1
|
Gerb J, Brandt T, Dieterich M. A clinical 3D pointing test differentiates spatial memory deficits in dementia and bilateral vestibular failure. BMC Neurol 2024; 24:75. [PMID: 38395847 PMCID: PMC10885646 DOI: 10.1186/s12883-024-03569-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Deficits in spatial memory, orientation, and navigation are often neglected early signs of cognitive impairment or loss of vestibular function. Real-world navigation tests require complex setups. In contrast, simple pointing at targets in a three-dimensional environment is a basic sensorimotor ability which provides an alternative measure of spatial orientation and memory at bedside. The aim of this study was to test the reliability of a previously established 3D-Real-World Pointing Test (3D-RWPT) in patients with cognitive impairment due to different neurodegenerative disorders, bilateral vestibulopathy, or a combination of both compared to healthy participants. METHODS The 3D-RWPT was performed using a static array of targets in front of the seated participant before and, as a transformation task, after a 90-degree body rotation around the yaw-axis. Three groups of patients were enrolled: (1) chronic bilateral vestibulopathy (BVP) with normal cognition (n = 32), (2) cognitive impairment with normal vestibular function (n = 28), and (3) combined BVP and cognitive impairment (n = 9). The control group consisted of age-matched participants (HP) without cognitive and vestibular deficits (n = 67). Analyses focused on paradigm-specific mean angular deviation of pointing in the azimuth (horizontal) and polar (vertical) spatial planes, of the preferred pointing strategy (egocentric or allocentric), and the resulting shape configuration of the pointing array relative to the stimulus array. Statistical analysis was performed using age-corrected ANCOVA-testing with Bonferroni correction and correlation analysis using Spearman's rho. RESULTS Patients with cognitive impairment employed more egocentric pointing strategies while patients with BVP but normal cognition and HP used more world-based solutions (pBonf 5.78 × 10-3**). Differences in pointing accuracy were only found in the azimuth plane, unveiling unique patterns where patients with cognitive impairment showed decreased accuracy in the transformation tasks of the 3D-RWPT (pBonf < 0.001***) while patients with BVP struggled in the post-rotation tasks (pBonf < 0.001***). Overall azimuth pointing performance was still adequate in some patients with BVP but significantly decreased when combined with a cognitive deficit. CONCLUSION The 3D-RWPT provides a simple and fast measure of spatial orientation and memory. Cognitive impairment often led to a shift from world-based allocentric pointing strategy to an egocentric performance with less azimuth accuracy compared to age-matched controls. This supports the view that cognitive deficits hinder the mental buildup of the stimulus pattern represented as a geometrical form. Vestibular hypofunction negatively affected spatial memory and pointing performance in the azimuth plane. The most severe spatial impairments (angular deviation, figure frame configuration) were found in patients with combined cognitive and vestibular deficits.
Collapse
Affiliation(s)
- J Gerb
- Department of Neurology, University Hospital, Ludwig-Maximilians-University, Munich, Germany.
- German Center for Vertigo and Balance Disorders, University Hospital, Ludwig-Maximilians-University, Munich, Germany.
| | - T Brandt
- Graduate School of Systemic Neuroscience, Ludwig-Maximilians-University, Munich, Germany
- German Center for Vertigo and Balance Disorders, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - M Dieterich
- Department of Neurology, University Hospital, Ludwig-Maximilians-University, Munich, Germany
- Graduate School of Systemic Neuroscience, Ludwig-Maximilians-University, Munich, Germany
- German Center for Vertigo and Balance Disorders, University Hospital, Ludwig-Maximilians-University, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
2
|
Gerb J, Brandt T, Dieterich M. Shape configuration of mental targets representation as a holistic measure in a 3D real world pointing test for spatial orientation. Sci Rep 2023; 13:20449. [PMID: 37993521 PMCID: PMC10665407 DOI: 10.1038/s41598-023-47821-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 11/18/2023] [Indexed: 11/24/2023] Open
Abstract
Deficits in spatial memory are often early signs of neurological disorders. Here, we analyzed the geometrical shape configuration of 2D-projections of pointing performances to a memorized array of spatially distributed targets in order to assess the feasibility of this new holistic analysis method. The influence of gender differences and cognitive impairment was taken into account in this methodological study. 56 right-handed healthy participants (28 female, mean age 48.89 ± 19.35 years) and 22 right-handed patients with heterogeneous cognitive impairment (12 female, mean age 71.73 ± 7.41 years) underwent a previously validated 3D-real-world pointing test (3D-RWPT). Participants were shown a 9-dot target matrix and afterwards asked to point towards each target in randomized order with closed eyes in different body positions relative to the matrix. Two-dimensional projections of these pointing vectors (i.e., the shapes resulting from the individual dots) were then quantified using morphological analyses. Shape configurations in healthy volunteers largely reflected the real-world target pattern with gender-dependent differences (ANCOVA area males vs. females F(1,73) = 9.00, p 3.69 × 10-3, partial η2 = 0.10, post-hoc difference = 38,350.43, pbonf=3.69 × 10-3**, Cohen's d 0.76, t 3.00). Patients with cognitive impairment showed distorted rectangularity with more large-scale errors, resulting in decreased overall average diameters and solidity (ANCOVA diameter normal cognition/cognitive impairment F(1,71) = 9.30, p 3.22 × 10-3, partial η2 = 0.09, post-hoc difference = 31.22, pbonf=3.19 × 10-3**, Cohen's d 0.92, t 3.05; solidity normal cognition/cognitive impairment F(1,71) = 7.79, p 6.75 × 10-3, partial η2 = 0.08, post-hoc difference = 0.07, pbonf=6.76 × 10-3** Cohen's d 0.84, t 2.79). Shape configuration analysis of the 3D-RWPT target array appears to be a suitable holistic measure of spatial performance in a pointing task. The results of this methodological investigation support further testing in a clinical study for differential diagnosis of disorders with spatial memory deficits.
