1
|
Rzhevskiy AS, Sagitova GR, Karashaeva TA, Morozov AO, Fatyanova AS, Kazantseva VV, Joosse SA, Zvyagin AV, Warkini ME. A comprehensive review and meta-analysis of CTC isolation methods in breast cancer. Crit Rev Oncol Hematol 2024; 206:104579. [PMID: 39615710 DOI: 10.1016/j.critrevonc.2024.104579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/22/2024] [Accepted: 11/24/2024] [Indexed: 12/08/2024] Open
Abstract
The application of circulating tumor cells (CTCs) as diagnostic and prognostic markers in oncology is gaining increasing importance in clinical practice. Currently, various methods exist for detecting CTCs in patients' biological fluids. This systematic review aimed to compare the efficacy of different techniques for isolating and detecting CTCs from blood, against the FDA-cleared CellSearch® technology, in breast cancer patients. We performed a systematic literature search using two databases (PubMed and the Cochrane Library) with the following terms: ("Circulating tumor cells" OR CTC) AND "breast cancer", covering the period from 2004 to April 2023. The primary outcome measured was the sensitivity, specificity, and overall accuracy of various CTC enrichment methods in comparison with the CellSearch® System. Secondary outcomes included the prognostic value of CTCs in evaluating response to treatment based on survival rates. Generally, a high level of agreement between CellSearch and other methods was observed in isolating CTCs from patients' blood with both metastatic and early-stage disease. Studies asserting the superiority of new methods over CellSearch frequently used clinically unvalidated cut-off thresholds for their patient cohorts. Additionally, these studies sometimes included different nonoverlapping patient cohorts and lacked a standardized chemotherapy treatment protocol, which could affect the quantitative changes in CTC. It is evident that methods simultaneously composed of physical and immunomagnetic approaches for CTC isolation significantly surpass CellSearch, which relies solely on the expression of specific markers on the CTCs' surface. The count of CTCs has been established as a predictive marker in terms of clinically important parameters namely progression-free survival (PFS) and overall survival (OS). The CTC-count value was significantly correlated with PFS and OS rates.
Collapse
Affiliation(s)
- Alexey S Rzhevskiy
- Institute of Molecular Theranostics, Sechenov First Moscow State Medical University, Moscow 119991, Russia; Faculty of Computer Science, National Research University Higher School of Economics, Moscow 101000, Russia
| | - Guzel R Sagitova
- Institute of Molecular Theranostics, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Tamilla A Karashaeva
- Institute of Molecular Theranostics, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Andrey O Morozov
- Institute for Urology and Reproductive Health, Sechenov University, Moscow 119991, Russia
| | - Anastasia S Fatyanova
- Department of Oncology, Radiotherapy and Reconstructive Surgery, Institution of Clinical Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Vlada V Kazantseva
- Institute of Molecular Theranostics, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Simon A Joosse
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg 20246, Germany; Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg 20246, Germany
| | - Andrei V Zvyagin
- Institute of Molecular Theranostics, Sechenov First Moscow State Medical University, Moscow 119991, Russia; Australian Research Council Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, NSW 2109, Australia; Research Center for Translational Medicine, Sirius University of Science and Technology, Sochi 354340, Russia.
| | - Majid Ebrahimi Warkini
- Institute of Molecular Theranostics, Sechenov First Moscow State Medical University, Moscow 119991, Russia; School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
2
|
Powering single-cell genomics to unravel circulating tumour cell subpopulations in non-small cell lung cancer patients. J Cancer Res Clin Oncol 2022; 149:1941-1950. [PMID: 35896898 PMCID: PMC10097753 DOI: 10.1007/s00432-022-04202-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/09/2022] [Indexed: 10/16/2022]
Abstract
BACKGROUND Circulating tumour cells (CTCs) are attractive "liquid biopsy" candidates that could provide insights into the different phenotypes of tumours present within a patient. The epithelial-to-mesenchymal transition (EMT) of CTCs is considered a critical step in tumour metastasis; however, it may confound traditional epithelial feature-based CTC isolation and detection. We applied single-cell copy number alteration (CNA) analysis for the identification of genomic alterations to confirm the neoplastic nature of circulating cells with only mesenchymal phenotypes. METHODS We isolated CTCs from blood samples collected from 46 NSCLC patients using the Parsortix system. Enriched cells were subjected to immunofluorescent staining for CTC identification using a multi-marker panel comprising both epithelial and mesenchymal markers. A subset of isolated CTCs was subjected to whole genome amplification (WGA) and low-pass whole-genome sequencing (LP-WGS) for the analysis of copy number alterations (CNAs). RESULTS CTCs were detected in 16/46 (34.8%) patients, inclusive of CK+/EpCAM+ CTCs (3/46, 6.5%) and Vim+ CTCs (13/46, 28.3%). Clusters of Vim+ cells were detected in 8 samples, which constitutes 50% of the total number of NSCLC patients with CTCs. No patients had detectable hybrid CK+/EpCAM+/Vim+ cells. All of the tested CK+/EpCAM+ CTCs and 7/8 Vim+ CTCs or CTC clusters carried CNAs confirming their neoplastic nature. Notably, the Vim+ cluster with no CNAs was characterised by spindle morphology and, therefore, defined as normal mesenchymal circulating cells. CONCLUSION Our results revealed that CK-negative, vimentin-expressing cells represent a large proportion of CTCs detected in NSCLC patients, which are likely missed by standard epithelial-marker-dependent CTC categorisation.
