1
|
Raynal F, Sengupta K, Plewczynski D, Aliaga B, Pancaldi V. Global chromatin reorganization and regulation of genes with specific evolutionary ages during differentiation and cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.30.564438. [PMID: 39149250 PMCID: PMC11326123 DOI: 10.1101/2023.10.30.564438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Cancer cells are highly plastic, allowing them to adapt to changing conditions. Genes related to basic cellular processes evolved in ancient species, while more specialized genes appeared later with multicellularity (metazoan genes) or even after mammals evolved. Transcriptomic analyses have shown that ancient genes are up-regulated in cancer, while metazoan-origin genes are inactivated. Despite the importance of these observations, the underlying mechanisms remain unexplored. Here, we study local and global epigenomic mechanisms that may regulate genes from specific evolutionary periods. Using evolutionary gene age data, we characterize the epigenomic landscape, gene expression regulation, and chromatin organization in three cell types: human embryonic stem cells, normal B-cells, and primary cells from Chronic Lymphocytic Leukemia, a B-cell malignancy. We identify topological changes in chromatin organization during differentiation observing patterns in Polycomb repression and RNA Polymerase II pausing, which are reversed during oncogenesis. Beyond the non-random organization of genes and chromatin features in the 3D epigenome, we suggest that these patterns lead to preferential interactions among ancient, intermediate, and recent genes, mediated by RNA Polymerase II, Polycomb, and the lamina, respectively. Our findings shed light on gene regulation according to evolutionary age and suggest this organization changes across differentiation and oncogenesis.
Collapse
Affiliation(s)
- Flavien Raynal
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Kaustav Sengupta
- Laboratory of Functional and Structural Genomics, Center of New Technologies (CeNT), University of Warsaw, Mazowieckie, Poland
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
- Department of Molecular Genetics, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Dariusz Plewczynski
- Laboratory of Functional and Structural Genomics, Center of New Technologies (CeNT), University of Warsaw, Mazowieckie, Poland
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | - Benoît Aliaga
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Vera Pancaldi
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Barcelona Supercomputing Center, Barcelona, Spain
| |
Collapse
|
2
|
Howard AM, Milner H, Hupp M, Willett C, Palermino K, Nowak SJ. Akirin is critical for early tinman induction and subsequent formation of the heart in Drosophila melanogaster. Dev Biol 2020; 469:1-11. [PMID: 32950464 DOI: 10.1016/j.ydbio.2020.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 08/27/2020] [Accepted: 09/03/2020] [Indexed: 11/30/2022]
Abstract
The regulation of formation of the Drosophila heart by the Nkx 2.5 homologue Tinman is a key event during embryonic development. In this study, we identify the highly conserved transcription cofactor Akirin as a key factor in the earliest induction of tinman by the Twist transcription cofactor. akirin mutant embryos display a variety of morphological defects in the heart, including abnormal spacing between rows of aortic cells and abnormal patterning of the aortic outflow tract. akirin mutant embryos have a greatly reduced level of tinman transcripts, together with a reduction of Tinman protein in the earliest stages of cardiac patterning. Further, akirin mutants have reduced numbers of Tinman-positive cardiomyoblasts, concomitant with disrupted patterning and organization of the heart. Finally, despite the apparent formation of the heart in akirin mutants, these mutant hearts exhibit fewer coordinated contractions in akirin mutants compared with wild-type hearts. These results indicate that Akirin is crucial for the first induction of tinman by the Twist transcription factor, and that the success of the cardiac patterning program is highly dependent upon establishing the proper level of tinman at the earliest steps of the cardiac developmental pathway.
