1
|
Salloom RJ, Ahmad IM, Sahtout DZ, Baine MJ, Abdalla MY. Heme Oxygenase-1 and Prostate Cancer: Function, Regulation, and Implication in Cancer Therapy. Int J Mol Sci 2024; 25:9195. [PMID: 39273143 PMCID: PMC11394971 DOI: 10.3390/ijms25179195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/15/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Prostate cancer (PC) is a significant cause of mortality in men worldwide, hence the need for a comprehensive understanding of the molecular mechanisms underlying its progression and resistance to treatment. Heme oxygenase-1 (HO-1), an inducible enzyme involved in heme catabolism, has emerged as a critical player in cancer biology, including PC. This review explores the multifaceted role of HO-1 in PC, encompassing its function, regulation, and implications in cancer therapy. HO-1 influences cell proliferation, anti-apoptotic pathways, angiogenesis, and the tumor microenvironment, thereby influencing tumor growth and metastasis. HO-1 has also been associated with therapy resistance, affecting response to standard treatments. Moreover, HO-1 plays a significant role in immune modulation, affecting the tumor immune microenvironment and potentially influencing therapy outcomes. Understanding the intricate balance of HO-1 in PC is vital for developing effective therapeutic strategies. This review further explores the potential of targeting HO-1 as a therapeutic approach, highlighting challenges and opportunities. Additionally, clinical implications are discussed, focusing on the prognostic value of HO-1 expression and the development of novel combined therapies to augment PC sensitivity to standard treatment strategies. Ultimately, unraveling the complexities of HO-1 in PC biology will provide critical insights into personalized treatment approaches for PC patients.
Collapse
Affiliation(s)
- Ramia J. Salloom
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.J.S.); (D.Z.S.)
| | - Iman M. Ahmad
- Department of Clinical, Diagnostic, and Therapeutic Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Dania Z. Sahtout
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.J.S.); (D.Z.S.)
| | - Michael J. Baine
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Maher Y. Abdalla
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.J.S.); (D.Z.S.)
| |
Collapse
|
2
|
Halin Bergström S, Lundholm M, Nordstrand A, Bergh A. Rat prostate tumors induce DNA synthesis in remote organs. Sci Rep 2022; 12:7908. [PMID: 35551231 PMCID: PMC9098422 DOI: 10.1038/s41598-022-12131-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 05/05/2022] [Indexed: 11/09/2022] Open
Abstract
Advanced cancers induce systemic responses. However, if such systemic changes occur already when aggressive tumors are small, have not been thoroughly characterized. Here, we examined how localized prostate cancers of different sizes and metastatic potential affected DNA synthesis in the rest of the prostate and in various remote organs. Non-metastatic Dunning R-3327 G (G) tumor cells, metastatic MatLyLu (MLL) tumor cells, or vehicle were injected into the prostate of immunocompetent rats. All animals received daily injections of Bromodeoxyuridine (BrdU), to label cells/daughter cells with active DNA synthesis. Equal sized G- and MLL-tumors, similarly increased BrdU-labeling in the prostate, lymph nodes and liver compared to tumor-free controls. Prior to metastasis, MLL-tumors also increased BrdU-labeling in bone marrow and lungs compared to animals with G-tumors or controls. In animals with MLL-tumors, BrdU-labeling in prostate, lungs, brown adipose tissue and skeletal muscles increased in a tumor-size-dependent way. Furthermore, MLL-tumors induced increased signs of DNA damage (γH2AX staining) and accumulation of CD68 + macrophages in the lungs. In conclusion, small localized prostate cancers increased DNA synthesis in several remote tissues in a tumor type- and size-dependent way. This may suggest the possibility for early diagnosis of aggressive prostate cancer by examining tumor-induced effects in other tissues.