Collapse
|
3
|
Pugia M, Bose T, Tjioe M, Frabutt D, Baird Z, Cao Z, Vorsilak A, McLuckey I, Barron MR, Barron M, Denys G, Carpenter J, Das A, Kaur K, Roy S, Sen CK, Deiss F. Multiplexed Signal Ion Emission Reactive Release Amplification (SIERRA) Assay for the Culture-Free Detection of Gram-Negative and Gram-Positive Bacteria and Antimicrobial Resistance Genes. Anal Chem 2021; 93:6604-6612. [PMID: 33819029 PMCID: PMC9097648 DOI: 10.1021/acs.analchem.0c00453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The global prevalence of antibiotic-resistant bacteria has increased the risk of dangerous infections, requiring rapid diagnosis and treatment. The standard method for diagnosis of bacterial infections remains dependent on slow culture-based methods, carried out in central laboratories, not easily extensible to rapid identification of organisms, and thus not optimal for timely treatments at the point-of-care (POC). Here, we demonstrate rapid detection of bacteria by combining electrochemical immunoassays (EC-IA) for pathogen identification with confirmatory quantitative mass spectral immunoassays (MS-IA) based on signal ion emission reactive release amplification (SIERRA) nanoparticles with unique mass labels. This diagnostic method uses compatible reagents for all involved assays and standard fluidics for automatic sample preparation at POC. EC-IA, based on alkaline phosphatase-conjugated pathogen-specific antibodies, quantified down to 104 bacteria per sample when testing Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa lysates. EC-IA quantitation was also obtained for wound samples. The MS-IA using nanoparticles against S. aureus, E. coli, Klebsiella pneumoniae, and P. aeruginosa allowed selective quantitation of ∼105 bacteria per sample. This method preserves bacterial cells allowing extraction and amplification of 16S ribosomal RNA genes and antibiotic resistance genes, as was demonstrated through identification and quantitation of two strains of E. coli, resistant and nonresistant due to β-lactamase cefotaximase genes. Finally, the combined immunoassays were compared against culture using remnant deidentified patient urine samples. The sensitivities for these immunoassays were 83, 95, and 92% for the prediction of S. aureus, P. aeruginosa, and E. coli or K. pneumoniae positive culture, respectively, while specificities were 85, 92, and 97%. The diagnostic platform presented here with fluidics and combined immunoassays allows for pathogen isolation within 5 min and identification in as little as 15 min to 1 h, to help guide the decision for additional testing, optimally only on positive samples, such as multiplexed or resistance gene assays (6 h).
Collapse
Affiliation(s)
- Michael Pugia
- Bioanalytical Technologies, Indiana Biosciences Research Institute (IBRI), 1345 W. 16th Street, Suite #300, Indianapolis, Indiana 46202, United States
| | - Tiyash Bose
- Bioanalytical Technologies, Indiana Biosciences Research Institute (IBRI), 1345 W. 16th Street, Suite #300, Indianapolis, Indiana 46202, United States
| | - Marco Tjioe
- Bioanalytical Technologies, Indiana Biosciences Research Institute (IBRI), 1345 W. 16th Street, Suite #300, Indianapolis, Indiana 46202, United States
| | - Dylan Frabutt
- Bioanalytical Technologies, Indiana Biosciences Research Institute (IBRI), 1345 W. 16th Street, Suite #300, Indianapolis, Indiana 46202, United States
| | - Zane Baird
- Bioanalytical Technologies, Indiana Biosciences Research Institute (IBRI), 1345 W. 16th Street, Suite #300, Indianapolis, Indiana 46202, United States
| | - Zehui Cao
- Bioanalytical Technologies, Indiana Biosciences Research Institute (IBRI), 1345 W. 16th Street, Suite #300, Indianapolis, Indiana 46202, United States
| | - Anna Vorsilak
- Bioanalytical Technologies, Indiana Biosciences Research Institute (IBRI), 1345 W. 16th Street, Suite #300, Indianapolis, Indiana 46202, United States
| | - Ian McLuckey
- Bioanalytical Technologies, Indiana Biosciences Research Institute (IBRI), 1345 W. 16th Street, Suite #300, Indianapolis, Indiana 46202, United States
| | - M Regina Barron
- Bioanalytical Technologies, Indiana Biosciences Research Institute (IBRI), 1345 W. 16th Street, Suite #300, Indianapolis, Indiana 46202, United States
- Department of Chemistry & Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI), 402 N Blackford Street, LD326, Indianapolis, Indiana 46202, United States
| | - Monica Barron
- Bioanalytical Technologies, Indiana Biosciences Research Institute (IBRI), 1345 W. 16th Street, Suite #300, Indianapolis, Indiana 46202, United States
- Department of Chemistry & Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI), 402 N Blackford Street, LD326, Indianapolis, Indiana 46202, United States
| | - Gerald Denys
- Division of Clinical Microbiology, Department of Pathology and Laboratory Medicine, IU Health Pathology Laboratory, Indiana University School of Medicine, 350 W. 11th Street, Room 6027B, Indianapolis, Indiana 46202, United States
| | - Jessica Carpenter
- Division of Clinical Microbiology, Department of Pathology and Laboratory Medicine, IU Health Pathology Laboratory, Indiana University School of Medicine, 350 W. 11th Street, Room 6027B, Indianapolis, Indiana 46202, United States
| | - Amitava Das
- Indiana Center for Regenerative Medicine and Engineering (ICRME), IU Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, 975 W. Walnut Street, Suite #444, Indianapolis, Indiana 46202,United States
| | - Karamjeet Kaur
- Indiana Center for Regenerative Medicine and Engineering (ICRME), IU Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, 975 W. Walnut Street, Suite #444, Indianapolis, Indiana 46202,United States
