2019] [Indexed: 12/31/2022]
Abstract
The central nervous system of the Ciona larva contains only 177 neurons. The precise regulation of neuron subtype-specific morphogenesis and differentiation observed during the formation of this minimal connectome offers a unique opportunity to dissect gene regulatory networks underlying chordate neurodevelopment. Here we compare the transcriptomes of two very distinct neuron types in the hindbrain/spinal cord homolog of Ciona, the Motor Ganglion (MG): the Descending decussating neuron (ddN, proposed homolog of Mauthner Cells in vertebrates) and the MG Interneuron 2 (MGIN2). Both types are invariantly represented by a single bilaterally symmetric left/right pair of cells in every larva. Supernumerary ddNs and MGIN2s were generated in synchronized embryos and isolated by fluorescence-activated cell sorting for transcriptome profiling. Differential gene expression analysis revealed ddN- and MGIN2-specific enrichment of a wide range of genes, including many encoding potential "effectors" of subtype-specific morphological and functional traits. More specifically, we identified the upregulation of centrosome-associated, microtubule-stabilizing/bundling proteins and extracellular guidance cues part of a single intrinsic regulatory program that might underlie the unique polarization of the ddNs, the only descending MG neurons that cross the midline. Consistent with our predictions, CRISPR/Cas9-mediated, tissue-specific elimination of two such candidate effectors, Efcab6-related and Netrin1, impaired ddN polarized axon outgrowth across the midline.
Collapse
Affiliation(s)
- Susanne Gibboney
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jameson Orvis
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Kwantae Kim
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Christopher J Johnson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | | | - Elijah K Lowe
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Sarthak Sharma
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
10
|
Ye Y, Gao L, Zhang S. Circular Trajectory Reconstruction Uncovers Cell-Cycle Progression and Regulatory Dynamics from Single-Cell Hi-C Maps. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900986. [PMID: 31832309 PMCID: PMC6891923 DOI: 10.1002/advs.201900986] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 08/07/2019] [Indexed: 06/10/2023]
Abstract
Single-cell Hi-C technology is emerging and will provide unprecedented opportunities to elucidate chromosomal dynamics with high resolution. How to characterize pseudo time-series of single cells using single-cell Hi-C maps is an essential and challenging topic. To this end, a powerful circular trajectory reconstruction tool CIRCLET is developed to resolve cell cycle phases of single cells by considering multiscale features of chromosomal architectures without specifying a starting cell. CIRCLET reveals its best superiority based on the combination of one feature set about global information and another two feature sets about local interactional information in terms of designed evaluation indexes and verification strategies from a collection of cell-cycle Hi-C maps of 1171 single cells. Further division of the reconstructed trajectory into 12 stages helps to accurately characterize the dynamics of chromosomal structures and explain the special regulatory events along cell-cycle progression. Last but not the least, the reconstructed trajectory helps to uncover important regulatory genes related with dynamic substructures, providing a novel framework for discovering regulatory regions even cancer markers at single-cell resolution.
Collapse
Affiliation(s)
- Yusen Ye
- School of Computer Science and TechnologyXidian UniversityXi'an710071ShaanxiChina
| | - Lin Gao
- School of Computer Science and TechnologyXidian UniversityXi'an710071ShaanxiChina
| | - Shihua Zhang
- NCMISCEMSRCSDSAcademy of Mathematics and Systems ScienceChinese Academy of SciencesBeijing100190China
- School of Mathematical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- Center for Excellence in Animal Evolution and GeneticsChinese Academy of SciencesKunming650223China
| |
Collapse
|
11
|
Denu RA, Sass MM, Johnson JM, Potts GK, Choudhary A, Coon JJ, Burkard ME. Polo-like kinase 4 maintains centriolar satellite integrity by phosphorylation of centrosomal protein 131 (CEP131). J Biol Chem 2019; 294:6531-6549. [PMID: 30804208 PMCID: PMC6484138 DOI: 10.1074/jbc.ra118.004867] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 02/07/2019] [Indexed: 11/06/2022] Open
Abstract
The centrosome, consisting of two centrioles surrounded by a dense network of proteins, is the microtubule-organizing center of animal cells. Polo-like kinase 4 (PLK4) is a Ser/Thr protein kinase and the master regulator of centriole duplication, but it may play additional roles in centrosome function. To identify additional proteins regulated by PLK4, we generated an RPE-1 human cell line with a genetically engineered "analog-sensitive" PLK4AS, which genetically encodes chemical sensitivity to competitive inhibition via a bulky ATP analog. We used this transgenic line in an unbiased multiplex phosphoproteomic screen. Several hits were identified and validated as direct PLK4 substrates by in vitro kinase assays. Among them, we confirmed Ser-78 in centrosomal protein 131 (CEP131, also known as AZI1) as a direct substrate of PLK4. Using immunofluorescence microscopy, we observed that although PLK4-mediated phosphorylation of Ser-78 is dispensable for CEP131 localization, ciliogenesis, and centriole duplication, it is essential for maintaining the integrity of centriolar satellites. We also found that PLK4 inhibition or use of a nonphosphorylatable CEP131 variant results in dispersed centriolar satellites. Moreover, replacement of endogenous WT CEP131 with an S78D phosphomimetic variant promoted aggregation of centriolar satellites. We conclude that PLK4 phosphorylates CEP131 at Ser-78 to maintain centriolar satellite integrity.