Collapse
Affiliation(s)
- J Gerb
- German Center for Vertigo and Balance Disorders, Ludwig-Maximilians University, Munich, Germany.
| | - T Brandt
- German Center for Vertigo and Balance Disorders, Ludwig-Maximilians University, Munich, Germany
- Graduate School of Systemic Neuroscience, Ludwig-Maximilians University, Munich, Germany
- Hertie Senior Professor for Clinical Neuroscience, Ludwig-Maximilians University, Munich, Germany
| | - M Dieterich
- German Center for Vertigo and Balance Disorders, Ludwig-Maximilians University, Munich, Germany
- Graduate School of Systemic Neuroscience, Ludwig-Maximilians University, Munich, Germany
- Department of Neurology, Ludwig-Maximilians University, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
3
|
Ginosar G, Karpas ED, Weitzner I, Ulanovsky N. Dissociating two aspects of human 3D spatial perception by studying fighter pilots. Sci Rep 2023; 13:11265. [PMID: 37438399 DOI: 10.1038/s41598-023-37759-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 06/27/2023] [Indexed: 07/14/2023] Open
Abstract
Human perception of 3D space has been investigated extensively, but there are conflicting reports regarding its distortions. A possible solution to these discrepancies is that 3D perception is in fact comprised of two different processes-perception of traveled space, and perception of surrounding space. Here we tested these two aspects on the same subjects, for the first time. To differentiate these two aspects and investigate whether they emerge from different processes, we asked whether these two aspects are affected differently by the individual's experience of 3D locomotion. Using an immersive high-grade flight-simulator with realistic virtual-reality, we compared these two aspects of 3D perception in fighter pilots-individuals highly experienced in 3D locomotion-and in control subjects. We found that the two aspects of 3D perception were affected differently by 3D locomotion experience: the perception of 3D traveled space was plastic and experience-dependent, differing dramatically between pilots and controls, while the perception of surrounding space was rigid and unaffected by experience. This dissociation suggests that these two aspects of 3D spatial perception emerge from two distinct processes.
Collapse
Affiliation(s)
- Gily Ginosar
- Department of Brain Sciences, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Ehud D Karpas
- Department of Brain Sciences, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Idan Weitzner
- Sackler School of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Nachum Ulanovsky
- Department of Brain Sciences, Weizmann Institute of Science, 76100, Rehovot, Israel.
| |
Collapse
|
4
|
Gerb J, Brandt T, Dieterich M. Different approaches to test orientation of self in space: comparison of a 2D pen-and-paper test and a 3D real-world pointing task. J Neurol 2023; 270:642-650. [PMID: 36342523 PMCID: PMC9886631 DOI: 10.1007/s00415-022-11446-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022]
Abstract
Spatial orientation is based on a complex cortical network with input from multiple sensory systems. It is affected by training, sex and age as well as cultural and psychological factors, resulting in different individual skill levels in healthy subjects. Various neurological disorders can lead to different patterns or specific deficits of spatial orientation and navigation. Accordingly, numerous tests have been proposed to assess these abilities. Here, we compare the results of (1) a validated questionnaire-based self-estimate of orientation/navigation ability (Santa Barbara Sense of Direction Scale, SBSODS) and (2) a validated pen-and-paper two-dimensional perspective test (Perspective Taking Spatial Orientation Test, SOT) with (3) a newly developed test of finger-arm pointing performance in a 3D real-world (3D-RWPT) paradigm using a recently established pointing device. A heterogeneous group of 121 participants (mean age 56.5 ± 17.7 years, 52 females), including 16 healthy volunteers and 105 patients with different vestibular, ocular motor and degenerative brain disorders, was included in this study. A high correlation was found between 2D perspective task and 3D pointing along the horizontal (azimuth) but not along the vertical (polar) plane. Self-estimated navigation ability (SBSODS) could not reliably predict actual performance in either 2D- or 3D-tests. Clinical assessment of spatial orientation and memory should therefore include measurements of actual performance, based on a 2D pen-and-paper test or a 3D pointing task, rather than memory-based questionnaires, since solely relying on the patient's history of self-estimated navigation ability results in misjudgments. The 3D finger-arm pointing test (3D-RWPT) reveals additional information on vertical (polar) spatial performance which goes undetected in conventional 2D pen-and-paper tests. Diseases or age-specific changes of spatial orientation in the vertical plane should not be clinically neglected. The major aim of this pilot study was to compare the practicability and capability of the three tests but not yet to prove their use for differential diagnosis. The next step will be to establish a suitable clinical bedside test for spatial memory and orientation.