| | - Sashwati Roy
- Indiana Center for Regenerative Medicine and Engineering (ICRME), IU Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, 975 W. Walnut Street, Suite #444, Indianapolis, Indiana 46202,United States
| | - Chandan K Sen
- Indiana Center for Regenerative Medicine and Engineering (ICRME), IU Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, 975 W. Walnut Street, Suite #444, Indianapolis, Indiana 46202,United States
| | - Frédérique Deiss
- Department of Chemistry & Chemical Biology, Indiana University-Purdue University Indianapolis (IUPUI), 402 N Blackford Street, LD326, Indianapolis, Indiana 46202, United States
| |
Collapse
|
4
|
Chen H, Li Y, Zhang Z, Wang S. Immunomagnetic separation of circulating tumor cells with microfluidic chips and their clinical applications. BIOMICROFLUIDICS 2020; 14:041502. [PMID: 32849973 PMCID: PMC7440929 DOI: 10.1063/5.0005373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Circulating tumor cells (CTCs) are tumor cells detached from the original lesion and getting into the blood and lymphatic circulation systems. They potentially establish new tumors in remote areas, namely, metastasis. Isolation of CTCs and following biological molecular analysis facilitate investigating cancer and coming out treatment. Since CTCs carry important information on the primary tumor, they are vital in exploring the mechanism of cancer, metastasis, and diagnosis. However, CTCs are very difficult to separate due to their extreme heterogeneity and rarity in blood. Recently, advanced technologies, such as nanosurfaces, quantum dots, and Raman spectroscopy, have been integrated with microfluidic chips. These achievements enable the next generation isolation technologies and subsequent biological analysis of CTCs. In this review, we summarize CTCs' separation with microfluidic chips based on the principle of immunomagnetic isolation of CTCs. Fundamental insights, clinical applications, and potential future directions are discussed.
Collapse
Affiliation(s)
- Hongmei Chen
- School of Mathematics and Physics of Science and Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Yong Li
- School of Mathematics and Physics of Science and Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Zhifeng Zhang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, State College, Pennsylvania 16802, USA
| | - Shuangshou Wang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China
| |
Collapse
|
5
|
Herrera M, Galindo-Pumariño C, García-Barberán V, Peña C. A Snapshot of The Tumor Microenvironment in Colorectal Cancer: The Liquid Biopsy. Int J Mol Sci 2019; 20:ijms20236016. [PMID: 31795332 PMCID: PMC6929174 DOI: 10.3390/ijms20236016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022] Open
Abstract
The molecular profile of liquid biopsies is emerging as an alternative to tissue biopsies in the clinical management of malignant diseases. In colorectal cancer, significant liquid biopsy-based biomarkers have demonstrated an ability to discriminate between asymptomatic cancer patients and healthy controls. Furthermore, this non-invasive approach appears to provide relevant information regarding the stratification of tumors with different prognoses and the monitoring of treatment responses. This review focuses on the tumor microenvironment components which are detected in blood samples of colorectal cancer patients and might represent potential biomarkers. Exosomes released by tumor and stromal cells play a major role in the modulation of cancer progression in the primary tumor microenvironment and in the formation of an inflammatory pre-metastatic niche. Stromal cells-derived exosomes are involved in driving mechanisms that promote tumor growth, migration, metastasis, and drug resistance, therefore representing substantial signaling mediators in the tumor-stroma interaction. Besides, recent findings of specifically packaged exosome cargo in Cancer-Associated Fibroblasts of colorectal cancer patients identify novel exosomal biomarkers with potential clinical applicability. Furthermore, additional different signals emitted from the tumor microenvironment and also detectable in the blood, such as soluble factors and non-tumoral circulating cells, arise as novel promising biomarkers for cancer diagnosis, prognosis, and treatment response prediction. The therapeutic potential of these factors is still limited, and studies are in their infancy. However, innovative strategies aiming at the inhibition of tumor progression by systemic exosome depletion, exosome-mediated circulating tumor cell capturing, and exosome-drug delivery systems are currently being studied and may provide considerable advantages in the near future.
Collapse
Affiliation(s)
- Mercedes Herrera
- Department of Oncology-Pathology, Karolinska Institutet, 17177 Stockholm, Sweden;
| | - Cristina Galindo-Pumariño
- Medical Oncology Department, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Alcalá University, 28034 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Cancer (CIBERONC), 28029 Madrid, Spain
| | - Vanesa García-Barberán
- Centro de Investigación Biomédica en Red de Cancer (CIBERONC), 28029 Madrid, Spain
- Laboratorio de Oncología Molecular, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain
- Correspondence: (V.G.-B.); (C.P.)
| | - Cristina Peña
- Medical Oncology Department, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Alcalá University, 28034 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Cancer (CIBERONC), 28029 Madrid, Spain
- Correspondence: (V.G.-B.); (C.P.)