Collapse
Affiliation(s)
- Sofia Halin Bergström
- Department of Medical Biosciences, Pathology, Umeå University, Building 6M, second floor, 901 87, Umeå, Sweden.
| | - Marie Lundholm
- Department of Medical Biosciences, Pathology, Umeå University, Building 6M, second floor, 901 87, Umeå, Sweden
| | - Annika Nordstrand
- Department of Medical Biosciences, Pathology, Umeå University, Building 6M, second floor, 901 87, Umeå, Sweden
| | - Anders Bergh
- Department of Medical Biosciences, Pathology, Umeå University, Building 6M, second floor, 901 87, Umeå, Sweden
| |
Collapse
|
3
|
High Keratin-7 Expression in Benign Peri-Tumoral Prostatic Glands Is Predictive of Bone Metastasis Onset and Prostate Cancer-Specific Mortality. Cancers (Basel) 2022; 14:cancers14071623. [PMID: 35406395 PMCID: PMC8997075 DOI: 10.3390/cancers14071623] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 03/21/2022] [Indexed: 12/10/2022] Open
Abstract
BACKGROUND New predictive biomarkers are needed to accurately predict metastasis-free survival (MFS) and cancer-specific survival (CSS) in localized prostate cancer (PC). Keratin-7 (KRT7) overexpression has been associated with poor prognosis in several cancers and is described as a novel prostate progenitor marker in the mouse prostate. METHODS KRT7 expression was evaluated in prostatic cell lines and in human tissue by immunohistochemistry (IHC, on advanced PC, n = 91) and immunofluorescence (IF, on localized PC, n = 285). The KRT7 mean fluorescence intensity (MFI) was quantified in different compartments by digital analysis and correlated to clinical endpoints in the localized PC cohort. RESULTS KRT7 is expressed in prostatic cell lines and found in the basal and supra-basal compartment from healthy prostatic glands and benign peri-tumoral glands from localized PC. The KRT7 staining is lost in luminal cells from localized tumors and found as an aberrant sporadic staining (2.2%) in advanced PC. In the localized PC cohort, high KRT7 MFI above the 80th percentile in the basal compartment was significantly and independently correlated with MFS and CSS, and with hypertrophic basal cell phenotype. CONCLUSION High KRT7 expression in benign glands is an independent biomarker of MFS and CSS, and its expression is lost in tumoral cells. These results require further validation on larger cohorts.
Collapse
|
4
|
Gupta S, Vargas A, Saulnier G, Newell J, Faaborg-Andersen C, Kelley RS. Uterine bioimpedance combined with artificial intelligence as a means of cancer detection. J Med Eng Technol 2021; 45:606-613. [PMID: 34225554 DOI: 10.1080/03091902.2021.1936674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This study hypothesised that benign and tumour-bearing uterine tissue could be differentiated by their unique electrical bioimpedance patterns, with the aid of artificial intelligence. Twenty whole, ex-vivo uterine specimens were obtained at the time of hysterectomy. A total of 11 benign and 9 malignant specimens were studied. A uterine bioimpedance probe was designed to measure the tissue between the endometrial and serosal layers of the uterus. The impedance data was then analysed with multiple instance learning and principal component analysis, forms of artificial intelligence. Final pathology results for the specimens included uterine sarcoma, adenocarcinoma, carcinosarcoma, and high-grade serous carcinoma. The analysis correctly identified 78% (7/9) of the malignant specimens and 82% (9/11) of the benign specimens. The overall accuracy of our analysis was 80%. Our results demonstrate distinction between electrical impedance properties of malignant and benign uterine specimens. Bioimpedance and artificial intelligence may have potential implications in risk assessment of patients and may subsequently guide surgical decision-making regarding route of organ removal.