Collapse
Affiliation(s)
- Austin M Howard
- Master of Science in Integrative Biology Program, Kennesaw State University, USA; Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, 30144, USA
| | - Hayley Milner
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, 30144, USA
| | - Madison Hupp
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, 30144, USA
| | - Courtney Willett
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, 30144, USA
| | - Kristina Palermino
- Master of Science in Integrative Biology Program, Kennesaw State University, USA; Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, 30144, USA
| | - Scott J Nowak
- Master of Science in Integrative Biology Program, Kennesaw State University, USA; Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, 30144, USA.
| |
Collapse
|
3
|
Miksiunas R, Mobasheri A, Bironaite D. Homeobox Genes and Homeodomain Proteins: New Insights into Cardiac Development, Degeneration and Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1212:155-178. [PMID: 30945165 DOI: 10.1007/5584_2019_349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cardiovascular diseases are the most common cause of human death in the developing world. Extensive evidence indicates that various toxic environmental factors and unhealthy lifestyle choices contribute to the risk, incidence and severity of cardiovascular diseases. Alterations in the genetic level of myocardium affects normal heart development and initiates pathological processes leading to various types of cardiac diseases. Homeobox genes are a large and highly specialized family of closely related genes that direct the formation of body structure, including cardiac development. Homeobox genes encode homeodomain proteins that function as transcription factors with characteristic structures that allow them to bind to DNA, regulate gene expression and subsequently control the proper physiological function of cells, tissues and organs. Mutations in homeobox genes are rare and usually lethal with evident alterations in cardiac function at or soon after the birth. Our understanding of homeobox gene family expression and function has expanded significantly during the recent years. However, the involvement of homeobox genes in the development of human and animal cardiac tissue requires further investigation. The phenotype of human congenital heart defects unveils only some aspects of human heart development. Therefore, mouse models are often used to gain a better understanding of human heart function, pathology and regeneration. In this review, we have focused on the role of homeobox genes in the development and pathology of human heart as potential tools for the future development of targeted regenerative strategies for various heart malfunctions.
Collapse
Affiliation(s)
- Rokas Miksiunas
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Ali Mobasheri
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Daiva Bironaite
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
| |
Collapse
|
4
|
Choy MK, Javierre BM, Williams SG, Baross SL, Liu Y, Wingett SW, Akbarov A, Wallace C, Freire-Pritchett P, Rugg-Gunn PJ, Spivakov M, Fraser P, Keavney BD. Promoter interactome of human embryonic stem cell-derived cardiomyocytes connects GWAS regions to cardiac gene networks. Nat Commun 2018; 9:2526. [PMID: 29955040 PMCID: PMC6023870 DOI: 10.1038/s41467-018-04931-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 05/29/2018] [Indexed: 12/21/2022] Open
Abstract
Long-range chromosomal interactions bring distal regulatory elements and promoters together to regulate gene expression in biological processes. By performing promoter capture Hi-C (PCHi-C) on human embryonic stem cell-derived cardiomyocytes (hESC-CMs), we show that such promoter interactions are a key mechanism by which enhancers contact their target genes after hESC-CM differentiation from hESCs. We also show that the promoter interactome of hESC-CMs is associated with expression quantitative trait loci (eQTLs) in cardiac left ventricular tissue; captures the dynamic process of genome reorganisation after hESC-CM differentiation; overlaps genome-wide association study (GWAS) regions associated with heart rate; and identifies new candidate genes in such regions. These findings indicate that regulatory elements in hESC-CMs identified by our approach control gene expression involved in ventricular conduction and rhythm of the heart. The study of promoter interactions in other hESC-derived cell types may be of utility in functional investigation of GWAS-associated regions.
Collapse
Affiliation(s)
- Mun-Kit Choy
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, M13 9PT, UK.
| | - Biola M Javierre
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK
- Josep Carreras Leukaemia Research Institute, Campus ICO-Germans Trias I Pujol, Badalona, 08916, Barcelona, Spain
| | - Simon G Williams
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, M13 9PT, UK
| | - Stephanie L Baross
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, M13 9PT, UK
| | - Yingjuan Liu
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, M13 9PT, UK
| | - Steven W Wingett
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Artur Akbarov
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, M13 9PT, UK
| | - Chris Wallace
- MRC Biostatistics Unit, University of Cambridge, Cambridge, CB2 0SR, UK
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Paula Freire-Pritchett
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK
- Division of Cell Biology, Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Peter J Rugg-Gunn
- Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Mikhail Spivakov
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Peter Fraser
- Nuclear Dynamics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK.