| |
Collapse
|
6
|
Baird Z, Cao Z, Barron MR, Vorsilak A, Deiss F, Pugia M. Enumeration of Rare Cells in Whole Blood by Signal Ion Emission Reactive Release Amplification with Same-Sample RNA Analysis. Anal Chem 2019; 91:2028-2034. [DOI: 10.1021/acs.analchem.8b04446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zane Baird
- Single Cell Analytics Center, Indiana Biosciences Research Institute, Indianapolis, Indiana 46202, United States
| | - Zehui Cao
- Single Cell Analytics Center, Indiana Biosciences Research Institute, Indianapolis, Indiana 46202, United States
| | - M. Regina Barron
- Single Cell Analytics Center, Indiana Biosciences Research Institute, Indianapolis, Indiana 46202, United States
- Department of Chemistry and Chemical Biology, Indiana University−Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Anna Vorsilak
- Single Cell Analytics Center, Indiana Biosciences Research Institute, Indianapolis, Indiana 46202, United States
| | - Frédérique Deiss
- Department of Chemistry and Chemical Biology, Indiana University−Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Michael Pugia
- Single Cell Analytics Center, Indiana Biosciences Research Institute, Indianapolis, Indiana 46202, United States
| |
Collapse
|
7
|
Hemodynamic Forces Tune the Arrest, Adhesion, and Extravasation of Circulating Tumor Cells. Dev Cell 2018; 45:33-52.e12. [PMID: 29634935 DOI: 10.1016/j.devcel.2018.02.015] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 01/05/2018] [Accepted: 02/16/2018] [Indexed: 02/07/2023]
Abstract
Metastatic seeding is driven by cell-intrinsic and environmental cues, yet the contribution of biomechanics is poorly known. We aim to elucidate the impact of blood flow on the arrest and the extravasation of circulating tumor cells (CTCs) in vivo. Using the zebrafish embryo, we show that arrest of CTCs occurs in vessels with favorable flow profiles where flow forces control the adhesion efficacy of CTCs to the endothelium. We biophysically identified the threshold values of flow and adhesion forces allowing successful arrest of CTCs. In addition, flow forces fine-tune tumor cell extravasation by impairing the remodeling properties of the endothelium. Importantly, we also observe endothelial remodeling at arrest sites of CTCs in mouse brain capillaries. Finally, we observed that human supratentorial brain metastases preferably develop in areas with low perfusion. These results demonstrate that hemodynamic profiles at metastatic sites regulate key steps of extravasation preceding metastatic outgrowth.
Collapse
|
8
|
Wang L, Dumenil C, Julié C, Giraud V, Dumoulin J, Labrune S, Chinet T, Emile JF, He B, Giroux Leprieur E. Molecular characterization of circulating tumor cells in lung cancer: moving beyond enumeration. Oncotarget 2017; 8:109818-109835. [PMID: 29312651 PMCID: PMC5752564 DOI: 10.18632/oncotarget.22651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 09/20/2017] [Indexed: 12/30/2022] Open
Abstract
Molecular characterization of tumor cells is a key step in the diagnosis and optimal treatment of lung cancer. However, analysis of tumor samples, often corresponding to small biopsies, can be difficult and does not accurately reflect tumor heterogeneity. Recent studies have shown that isolation of circulating tumor cells (CTCs) is feasible in non-small cell lung cancer patients, even at early disease stages. The amount of CTCs corresponds to the metastatic potential of the tumor and to patient prognosis. Moreover, molecular analyses, even at the single-cell level, can be performed on CTCs. This review describes the technologies currently available for detecting and capturing CTCs, the potential for downstream molecular diagnostics, and the clinical applications of CTCs isolated from lung cancer patients as screening, prognostic, and predictive tools. Main limitations of CTCs are also discussed.
Collapse
Affiliation(s)
- Lei Wang
- Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.,Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Coraline Dumenil
- Department of Respiratory Diseases and Thoracic Oncology, APHP - Ambroise Pare Hospital, Boulogne-Billancourt, France
| | - Catherine Julié
- Department of Pathology, APHP - Ambroise Pare Hospital, Boulogne-Billancourt, France.,EA 4340 "Biomarqueurs en Cancérologie et Onco-Hématologie" UVSQ, Paris-Saclay University, Boulogne-Billancourt, France
| | - Violaine Giraud
- Department of Respiratory Diseases and Thoracic Oncology, APHP - Ambroise Pare Hospital, Boulogne-Billancourt, France
| | - Jennifer Dumoulin
- Department of Respiratory Diseases and Thoracic Oncology, APHP - Ambroise Pare Hospital, Boulogne-Billancourt, France
| | - Sylvie Labrune
- Department of Respiratory Diseases and Thoracic Oncology, APHP - Ambroise Pare Hospital, Boulogne-Billancourt, France
| | - Thierry Chinet
- Department of Respiratory Diseases and Thoracic Oncology, APHP - Ambroise Pare Hospital, Boulogne-Billancourt, France.,EA 4340 "Biomarqueurs en Cancérologie et Onco-Hématologie" UVSQ, Paris-Saclay University, Boulogne-Billancourt, France
| | - Jean-François Emile
- Department of Pathology, APHP - Ambroise Pare Hospital, Boulogne-Billancourt, France.,EA 4340 "Biomarqueurs en Cancérologie et Onco-Hématologie" UVSQ, Paris-Saclay University, Boulogne-Billancourt, France
| | - Biao He
- Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Etienne Giroux Leprieur
- Department of Respiratory Diseases and Thoracic Oncology, APHP - Ambroise Pare Hospital, Boulogne-Billancourt, France.,EA 4340 "Biomarqueurs en Cancérologie et Onco-Hématologie" UVSQ, Paris-Saclay University, Boulogne-Billancourt, France
| |
Collapse
|
9
|
Brychta N, Drosch M, Driemel C, Fischer JC, Neves RP, Esposito I, Knoefel W, Möhlendick B, Hille C, Stresemann A, Krahn T, Kassack MU, Stoecklein NH, von Ahsen O. Isolation of circulating tumor cells from pancreatic cancer by automated filtration. Oncotarget 2017; 8:86143-86156. [PMID: 29156783 PMCID: PMC5689673 DOI: 10.18632/oncotarget.21026] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 08/07/2017] [Indexed: 01/05/2023] Open
Abstract
It is now widely recognized that the isolation of circulating tumor cells based on cell surface markers might be hindered by variability in their protein expression. Especially in pancreatic cancer, isolation based only on EpCAM expression has produced very diverse results. Methods that are independent of surface markers and therefore independent of phenotypical changes in the circulating cells might increase CTC recovery also in pancreatic cancer. We compared an EpCAM-dependent (IsoFlux) and a size-dependent (automated Siemens Healthineers filtration device) isolation method for the enrichment of pancreatic cancer CTCs. The recovery rate of the filtration based approach is dramatically superior to the EpCAM-dependent approach especially for cells with low EpCAM-expression (filtration: 52%, EpCAM-dependent: 1%). As storage and shipment of clinical samples is important for centralized analyses, we also evaluated the use of frozen diagnostic leukapheresis (DLA) as source for isolating CTCs and subsequent genetic analysis such as KRAS mutation detection analysis. Using frozen DLA samples of pancreatic cancer patients we detected CTCs in 42% of the samples by automated filtration.