Collapse
Affiliation(s)
- Ryan A Denu
- From the Medical Scientist Training Program
- the Division of Hematology/Oncology, Department of Medicine
- the University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin 53705
| | - Madilyn M Sass
- the Division of Hematology/Oncology, Department of Medicine
- the University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin 53705
| | - James M Johnson
- the Division of Hematology/Oncology, Department of Medicine
- the University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin 53705
| | - Gregory K Potts
- the Department of Chemistry
- the Department of Biomolecular Chemistry
- the Genome Center, and
| | - Alka Choudhary
- the Division of Hematology/Oncology, Department of Medicine
- the University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin 53705
| | - Joshua J Coon
- the Department of Chemistry
- the Department of Biomolecular Chemistry
- the Genome Center, and
| | - Mark E Burkard
- the Division of Hematology/Oncology, Department of Medicine,
- the University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin 53705
| |
Collapse
|
12
|
Shintomi M, Shiratori M, Negishi L, Terada Y. Identification of Cep169-interacting proteins and the in vivo modification sites of Cep169 via proteomic analysis. Biochem Biophys Res Commun 2018; 495:2275-2281. [PMID: 29269292 DOI: 10.1016/j.bbrc.2017.12.094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 12/17/2017] [Indexed: 11/16/2022]
Abstract
Cep169 is a microtubule plus-end tracking and centrosomal protein that interacts with CDK5RAP2. Cep169 is known to regulate microtubule dynamics and stability; however, its other cellular functions remain largely elusive. In this study, we identified novel Cep169-interacting proteins from HeLa cell extracts. Proteomic analysis via LC-MS/MS helped to identify approximately 400 novel Cep169-interacting proteins, including centrosomal proteins, cilium proteins, microtubule-associating proteins, and several E3 ubiquitin ligases. In addition, we identified in vivo posttranslational modification sites of Cep169, namely, 27 phosphorylation sites, five methylation sites, and four ubiquitination sites. Of these, 14 phosphorylated residues corresponding to the consensus Cdk phosphorylation sites may be required for Cdk1-mediated dissociation of Cep169 from the centrosome during mitosis and Cdk regulation during the G1/S phase. Furthermore, siRNA-induced Cep169 depletion was found to inhibit the growth of RPE1 cells. Our findings suggest that Cep169 regulates cell growth by interacting with multiple proteins.
Collapse
Affiliation(s)
- Miyuki Shintomi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Tokyo 113-0033, Japan; Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Tokyo 169-8555, Japan
| | - Mikihiro Shiratori
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Tokyo 169-8555, Japan
| | - Lumi Negishi
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Yayoi, Tokyo 113-0032, Japan
| | - Yasuhiko Terada
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Tokyo 169-8555, Japan.
| |
Collapse
|
13
|
Mori Y, Inoue Y, Taniyama Y, Tanaka S, Terada Y. Phosphorylation of the centrosomal protein, Cep169, by Cdk1 promotes its dissociation from centrosomes in mitosis. Biochem Biophys Res Commun 2015; 468:642-6. [DOI: 10.1016/j.bbrc.2015.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 11/02/2015] [Indexed: 01/22/2023]
|
14
|
Microtubule-bundling activity of the centrosomal protein, Cep169, and its binding to microtubules. Biochem Biophys Res Commun 2015; 467:754-9. [PMID: 26482847 DOI: 10.1016/j.bbrc.2015.10.069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 10/12/2015] [Indexed: 11/24/2022]
Abstract
CDK5RAP2 is a centrosomal protein that regulates the recruitment of a γ-tubulin ring complex (γ-TuRC) onto centrosomes and microtubules (MTs) dynamics as a member of MT plus-end-tracking proteins (+TIPs). In our previous report, we found mammalian Cep169 as a CDK5RAP2 binding partner, and Cep169 accumulates at the distal ends of MTs and centrosomes, and coincides with CDK5RAP2. Depletion of Cep169 induces MT depolymerization, indicating that Cep169 targets MT tips and regulates stability and dynamics of MTs. However, how Cep169 contributes to the stabilization of MT remains unclear. Here we show that Cep169 is able to stabilize MTs and induces formation of long MT bundles with intense acetylation of MTs with CDK5RAP2, when expressed at higher levels in U2OS cells. In addition, we demonstrated that Cep169 forms homodimers through its N-terminal domain and directly interacts with MTs through its C-terminal domain. Interestingly, Cep169 mutants, which lack each domains, completely abolished the activity, respectively. Therefore, Cep169 bundles MTs and induces solid structure of MTs by crosslinking each adjacent MTs as a homodimer.
Collapse
|