Collapse
Affiliation(s)
- J Gerb
- Department of Neurology, University Hospital, Ludwig-Maximilians University, Munich, Germany.
- German Center for Vertigo and Balance Disorders, University Hospital, Ludwig-Maximilians University, Munich, Germany.
| | - T Brandt
- Graduate School of Systemic Neuroscience, Ludwig-Maximilians University, Munich, Germany
- German Center for Vertigo and Balance Disorders, University Hospital, Ludwig-Maximilians University, Munich, Germany
- Hertie Senior Professor for Clinical Neuroscience, Ludwig-Maximilians University, Munich, Germany
| | - M Dieterich
- Department of Neurology, University Hospital, Ludwig-Maximilians University, Munich, Germany
- Graduate School of Systemic Neuroscience, Ludwig-Maximilians University, Munich, Germany
- German Center for Vertigo and Balance Disorders, University Hospital, Ludwig-Maximilians University, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
5
|
Ertl M, Zu Eulenburg P, Woller M, Mayadali Ü, Boegle R, Dieterich M. Vestibular mapping of the naturalistic head-centered motion spectrum. J Vestib Res 2023; 33:299-312. [PMID: 37458057 DOI: 10.3233/ves-210121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
BACKGROUND Naturalistic head accelerations can be used to elicit vestibular evoked potentials (VestEPs). These potentials allow for analysis of cortical vestibular processing and its multi-sensory integration with a high temporal resolution. METHODS We report the results of two experiments in which we compared the differential VestEPs elicited by randomized translations, rotations, and tilts in healthy subjects on a motion platform. RESULTS An event-related potential (ERP) analysis revealed that established VestEPs were verifiable in all three acceleration domains (translations, rotations, tilts). A further analysis of the VestEPs showed a significant correlation between rotation axes (yaw, pitch, roll) and the amplitude of the evoked potentials. We found increased amplitudes for rotations in the roll compared to the pitch and yaw plane. A distributed source localization analysis showed that the activity in the cingulate sulcus visual (CSv) area best explained direction-dependent amplitude modulations of the VestEPs, but that the same cortical network (posterior insular cortex, CSv) is involved in processing vestibular information, regardless of the motion direction. CONCLUSION The results provide evidence for an anisotropic, direction-dependent processing of vestibular input by cortical structures. The data also suggest that area CSv plays an integral role in ego-motion perception and interpretation of spatial features such as acceleration direction and intensity.
Collapse
Affiliation(s)
- Matthias Ertl
- Department of Psychology, University of Bern, Bern, Switzerland
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Peter Zu Eulenburg
- German Center for Vertigo and Balance Disorders (IFBLMU), Ludwig-Maximilians-Universität München, Munich, Germany
- Graduate School of Systemic Neuroscience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marie Woller
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ümit Mayadali
- Graduate School of Systemic Neuroscience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Rainer Boegle
- German Center for Vertigo and Balance Disorders (IFBLMU), Ludwig-Maximilians-Universität München, Munich, Germany
- Graduate School of Systemic Neuroscience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marianne Dieterich
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
- German Center for Vertigo and Balance Disorders (IFBLMU), Ludwig-Maximilians-Universität München, Munich, Germany
- Graduate School of Systemic Neuroscience, Ludwig-Maximilians-Universität München, Munich, Germany
- Munich Cluster for Neurology (SyNergy), Munich, Germany
| |
Collapse
|
6
|
Danek A, König N, Brandt T, Dieterich M. [Autonomous Neurology within the University Hospital of LMU at 50 years]. MMW Fortschr Med 2022; 164:23-31. [PMID: 35831745 DOI: 10.1007/s15006-022-1231-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Establishment of the Chair of Neurology at the University of Munich in 1971 as well as the opening of the Neurology Department at the newly built Großhadern campus (1974) provide an occasion to review the 50 years that have passed since. Further, the early history of Munich neurology is described, with its slow pace of separation (in comparison to e.g. Heidelberg, Frankfurt and Hamburg) from the parent disciplines, psychiatry and internal medicine. In Munich, they were long shaped by psychiatrists such as Bernhard von Gudden, Emil Kraepelin, Kurt Kolle and Hanns Hippius and by Friedrich von Müller and, in particular, by Gustav Bodechtel in internal medicine.Once independent, further development of neurology in Munich was characterized by fast-paced, almost revolutionary changes in neuroimaging, electrophysiology, sonography, and engineering as well as in basic neuroscience, neurogenetics included. The new department thrived under the leadership of Adolf Schrader (from 1971), Thomas Brandt (from 1984) and Marianne Dieterich (from 2008) who enjoyed the support of an ever-increasing specialised clinical-scientific staff.Evidence-based treatment of neurological disorders became the overarching and internationally visible focus of Munich neurology, with respect to both practical implementation and to research. The exemplary diseases and syndromes of multiple sclerosis, epilepsy, stroke, movement disorders, dizziness and disorders of balance and gait as well as diseases of the musculature and peripheral nerves are cared for not only within the inpatient and outpatient sections of the Neurology Department but also by units such as the Friedrich Baur Institute (FBI), the German Dizziness and Balance Centre (DSGZ), the Institutes for Stroke and Dementia Research (ISD) and for Clinical Neuroimmunology as well as in the interdisciplinary Department of Palliative Care.