Collapse
Affiliation(s)
- Nora Brychta
- Bayer AG, Biomarker Research, 13353 Berlin, Germany
| | - Michael Drosch
- Bayer AG, Biomarker Research, 13353 Berlin, Germany.,Current/Present address: JPT Peptide Technologies GmbH, 12489 Berlin, Germany
| | - Christiane Driemel
- Department of General, Visceral and Pediatric Surgery, Medical Faculty, University Hospital of the Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany
| | - Johannes C Fischer
- Department of General, Visceral and Pediatric Surgery, Medical Faculty, University Hospital of the Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany
| | - Rui P Neves
- Department of General, Visceral and Pediatric Surgery, Medical Faculty, University Hospital of the Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany
| | - Irene Esposito
- Institute of Pathology, Heinrich-Heine-University of Duesseldorf, 40225 Duesseldorf, Germany
| | - Wolfram Knoefel
- Department of General, Visceral and Pediatric Surgery, Medical Faculty, University Hospital of the Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany
| | - Birte Möhlendick
- Department of General, Visceral and Pediatric Surgery, Medical Faculty, University Hospital of the Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany
| | - Claudia Hille
- Bayer AG, Biomarker Research, 13353 Berlin, Germany.,Current/Present address: University Medical Center Hamburg-Eppendorf, Department of Tumor Biology, 20246 Hamburg, Germany
| | | | - Thomas Krahn
- Bayer AG, Biomarker Research, 13353 Berlin, Germany
| | - Matthias U Kassack
- Institute of Pharmaceutical & Medicinal Chemistry, University of Duesseldorf, 40225 Duesseldorf, Germany
| | - Nikolas H Stoecklein
- Department of General, Visceral and Pediatric Surgery, Medical Faculty, University Hospital of the Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany
| | | |
Collapse
|
10
|
Chen S, Sun Y, Neoh KH, Chen A, Li W, Yang X, Han RPS. Microfluidic assay of circulating endothelial cells in coronary artery disease patients with angina pectoris. PLoS One 2017; 12:e0181249. [PMID: 28704506 PMCID: PMC5509377 DOI: 10.1371/journal.pone.0181249] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 06/28/2017] [Indexed: 11/25/2022] Open
Abstract
Background Circulating endothelial cells (CECs) are widely reported as a promising biomarker of endothelial damage/dysfunction in coronary artery disease (CAD). The two popular methods of CEC quantification include the use of immunomagnetic beads separation (IB) and flow cytometry analysis (FC); however, they suffer from two main shortcomings that affect their diagnostic and prognostic responses: non-specific bindings of magnetic beads to non-target cells and a high degree of variability in rare cell identification, respectively. We designed a microfluidic chip with spatially staggered micropillars for the efficient harvesting of CECs with intact cellular morphology in an attempt to revisit the diagnostic goal of CEC counts in CAD patients with angina pectoris. Methods A label-free microfluidic assay that involved an in-situ enumeration and immunofluorescent identification (DAPI+/CD146+/VEGFR1+/CD45-) of CECs was carried out to assess the CEC count in human peripheral blood samples. A total of 55 CAD patients with angina pectoris [16 with chronic stable angina (CSA) and 39 with unstable angina (UA)], together with 15 heathy controls (HCs) were enrolled in the study. Results CEC counts are significantly higher in both CSA and UA groups compared to the HC group [respective medians of 6.9, 10.0 and 1.5 cells/ml (p < 0.01)]. Further, a significant elevation of CEC count was observed in the three UA subgroups [low risk (5.3) vs. intermediate risk (10.8) vs. high risk (18.0) cells/ml, p < 0.001) classified in accordance to the TIMI NSTEMI/UA risk score system. From the receiver-operating characteristic curve analysis, the AUCs for distinguishing CSA and UA from HC were 0.867 and 0.938, respectively. The corresponding sensitivities were 87.5% and 84.6% and the specificities were 66.7% and 86.7%, respectively. Conclusions Our microfluidic assay system is efficient and stable for CEC capture and enumeration. The results showed that the CEC count has the potential to be a promising clinical biomarker for the assessment of endothelial damage/dysfunction in CAD patients with angina pectoris.