- Department of Biological Science, Florida State University, Tallahassee, 32306, FL, USA.
| | - Bernard D Keavney
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
5
|
Pursani V, Pethe P, Bashir M, Sampath P, Tanavde V, Bhartiya D. Genetic and Epigenetic Profiling Reveals EZH2-mediated Down Regulation of OCT-4 Involves NR2F2 during Cardiac Differentiation of Human Embryonic Stem Cells. Sci Rep 2017; 7:13051. [PMID: 29026152 PMCID: PMC5638931 DOI: 10.1038/s41598-017-13442-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 09/25/2017] [Indexed: 02/07/2023] Open
Abstract
Human embryonic (hES) stem cells are widely used as an in vitro model to understand global genetic and epigenetic changes that occur during early embryonic development. In-house derived hES cells (KIND1) were subjected to directed differentiation into cardiovascular progenitors (D12) and beating cardiomyocytes (D20). Transcriptome profiling of undifferentiated (D0) and differentiated (D12 and 20) cells was undertaken by microarray analysis. ChIP and sequential ChIP were employed to study role of transcription factor NR2F2 during hES cells differentiation. Microarray profiling showed that an alteration of about 1400 and 1900 transcripts occurred on D12 and D20 respectively compared to D0 whereas only 19 genes were altered between D12 and D20. This was found associated with corresponding expression pattern of chromatin remodelers, histone modifiers, miRNAs and lncRNAs marking the formation of progenitors and cardiomyocytes on D12 and D20 respectively. ChIP sequencing and sequential ChIP revealed the binding of NR2F2 with polycomb group member EZH2 and pluripotent factor OCT4 indicating its crucial involvement in cardiac differentiation. The study provides a detailed insight into genetic and epigenetic changes associated with hES cells differentiation into cardiac cells and a role for NR2F2 is deciphered for the first time to down-regulate OCT-4 via EZH2 during cardiac differentiation.
Collapse
Affiliation(s)
- Varsha Pursani
- Stem Cell Biology Department, ICMR- National Institute for Research in Reproductive Health, Mumbai, 400012, India
| | - Prasad Pethe
- Stem Cell Biology Department, ICMR- National Institute for Research in Reproductive Health, Mumbai, 400012, India
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS University, Mumbai, 400056, India
| | - Mohsin Bashir
- Institute of Medical Biology, Agency for Science Technology & Research (A*STAR), Singapore, 138648, Singapore
| | - Prabha Sampath
- Institute of Medical Biology, Agency for Science Technology & Research (A*STAR), Singapore, 138648, Singapore
| | - Vivek Tanavde
- Bioinformatics Institute, Agency for Science Technology & Research (A*STAR), Singapore, 138671, Singapore
- Division of Biological & Life Sciences, School of Arts & Sciences, Ahmedabad University, Ahmedabad, 380009, India
| | - Deepa Bhartiya
- Stem Cell Biology Department, ICMR- National Institute for Research in Reproductive Health, Mumbai, 400012, India.
| |
Collapse
|
6
|
Ahmad SM. Conserved signaling mechanisms in Drosophila heart development. Dev Dyn 2017; 246:641-656. [PMID: 28598558 PMCID: PMC11546222 DOI: 10.1002/dvdy.24530] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 04/06/2017] [Accepted: 05/08/2017] [Indexed: 12/24/2022] Open
Abstract
Signal transduction through multiple distinct pathways regulates and orchestrates the numerous biological processes comprising heart development. This review outlines the roles of the FGFR, EGFR, Wnt, BMP, Notch, Hedgehog, Slit/Robo, and other signaling pathways during four sequential phases of Drosophila cardiogenesis-mesoderm migration, cardiac mesoderm establishment, differentiation of the cardiac mesoderm into distinct cardiac cell types, and morphogenesis of the heart and its lumen based on the proper positioning and cell shape changes of these differentiated cardiac cells-and illustrates how these same cardiogenic roles are conserved in vertebrates. Mechanisms bringing about the regulation and combinatorial integration of these diverse signaling pathways in Drosophila are also described. This synopsis of our present state of knowledge of conserved signaling pathways in Drosophila cardiogenesis and the means by which it was acquired should facilitate our understanding of and investigations into related processes in vertebrates. Developmental Dynamics 246:641-656, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Shaad M. Ahmad
- Department of Biology, Indiana State University, Terre Haute, IN, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN, USA
| |
Collapse
|