Collapse
Affiliation(s)
- Adrian Danek
- LMU München, Neurologische Klinik und Poliklinik, Marchioninistraße 15, 81377, München, Deutschland.
| | - Nicolaus König
- Neurologische Klinik, Klinikum der Universität München, München, Deutschland
| | - Thomas Brandt
- LMU München, Neurologische Klinik und Poliklinik, Marchioninistraße 15, 81377, München, Deutschland
| | - Marianne Dieterich
- LMU München, Neurologische Klinik und Poliklinik, Marchioninistraße 15, 81377, München, Deutschland
| |
Collapse
|
7
|
Kim M, Doeller CF. Adaptive cognitive maps for curved surfaces in the 3D world. Cognition 2022; 225:105126. [PMID: 35461111 DOI: 10.1016/j.cognition.2022.105126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/28/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022]
Abstract
Terrains in a 3D world can be undulating. Yet, most prior research has exclusively investigated spatial representations on a flat surface, leaving a 2D cognitive map as the dominant model in the field. Here, we investigated whether humans represent a curved surface by building a dimension-reduced flattened 2D map or a full 3D map. Participants learned the location of objects positioned on a flat and curved surface in a virtual environment by driving on the concave side of the surface (Experiment 1), driving and looking vertically (Experiment 2), or flying (Experiment 3). Subsequently, they were asked to retrieve either the path distance or the 3D Euclidean distance between the objects. Path distance estimation was good overall, but we found a significant underestimation bias for the path distance on the curve, suggesting an influence of potential 3D shortcuts, even though participants were only driving on the surface. Euclidean distance estimation was better when participants were exposed more to the global 3D structure of the environment by looking and flying. These results suggest that the representation of the 2D manifold, embedded in a 3D world, is neither purely 2D nor 3D. Rather, it is flexible and dependent on the behavioral experience and demand.
Collapse
Affiliation(s)
- Misun Kim
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Christian F Doeller
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Institute of Psychology, Leipzig University, Leipzig, Germany; Kavli Institute for Systems Neuroscience, Trondheim, Norway.
| |
Collapse
|
8
|
When humans can fly: Imprecise vertical encoding in human 3D spatial navigation. Behav Brain Res 2022; 426:113835. [DOI: 10.1016/j.bbr.2022.113835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 02/10/2022] [Accepted: 03/05/2022] [Indexed: 11/24/2022]
|
9
|
Abstract
Visibility is the degree to which different parts of the environment can be observed from a given vantage point. In the absence of previous familiarity or signage, the visibility of key elements in a multilevel environment (e.g., the entrance, exit, or the destination itself) becomes a primary input to make wayfinding decisions and avoid getting lost. Previous research has focused on memory-based wayfinding and mental representation of 3D space, but few studies have investigated the direct effects of visibility on wayfinding. Moreover, to our knowledge, there are no studies that have explicitly observed the interaction between visibility and wayfinding under uncertainty in a multilevel environment. To bridge this gap, we studied how the visibility of destinations, as well as the continuity of sight-lines along the vertical dimension, affects unaided and goal-directed wayfinding behavior in a multilevel desktop Virtual Reality (VR) study. We obtained results from a total of 69 participants. Each participant performed a total of 24 wayfinding trials in a multilevel environment. Results showcase a significant and nonlinear correlation between the visibility of destinations and wayfinding behavioral characteristics. Specifically, once the destination was in sight, regardless of whether it was highly or barely visible, participants made an instantaneous decision to switch floors and move up towards the destination. In contrast, if the destination was out-of-sight, participants performed 'visual exploration', indicated by an increase in vertical head movements and greater time taken to switch floors. To demonstrate the direct applicability of this fundamental wayfinding behavioral pattern, we formalize these results by modeling a visibility-based cognitive agent. Our results show that by modeling the transition between exploration and exploitation as a function of visibility, cognitive agents were able to replicate human wayfinding patterns observed in the desktop VR study. This simple demonstration shows the potential of extending our main findings concerning the nonlinear relationship between visibility and wayfinding to inform the modeling of human cognition.
Collapse
|
10
|
Alignment in spatial memory: Encoding of reference frames or of relations? Psychon Bull Rev 2020; 28:249-258. [PMID: 33025534 PMCID: PMC7870619 DOI: 10.3758/s13423-020-01791-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A common assumption about spatial memory is that it is organized along one or more reference directions such that access to memory is easier along directions aligned with the reference direction(s). This assumption rests to no small part on frequently replicated alignment effects arising in judgment of relative direction. In this contribution, we report an experiment designed to investigate a possible alternative explanation of alignment effects. By contrasting performance in a judgment of relative direction task with performance in an ego perspective taking task, we tested to what extent alignment effects arise from encoding of relations in addition to or instead of from organization along reference directions. Experimental results suggest little if any contribution of relation encoding on alignment effects, thus lending further support to the assumption of reference directions in spatial memory. Data from both tasks yielded the same alignment effects and provided evidence for a single direction being encoded in memory. Moreover, our results shed new light on and raise questions concerning differential sensorimotor and cognitive influence on spatial memory use. While both influence memory use, systematic bias seems to arise solely from reference directions, along which memory is organized.