Collapse
Affiliation(s)
- Shuiyu Chen
- College of Engineering, Peking University, Beijing, China
| | - Yukun Sun
- College of Engineering, Peking University, Beijing, China
| | | | - Anqi Chen
- College of Engineering, Peking University, Beijing, China
| | - Weiju Li
- Peking University Hospital, Beijing, China
| | - Xiaorui Yang
- Peking University Hospital, Beijing, China
- * E-mail: (XY); (RPSH)
| | - Ray P. S. Han
- College of Engineering, Peking University, Beijing, China
- * E-mail: (XY); (RPSH)
| |
Collapse
|
11
|
Pillai SG, Zhu P, Siddappa CM, Adams DL, Li S, Makarova OV, Amstutz P, Nunley R, Tang CM, Watson MA, Aft RL. Enrichment and Molecular Analysis of Breast Cancer Disseminated Tumor Cells from Bone Marrow Using Microfiltration. PLoS One 2017; 12:e0170761. [PMID: 28129357 PMCID: PMC5271341 DOI: 10.1371/journal.pone.0170761] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 01/10/2017] [Indexed: 01/04/2023] Open
Abstract
Purpose Molecular characterization of disseminated tumor cells (DTCs) in the bone marrow (BM) of breast cancer (BC) patients has been hindered by their rarity. To enrich for these cells using an antigen-independent methodology, we have evaluated a size-based microfiltration device in combination with several downstream biomarker assays. Methods BM aspirates were collected from healthy volunteers or BC patients. Healthy BM was mixed with a specified number of BC cells to calculate recovery and fold enrichment by microfiltration. Specimens were pre-filtered using a 70 μm mesh sieve and the effluent filtered through CellSieve microfilters. Captured cells were analyzed by immunocytochemistry (ICC), FISH for HER-2/neu gene amplification status, and RNA in situ hybridization (RISH). Cells eluted from the filter were used for RNA isolation and subsequent qRT-PCR analysis for DTC biomarker gene expression. Results Filtering an average of 14×106 nucleated BM cells yielded approximately 17–21×103 residual BM cells. In the BC cell spiking experiments, an average of 87% (range 84–92%) of tumor cells were recovered with approximately 170- to 400-fold enrichment. Captured BC cells from patients co-stained for cytokeratin and EpCAM, but not CD45 by ICC. RNA yields from 4 ml of patient BM after filtration averaged 135ng per 10 million BM cells filtered with an average RNA Integrity Number (RIN) of 5.3. DTC-associated gene expression was detected by both qRT-PCR and RISH in filtered spiked or BC patient specimens but, not in control filtered normal BM. Conclusions We have tested a microfiltration technique for enrichment of BM DTCs. DTC capture efficiency was shown to range from 84.3% to 92.1% with up to 400-fold enrichment using model BC cell lines. In patients, recovered DTCs can be identified and distinguished from normal BM cells using multiple antibody-, DNA-, and RNA-based biomarker assays.
Collapse
Affiliation(s)
- Sreeraj G. Pillai
- Washington University School of Medicine, Dept. of Surgery, St. Louis, Missouri, United States of America
| | - Peixuan Zhu
- Creatv MicroTech, Inc., Rockville, Maryland, United States of America
| | - Chidananda M. Siddappa
- Washington University School of Medicine, Dept. of Surgery, St. Louis, Missouri, United States of America
| | - Daniel L. Adams
- Creatv MicroTech, Inc., Monmouth Junction, New Jersey, United States of America
| | - Shuhong Li
- Creatv MicroTech, Inc., Rockville, Maryland, United States of America
| | - Olga V. Makarova
- Creatv MicroTech, Inc., Chicago, Illinois, United States of America
| | - Pete Amstutz
- Creatv MicroTech, Inc., Potomac, Maryland, United States of America
| | - Ryan Nunley
- Washington University School of Medicine, Dept. of Orthopedic Surgery, St. Louis, Missouri, United States of America
| | - Cha-Mei Tang
- Creatv MicroTech, Inc., Potomac, Maryland, United States of America
| | - Mark A. Watson
- Washington University School of Medicine, Dept. of Pathology and Immunology, St. Louis, Missouri, United States of America
| | - Rebecca L. Aft
- Washington University School of Medicine, Dept. of Surgery, St. Louis, Missouri, United States of America
- John Cochran Veterans Administration Hospital, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
12
|
Enrichment and Detection of Circulating Tumor Cells and Other Rare Cell Populations by Microfluidic Filtration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 994:119-131. [PMID: 28560671 DOI: 10.1007/978-3-319-55947-6_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The current standard methods for isolating circulating tumor cells (CTCs) from blood involve EPCAM-based immunomagnetic approaches. A major disadvantage of these strategies is that CTCs with low EPCAM expression will be missed. Isolation by size using filter membranes circumvents the reliance on this cell surface marker, and can facilitate the capture not only of EPCAM-negative CTCs but other rare cells as well. These cells that are trapped on the filter membrane can be characterized by immunocytochemistry (ICC) , enumerated and profiled to elucidate their clinical significance. In this chapter, we discuss advances in filtration systems to capture rare cells as well as downstream ICC methods to detect and identify these cells. We highlight our recent clinical study demonstrating the feasibility of using a novel method consisting of automated microfluidic filtration and sequential ICC for detection and enumeration of CTCs, as well as circulating mesenchymal cells (CMCs), circulating endothelial cells (CECs), and putative circulating stem cells (CSCs). We hypothesize that simultaneous analysis of circulating rare cells in blood of cancer patients may lead to a better understanding of disease progression and development of resistance to therapy.