Collapse
|
11
|
Volumetric spatial behaviour in rats reveals the anisotropic organisation of navigation. Anim Cogn 2020; 24:133-163. [PMID: 32959344 PMCID: PMC7829245 DOI: 10.1007/s10071-020-01432-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/03/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022]
Abstract
We investigated how access to the vertical dimension influences the natural exploratory and foraging behaviour of rats. Using high-accuracy three-dimensional tracking of position in two- and three-dimensional environments, we sought to determine (i) how rats navigated through the environments with respect to gravity, (ii) where rats chose to form their home bases in volumetric space, and (iii) how they navigated to and from these home bases. To evaluate how horizontal biases may affect these behaviours, we compared a 3D maze where animals preferred to move horizontally to a different 3D configuration where all axes were equally energetically costly to traverse. Additionally, we compared home base formation in two-dimensional arenas with and without walls to the three-dimensional climbing mazes. We report that many behaviours exhibited by rats in horizontal spaces naturally extend to fully volumetric ones, such as home base formation and foraging excursions. We also provide further evidence for the strong differentiation of the horizontal and vertical axes: rats showed a horizontal movement bias, they formed home bases mainly in the bottom layers of both mazes and they generally solved the vertical component of return trajectories before and faster than the horizontal component. We explain the bias towards horizontal movements in terms of energy conservation, while the locations of home bases are explained from an information gathering view as a method for correcting self-localisation.
Collapse
|
12
|
Taube JS, Shinder ME. On the absence or presence of 3D tuned head direction cells in rats: a review and rebuttal. J Neurophysiol 2020; 123:1808-1827. [PMID: 32208877 PMCID: PMC8086636 DOI: 10.1152/jn.00475.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 03/20/2020] [Accepted: 03/22/2020] [Indexed: 11/22/2022] Open
Abstract
A major question in the field of spatial cognition is how animals represent three-dimensional (3D) space. Different results have been obtained across various species and may depend on whether the species inhabits a 3D environment or is terrestrial (land dwelling). The head direction (HD) cell system is an attractive candidate to study in terms of 3D representations. HD cells fire as a function of the animal's directional heading in the horizontal plane, independent of the animal's location and on-going behavior. Another issue concerns whether HD cells are tuned in 3D space or tuned to the 2D horizontal plane. Shinder and Taube (Shinder ME, Taube JS. J Neurophysiol 121: 4-37, 2019) addressed this issue by manipulating a rat's orientation in 3D space while monitoring responses from classic HD cells in the rat anterodorsal thalamus. They reported that HD cells did not display conjunctive firing with pitch or roll orientations. Direction-specific firing was primarily derived from horizontal semicircular canal information and that the gravity vector played an important role in influencing the cell's firing rate and its preferred firing direction. Laurens and Angelaki (Laurens J, Angelaki DE. J Neurophysiol 122: 1274-1287, 2019) challenged this view by performing a mathematical analysis on the Shinder and Taube data and concluded that they would not have seen 3D tuning based on their experimental approach. We provide a historical review of these issues followed by a summary of the experiments, which includes additional analyses. We then define what it means for a HD cell to be tuned in 3D and finish by rebutting the reanalyses performed by Laurens and Angelaki.
Collapse
Affiliation(s)
- Jeffrey S Taube
- Department of Psychological & Brain Sciences, Dartmouth College, Hanover, New Hampshire
| | - Michael E Shinder
- Department of Psychological & Brain Sciences, Dartmouth College, Hanover, New Hampshire
| |
Collapse
|
13
|
Grieves RM, Jedidi-Ayoub S, Mishchanchuk K, Liu A, Renaudineau S, Jeffery KJ. The place-cell representation of volumetric space in rats. Nat Commun 2020; 11:789. [PMID: 32034157 PMCID: PMC7005894 DOI: 10.1038/s41467-020-14611-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 01/20/2020] [Indexed: 11/29/2022] Open
Abstract
Place cells are spatially modulated neurons found in the hippocampus that underlie spatial memory and navigation: how these neurons represent 3D space is crucial for a full understanding of spatial cognition. We wirelessly recorded place cells in rats as they explored a cubic lattice climbing frame which could be aligned or tilted with respect to gravity. Place cells represented the entire volume of the mazes: their activity tended to be aligned with the maze axes, and when it was more difficult for the animals to move vertically the cells represented space less accurately and less stably. These results demonstrate that even surface-dwelling animals represent 3D space and suggests there is a fundamental relationship between environment structure, gravity, movement and spatial memory.
Collapse
Affiliation(s)
- Roddy M Grieves
- University College London, Institute of Behavioural Neuroscience, Department of Experimental Psychology, London, UK.
| | - Selim Jedidi-Ayoub
- University College London, Institute of Behavioural Neuroscience, Department of Experimental Psychology, London, UK
| | - Karyna Mishchanchuk
- University College London, Institute of Behavioural Neuroscience, Department of Experimental Psychology, London, UK
| | - Anyi Liu
- University College London, Institute of Behavioural Neuroscience, Department of Experimental Psychology, London, UK
| | - Sophie Renaudineau
- University College London, Institute of Behavioural Neuroscience, Department of Experimental Psychology, London, UK
| | - Kate J Jeffery
- University College London, Institute of Behavioural Neuroscience, Department of Experimental Psychology, London, UK.
| |
Collapse
|
14
|
Ertl M, Klaus M, Brandt T, Dieterich M, Mast FW. Distorted mental spatial representation of multi-level buildings - Humans are biased towards equilateral shapes of height and width. Sci Rep 2019; 9:15046. [PMID: 31636281 PMCID: PMC6803710 DOI: 10.1038/s41598-019-50992-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 09/20/2019] [Indexed: 11/30/2022] Open
Abstract
A distorted model of a familiar multi-level building with a systematic overestimation of the height was demonstrated earlier in psychophysical and real world navigational tasks. In the current study we further investigated this phenomenon with a tablet-based application. Participants were asked to adjust height and width of the presented buildings to best match their memory of the dimensional ratio. The estimation errors between adjusted and true height-width ratios were analyzed. Additionally, familiarity with respect to in- and outside of the building as well as demographic data were acquired. A total of 142 subjects aged 21 to 90 years from the cities of Bern and Munich were tested. Major results were: (1) a median overestimation of the height of the multi-level buildings of 11%; (2) estimation errors were significantly less if the particular building was unknown to participants; (3) in contrast, the height of tower-like buildings was underestimated; (4) the height of long, flat shaped buildings was overestimated. (5) Further features, such as the architectonical complexity were critical. Overall, our internal models of large multi-level buildings are distorted due to multiple factors including geometric features and memory effects demonstrating that such individual models are not rigid but plastic with consequences for spatial orientation and navigation.
Collapse
Affiliation(s)
- M Ertl
- Department of Psychology, University Bern, Bern, Switzerland.
- Department of Neurology, Inselspital Bern, Bern, Switzerland.
- Department of Neurology, Ludwig-Maximilians-Universität München, München, Germany.
| | - M Klaus
- Department of Psychology, University Bern, Bern, Switzerland
| | - T Brandt
- Hertie Senior Professor for Clinical Neuroscience, Ludwig-Maximilians- Universität München, München, Germany
- German Center for Vertigo and Balance Disorders-IFBLMU (DSGZ), Ludwig-Maximilians-Universität München, München, Germany
| | - M Dieterich
- Department of Neurology, Ludwig-Maximilians-Universität München, München, Germany
- German Center for Vertigo and Balance Disorders-IFBLMU (DSGZ), Ludwig-Maximilians-Universität München, München, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - F W Mast
- Department of Psychology, University Bern, Bern, Switzerland
| |
Collapse
|
15
|
Ertl M, Boegle R. Investigating the vestibular system using modern imaging techniques-A review on the available stimulation and imaging methods. J Neurosci Methods 2019; 326:108363. [PMID: 31351972 DOI: 10.1016/j.jneumeth.2019.108363] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 02/06/2023]
Abstract
The vestibular organs, located in the inner ear, sense linear and rotational acceleration of the head and its position relative to the gravitational field of the earth. These signals are essential for many fundamental skills such as the coordination of eye and head movements in the three-dimensional space or the bipedal locomotion of humans. Furthermore, the vestibular signals have been shown to contribute to higher cognitive functions such as navigation. As the main aim of the vestibular system is the sensation of motion it is a challenging system to be studied in combination with modern imaging methods. Over the last years various different methods were used for stimulating the vestibular system. These methods range from artificial approaches like galvanic or caloric vestibular stimulation to passive full body accelerations using hexapod motion platforms, or rotatory chairs. In the first section of this review we provide an overview over all methods used in vestibular stimulation in combination with imaging methods (fMRI, PET, E/MEG, fNIRS). The advantages and disadvantages of every method are discussed, and we summarize typical settings and parameters used in previous studies. In the second section the role of the four imaging techniques are discussed in the context of vestibular research and their potential strengths and interactions with the presented stimulation methods are outlined.
Collapse
Affiliation(s)
- Matthias Ertl
- Department of Psychology, University of Bern, Switzerland; Sleep-Wake-Epilepsy Center, Department of Neurology, University Hospital (Inselspital) Bern, Switzerland.