Collapse
|
13
|
Pugia M, Magbanua MJM, Park JW. Automated Microfluidic Filtration and Immunocytochemistry Detection System for Capture and Enumeration of Circulating Tumor Cells and Other Rare Cell Populations in Blood. Methods Mol Biol 2017; 1634:119-131. [PMID: 28819845 DOI: 10.1007/978-1-4939-7144-2_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Isolation by size using a filter membrane offers an antigen-independent method for capturing rare cells present in blood of cancer patients. Multiple cell types, including circulating tumor cells (CTCs), captured on the filter membrane can be simultaneously identified via immunocytochemistry (ICC) analysis of specific cellular biomarkers. Here, we describe an automated microfluidic filtration method combined with a liquid handling system for sequential ICC assays to detect and enumerate non-hematologic rare cells in blood.
Collapse
Affiliation(s)
- Michael Pugia
- Siemens Healthcare Diagnostics, 4300 Middlebury St, Elkhart, IN, 46516, USA.
| | - Mark Jesus M Magbanua
- Division of Hematology-Oncology, University of California-San Francisco, San Francisco, CA, 94115, USA
| | - John W Park
- Division of Hematology-Oncology, University of California-San Francisco, San Francisco, CA, 94115, USA
| |
Collapse
|
14
|
Swennenhuis JF, van Dalum G, Zeune LL, Terstappen LWMM. Improving the CellSearch® system. Expert Rev Mol Diagn 2016; 16:1291-1305. [PMID: 27797592 DOI: 10.1080/14737159.2016.1255144] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The CellSearch® CTC test enumerates tumor cells present in 7.5 ml blood of cancer patients. improvements, extensions and different utilities of the cellsearch system are discussed in this paper. Areas covered: This paper describes work performed with the CellSearch system, which go beyond the normal scope of the test. All results from searches with the search term 'CellSearch' from Web of Science and PubMed were categorized and discussed. Expert commentary: The CellSearch Circulating Tumor Cell test captures and identifies tumor cells in blood that are associated with poor clinical outcome. How to best use CTC in clinical practice is being explored in many clinical trials. The ability to extract information from the CTC to guide therapy will expand the potential clinical utility of CTC.
Collapse
Affiliation(s)
- J F Swennenhuis
- a Medical Cell BioPhysics , University of Twente , Enschede , The Netherlands
| | - G van Dalum
- a Medical Cell BioPhysics , University of Twente , Enschede , The Netherlands
| | - L L Zeune
- a Medical Cell BioPhysics , University of Twente , Enschede , The Netherlands
| | - L W M M Terstappen
- a Medical Cell BioPhysics , University of Twente , Enschede , The Netherlands
| |
Collapse
|
15
|
Lee JS, Magbanua MJM, Park JW. Circulating tumor cells in breast cancer: applications in personalized medicine. Breast Cancer Res Treat 2016; 160:411-424. [DOI: 10.1007/s10549-016-4014-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/08/2016] [Indexed: 12/11/2022]
|
16
|
Pailler E, Oulhen M, Billiot F, Galland A, Auger N, Faugeroux V, Laplace-Builhé C, Besse B, Loriot Y, Ngo-Camus M, Hemanda M, Lindsay CR, Soria JC, Vielh P, Farace F. Method for semi-automated microscopy of filtration-enriched circulating tumor cells. BMC Cancer 2016; 16:477. [PMID: 27417942 PMCID: PMC4946105 DOI: 10.1186/s12885-016-2461-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 06/27/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Circulating tumor cell (CTC)-filtration methods capture high numbers of CTCs in non-small-cell lung cancer (NSCLC) and metastatic prostate cancer (mPCa) patients, and hold promise as a non-invasive technique for treatment selection and disease monitoring. However filters have drawbacks that make the automation of microscopy challenging. We report the semi-automated microscopy method we developed to analyze filtration-enriched CTCs from NSCLC and mPCa patients. METHODS Spiked cell lines in normal blood and CTCs were enriched by ISET (isolation by size of epithelial tumor cells). Fluorescent staining was carried out using epithelial (pan-cytokeratins, EpCAM), mesenchymal (vimentin, N-cadherin), leukocyte (CD45) markers and DAPI. Cytomorphological staining was carried out with Mayer-Hemalun or Diff-Quik. ALK-, ROS1-, ERG-rearrangement were detected by filter-adapted-FISH (FA-FISH). Microscopy was carried out using an Ariol scanner. RESULTS Two combined assays were developed. The first assay sequentially combined four-color fluorescent staining, scanning, automated selection of CD45(-) cells, cytomorphological staining, then scanning and analysis of CD45(-) cell phenotypical and cytomorphological characteristics. CD45(-) cell selection was based on DAPI and CD45 intensity, and a nuclear area >55 μm(2). The second assay sequentially combined fluorescent staining, automated selection of CD45(-) cells, FISH scanning on CD45(-) cells, then analysis of CD45(-) cell FISH signals. Specific scanning parameters were developed to deal with the uneven surface of filters and CTC characteristics. Thirty z-stacks spaced 0.6 μm apart were defined as the optimal setting, scanning 82 %, 91 %, and 95 % of CTCs in ALK-, ROS1-, and ERG-rearranged patients respectively. A multi-exposure protocol consisting of three separate exposure times for green and red fluorochromes was optimized to analyze the intensity, size and thickness of FISH signals. CONCLUSIONS The semi-automated microscopy method reported here increases the feasibility and reliability of filtration-enriched CTC assays and can help progress towards their validation and translation to the clinic.