| | - Rainer Boegle
- Department of Neurology, Ludwig-Maximilians-Universität München, Germany; German Center for Vertigo and Balance Disorders, IFB-LMU, Ludwig-Maximilians Universität, Munich, Germany
| |
Collapse
|
16
|
Flanagin VL, Fisher P, Olcay B, Kohlbecher S, Brandt T. A bedside application-based assessment of spatial orientation and memory: approaches and lessons learned. J Neurol 2019; 266:126-138. [PMID: 31240446 PMCID: PMC6722154 DOI: 10.1007/s00415-019-09409-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 01/05/2023]
Abstract
Spatial orientation and memory deficits are an often overlooked and potentially powerful early marker for pathological cognitive decline. Pen-and-paper tests for spatial abilities often do not coincide with actual navigational performance due to differences in spatial perspective and scale. Mobile devices are becoming increasingly useful in a clinical setting, for patient monitoring, clinical decision-making, and information management. The same devices have positional information that may be useful for a scale appropriate point-of-care test for spatial ability. We created a test for spatial orientation and memory based on pointing within a single room using the sensors in mobile phone. The test consisted of a baseline pointing condition to which all other conditions were compared, a spatial memory condition with eyes-closed, and two body rotation conditions (real or mental) where spatial updating were assessed. We examined the effectiveness of the sensors from a mobile phone for measuring pointing errors in these conditions in a sample of healthy young individuals. We found that the sensors reliably produced appropriate azimuth and elevation pointing angles for all of the 15 targets presented across multiple participants and days. Within-subject variability was below 6° elevation and 10° azimuth for the control condition. The pointing error and variability increased with task difficulty and correlated with self-report tests of spatial ability. The lessons learned from the first tests are discussed as well as the outlook of this application as a scientific and clinical bedside device. Finally, the next version of the application is introduced as an open source application for further development.
Collapse
Affiliation(s)
| | - Paul Fisher
- Neuro-Cognitive-Psychology, Department of Psychology, LMU, Munich, Germany
| | - Berk Olcay
- Computer Aided Medical Procedures, Technical University Munich (TUM), Munich, Germany
| | - Stefan Kohlbecher
- German Centre for Vertigo and Balance Disorders (DSGZ), Munich, Germany
| | - Thomas Brandt
- German Centre for Vertigo and Balance Disorders (DSGZ), Munich, Germany
- Hertie, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
17
|
|
18
|
Hinterecker T, Pretto P, de Winkel KN, Karnath HO, Bülthoff HH, Meilinger T. Body-relative horizontal-vertical anisotropy in human representations of traveled distances. Exp Brain Res 2018; 236:2811-2827. [PMID: 30030590 PMCID: PMC6153888 DOI: 10.1007/s00221-018-5337-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/17/2018] [Indexed: 01/14/2023]
Abstract
A growing number of studies investigated anisotropies in representations of horizontal and vertical spaces. In humans, compelling evidence for such anisotropies exists for representations of multi-floor buildings. In contrast, evidence regarding open spaces is indecisive. Our study aimed at further enhancing the understanding of horizontal and vertical spatial representations in open spaces utilizing a simple traveled distance estimation paradigm. Blindfolded participants were moved along various directions in the sagittal plane. Subsequently, participants passively reproduced the traveled distance from memory. Participants performed this task in an upright and in a 30° backward-pitch orientation. The accuracy of distance estimates in the upright orientation showed a horizontal–vertical anisotropy, with higher accuracy along the horizontal axis compared with the vertical axis. The backward-pitch orientation enabled us to investigate whether this anisotropy was body or earth-centered. The accuracy patterns of the upright condition were positively correlated with the body-relative (not the earth-relative) coordinate mapping of the backward-pitch condition, suggesting a body-centered anisotropy. Overall, this is consistent with findings on motion perception. It suggests that the distance estimation sub-process of path integration is subject to horizontal–vertical anisotropy. Based on the previous studies that showed isotropy in open spaces, we speculate that real physical self-movements or categorical versus isometric encoding are crucial factors for (an)isotropies in spatial representations.
Collapse
Affiliation(s)
- Thomas Hinterecker
- Max-Planck-Institute for Biological Cybernetics, Max-Planck-Ring 8, 72076, Tübingen, Germany. .,Graduate Training Centre of Neuroscience, Tübingen University, Tübingen, Germany.
| | - Paolo Pretto
- Max-Planck-Institute for Biological Cybernetics, Max-Planck-Ring 8, 72076, Tübingen, Germany
| | - Ksander N de Winkel
- Max-Planck-Institute for Biological Cybernetics, Max-Planck-Ring 8, 72076, Tübingen, Germany
| | - Hans-Otto Karnath
- Division of Neuropsychology, Center of Neurology, Tübingen University, Tübingen, Germany
| | - Heinrich H Bülthoff
- Max-Planck-Institute for Biological Cybernetics, Max-Planck-Ring 8, 72076, Tübingen, Germany
| | - Tobias Meilinger
- Max-Planck-Institute for Biological Cybernetics, Max-Planck-Ring 8, 72076, Tübingen, Germany
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW The aim of this review is to report on the specialized neuronal systems mediating spatial orientation and navigation discovered in animal experiments. These findings have important implications for the clinical management of patients with vestibular disorders or dementia and for translational research in these fields. RECENT FINDINGS The following anatomically and functionally separate, but nevertheless cooperative cell types have been characterized: angular head velocity cells and head direction cells, which depend on vestibular input and interact with place cells and grid cells, which represent position and distance. The entire system is thought to encode internal cognitive maps whose spatial data can be utilized for navigation and orientation. Flying and swimming species use spatial orientation and navigation isotropically, i.e., in the earth-horizontal and vertical directions, whereas ground-based species, including humans, perform better in the earth-horizontal plane (anisotropically). Examples of clinical disorders with deficits of spatial orientation and navigation are bilateral peripheral vestibulopathy, mild cognitive impairment, and dementia. SUMMARY Testing spatial orientation and navigation should become an integral part of routine neurological examinations, especially in the elderly. Also desirable are the further development and standardization of simple and reliable smart phone-based bedside tests to measure these functions in patients.
Collapse
|
20
|
Abstract
The world has a complex, three-dimensional (3-D) spatial structure, but until recently the neural representation of space was studied primarily in planar horizontal environments. Here we review the emerging literature on allocentric spatial representations in 3-D and discuss the relations between 3-D spatial perception and the underlying neural codes. We suggest that the statistics of movements through space determine the topology and the dimensionality of the neural representation, across species and different behavioral modes. We argue that hippocampal place-cell maps are metric in all three dimensions, and might be composed of 2-D and 3-D fragments that are stitched together into a global 3-D metric representation via the 3-D head-direction cells. Finally, we propose that the hippocampal formation might implement a neural analogue of a Kalman filter, a standard engineering algorithm used for 3-D navigation.
Collapse
Affiliation(s)
- Arseny Finkelstein
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel;
| | - Liora Las
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel;
| | - Nachum Ulanovsky
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel;
| |
Collapse
|
21
|
Abstract
Previous behavioral and neurophysiological research has shown better memory for horizontal than for vertical locations. In these studies, participants navigated toward these locations. In the present study we investigated whether the orientation of the spatial plane per se was responsible for this difference. We thus had participants learn locations visually from a single perspective and retrieve them from multiple viewpoints. In three experiments, participants studied colored tags on a horizontally or vertically oriented board within a virtual room and recalled these locations with different layout orientations (Exp. 1) or from different room-based perspectives (Exps. 2 and 3). All experiments revealed evidence for equal recall performance in horizontal and vertical memory. In addition, the patterns for recall from different test orientations were rather similar. Consequently, our results suggest that memory is qualitatively similar for both vertical and horizontal two-dimensional locations, given that these locations are learned from a single viewpoint. Thus, prior differences in spatial memory may have originated from the structure of the space or the fact that participants navigated through it. Additionally, the strong performance advantages for perspective shifts (Exps. 2 and 3) relative to layout rotations (Exp. 1) suggest that configurational judgments are not only based on memory of the relations between target objects, but also encompass the relations between target objects and the surrounding room—for example, in the form of a memorized view.
Collapse
|
22
|
Multivoxel Pattern Analysis Reveals 3D Place Information in the Human Hippocampus. J Neurosci 2017; 37:4270-4279. [PMID: 28320847 PMCID: PMC5413175 DOI: 10.1523/jneurosci.2703-16.2017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 01/10/2017] [Accepted: 02/13/2017] [Indexed: 11/21/2022] Open
Abstract
The spatial world is three dimensional (3D) and humans and other animals move both horizontally and vertically within it. Extant neuroscientific studies have typically investigated spatial navigation on a horizontal 2D plane, leaving much unknown about how 3D spatial information is represented in the brain. Specifically, horizontal and vertical information may be encoded in the same or different neural structures with equal or unequal sensitivity. Here, we investigated these possibilities using fMRI while participants were passively moved within a 3D lattice structure as if riding a rollercoaster. Multivoxel pattern analysis was used to test for the existence of information relating to where and in which direction participants were heading in this virtual environment. Behaviorally, participants had similarly accurate memory for vertical and horizontal locations and the right anterior hippocampus (HC) expressed place information that was sensitive to changes along both horizontal and vertical axes. This is suggestive of isotropic 3D place encoding. In contrast, participants indicated their heading direction faster and more accurately when they were heading in a tilted-up or tilted-down direction. This direction information was expressed in the right retrosplenial cortex and posterior HC and was only sensitive to vertical pitch, which could reflect the importance of the vertical (gravity) axis as a reference frame. Overall, our findings extend previous knowledge of how we represent the spatial world and navigate within it by taking into account the important third dimension. SIGNIFICANCE STATEMENT The spatial world is 3D. We can move horizontally across surfaces, but also vertically, going up slopes or stairs. Little is known about how the brain supports representations of 3D space. A key question is whether horizontal and vertical information is equally well represented. Here, we measured fMRI response patterns while participants moved within a virtual 3D environment and found that the anterior hippocampus (HC) expressed location information that was sensitive to the vertical and horizontal axes. In contrast, information about heading direction, found in retrosplenial cortex and posterior HC, favored the vertical axis, perhaps due to gravity effects. These findings provide new insights into how we represent our spatial 3D world and navigate within it.
Collapse
|
23
|
Brandt T, Dieterich M. Vestibular contribution to three-dimensional dynamic (allocentric) and two-dimensional static (egocentric) spatial memory. J Neurol 2016; 263:1015-1016. [PMID: 26946497 DOI: 10.1007/s00415-016-8067-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/10/2016] [Accepted: 02/11/2016] [Indexed: 10/22/2022]
Affiliation(s)
- Thomas Brandt
- Institute for Clinical Neuroscience, Ludwig-Maximilians University, Marchioninistr. 15, 81377, Munich, Germany. .,German Center for Vertigo and Balance Disorders, Ludwig-Maximilians University, Munich, Germany.
| | - Marianne Dieterich
- German Center for Vertigo and Balance Disorders, Ludwig-Maximilians University, Munich, Germany.,Department of Neurology, Ludwig-Maximilians University, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|