Collapse
Affiliation(s)
- Emma Pailler
- "Circulating Tumor Cells" Translational Platform AMMICA CNRS UMS3655-INSERM US23, Gustave Roussy, Université Paris-Saclay, F-94805, Villejuif, France.,INSERM U981 "Identification of Molecular Predictors and new Targets for Cancer Treatment", F-94805, Villejuif, France.,Univ Paris Sud, Université Paris-Saclay, F-94270, Le Kremlin-Bicêtre, France
| | - Marianne Oulhen
- "Circulating Tumor Cells" Translational Platform AMMICA CNRS UMS3655-INSERM US23, Gustave Roussy, Université Paris-Saclay, F-94805, Villejuif, France.,INSERM U981 "Identification of Molecular Predictors and new Targets for Cancer Treatment", F-94805, Villejuif, France
| | - Fanny Billiot
- "Circulating Tumor Cells" Translational Platform AMMICA CNRS UMS3655-INSERM US23, Gustave Roussy, Université Paris-Saclay, F-94805, Villejuif, France.,INSERM U981 "Identification of Molecular Predictors and new Targets for Cancer Treatment", F-94805, Villejuif, France
| | | | - Nathalie Auger
- Department of Biopathology, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Vincent Faugeroux
- "Circulating Tumor Cells" Translational Platform AMMICA CNRS UMS3655-INSERM US23, Gustave Roussy, Université Paris-Saclay, F-94805, Villejuif, France.,INSERM U981 "Identification of Molecular Predictors and new Targets for Cancer Treatment", F-94805, Villejuif, France.,Univ Paris Sud, Université Paris-Saclay, F-94270, Le Kremlin-Bicêtre, France
| | - Corinne Laplace-Builhé
- Imaging and Cytometry Platform AMMICA CNRS UMS3655-INSERM US23, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Benjamin Besse
- Department of Medicine, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Yohann Loriot
- Department of Medicine, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Maud Ngo-Camus
- Department of Medicine, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Merouan Hemanda
- Pathology Imaging, Leica Biosystems, F92737, Nanterre, France
| | - Colin R Lindsay
- "Circulating Tumor Cells" Translational Platform AMMICA CNRS UMS3655-INSERM US23, Gustave Roussy, Université Paris-Saclay, F-94805, Villejuif, France.,INSERM U981 "Identification of Molecular Predictors and new Targets for Cancer Treatment", F-94805, Villejuif, France
| | - Jean-Charles Soria
- INSERM U981 "Identification of Molecular Predictors and new Targets for Cancer Treatment", F-94805, Villejuif, France.,Department of Medicine, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Philippe Vielh
- "Circulating Tumor Cells" Translational Platform AMMICA CNRS UMS3655-INSERM US23, Gustave Roussy, Université Paris-Saclay, F-94805, Villejuif, France.,INSERM U981 "Identification of Molecular Predictors and new Targets for Cancer Treatment", F-94805, Villejuif, France.,Department of Biopathology, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Françoise Farace
- "Circulating Tumor Cells" Translational Platform AMMICA CNRS UMS3655-INSERM US23, Gustave Roussy, Université Paris-Saclay, F-94805, Villejuif, France. .,INSERM U981 "Identification of Molecular Predictors and new Targets for Cancer Treatment", F-94805, Villejuif, France. .,Univ Paris Sud, Université Paris-Saclay, F-94270, Le Kremlin-Bicêtre, France.
| |
Collapse
|
17
|
Baird Z, Pirro V, Ayrton S, Hollerbach A, Hanau C, Marfurt K, Foltz M, Cooks RG, Pugia M. Tumor Cell Detection by Mass Spectrometry Using Signal Ion Emission Reactive Release Amplification. Anal Chem 2016; 88:6971-5. [PMID: 27351295 DOI: 10.1021/acs.analchem.6b02043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A method is presented for the detection of circulating tumor cells (CTC) using mass spectrometry (MS), through reporter-ion amplification. Particles functionalized with short-chain peptides are bound to cells through antibody-antigen interactions. Selective release and MS detection of peptides is shown to detect as few as 690 cells isolated from a 10 mL blood sample. Here we present proof-of-concept results that pave the way for further investigations.
Collapse
Affiliation(s)
- Zane Baird
- Siemens Healthcare Diagnostics , 3400 Middlebury Street, Elkhart, Indiana 46516, United States.,Chemistry Department, Purdue University , 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| | - Valentina Pirro
- Chemistry Department, Purdue University , 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| | - Stephen Ayrton
- Chemistry Department, Purdue University , 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| | - Adam Hollerbach
- Chemistry Department, Purdue University , 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| | - Cathleen Hanau
- Siemens Healthcare Diagnostics , 3400 Middlebury Street, Elkhart, Indiana 46516, United States
| | - Karen Marfurt
- Siemens Healthcare Diagnostics , 3400 Middlebury Street, Elkhart, Indiana 46516, United States
| | - Mary Foltz
- Siemens Healthcare Diagnostics , 3400 Middlebury Street, Elkhart, Indiana 46516, United States
| | - R Graham Cooks
- Chemistry Department, Purdue University , 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| | - Michael Pugia
- Siemens Healthcare Diagnostics , 3400 Middlebury Street, Elkhart, Indiana 46516, United States
| |
Collapse
|