Collapse
Affiliation(s)
- Shabnam Gupta
- Department of Gynaecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Andres Vargas
- Department of Mathematics, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Gary Saulnier
- College of Engineering and Applied Sciences, University at Albany - SUNY, Albany, NY, USA
| | - Jonathan Newell
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | | | - Robert S Kelley
- Department of Gynaecology and Obstetrics, Female Pelvic Medicine and Reconstructive Surgery, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
5
|
Halin Bergström S, Rudolfsson S, Lundholm M, Josefsson A, Wikström P, Bergh A. High-grade tumours promote growth of other less-malignant tumours in the same prostate. J Pathol 2021; 253:396-403. [PMID: 33330991 PMCID: PMC7986692 DOI: 10.1002/path.5604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 12/21/2022]
Abstract
Prostate cancer is a multifocal disease, but if and how individual prostate tumours influence each other is largely unknown. We therefore explored signs of direct or indirect tumour–tumour interactions in experimental models and patient samples. Low‐metastatic AT1 and high‐metastatic MatLyLu (MLL) Dunning rat prostate cancer cells were injected into separate lobes of the ventral prostate of immunocompetent rats. AT1 tumours growing in the same prostate as MLL tumours had increased tumour size and proliferation compared to AT1 tumours growing alone. In addition, the vasculature and macrophage density surrounding the AT1 tumours were increased by MLL tumour closeness. In patient prostatectomy samples, selected to contain an index tumour [tumour with the highest grade, International Society of Urological Pathology (ISUP) grade 1, 2, 3 or 4] and a low‐grade satellite tumour (ISUP grade 1), cell proliferation in low‐grade satellite tumours gradually increased with increasing histological grade of the index tumour. The density of blood vessels and CD68+ macrophages also increased around the low‐grade satellite tumour if a high‐grade index tumour was present. This suggests that high‐grade tumours, by changing the prostate microenvironment, may increase the aggressiveness of low‐grade lesions in the organ. Future studies are needed to explore the mechanisms behind tumour–tumour interactions and their clinical importance. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
| | - Stina Rudolfsson
- Department of Surgical and Perioperative Sciences, Urology, Umeå University, Umeå, Sweden
| | - Marie Lundholm
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Andreas Josefsson
- Department of Surgical and Perioperative Sciences, Urology, Umeå University, Umeå, Sweden
| | - Pernilla Wikström
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Anders Bergh
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| |
Collapse
|
6
|
PUMA and NOXA Expression in Tumor-Associated Benign Prostatic Epithelial Cells Are Predictive of Prostate Cancer Biochemical Recurrence. Cancers (Basel) 2020; 12:cancers12113187. [PMID: 33138186 PMCID: PMC7692508 DOI: 10.3390/cancers12113187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Given that treatment decisions in prostate cancer (PC) are often based on risk, there remains a need to find clinically relevant prognostic biomarkers to stratify PC patients. We evaluated PUMA and NOXA expression in benign and tumor regions of the prostate using immunofluorescence techniques and determined their prognostic significance in PC. METHODS PUMA and NOXA expression levels were quantified on six tissue microarrays (TMAs) generated from radical prostatectomy samples (n = 285). TMAs were constructed using two cores of benign tissue and two cores of tumor tissue from each patient. Association between biomarker expression and biochemical recurrence (BCR) at 3 years was established using log-rank (LR) and multivariate Cox regression analyses. RESULTS Kaplan-Meier analysis showed a significant association between BCR and extreme levels (low or high) of PUMA expression in benign epithelial cells (LR = 8.831, p = 0.003). Further analysis revealed a significant association between high NOXA expression in benign epithelial cells and BCR (LR = 14.854, p < 0.001). The combination of extreme PUMA and high NOXA expression identified patients with the highest risk of BCR (LR = 16.778, p < 0.001) in Kaplan-Meier and in a multivariate Cox regression analyses (HR: 2.935 (1.645-5.236), p < 0.001). CONCLUSIONS The combination of PUMA and NOXA protein expression in benign epithelial cells was predictive of recurrence following radical prostatectomy and was independent of PSA at diagnosis, Gleason score and pathologic stage.
Collapse
|
7
|
Adamo H, Hammarsten P, Hägglöf C, Dahl Scherdin T, Egevad L, Stattin P, Halin Bergström S, Bergh A. Prostate cancer induces C/EBPβ expression in surrounding epithelial cells which relates to tumor aggressiveness and patient outcome. Prostate 2019; 79:435-445. [PMID: 30536410 DOI: 10.1002/pros.23749] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/08/2018] [Indexed: 02/04/2023]
Abstract
BACKGROUND Implantation of rat prostate cancer cells into the normal rat prostate results in tumor-stimulating adaptations in the tumor-bearing organ. Similar changes are seen in prostate cancer patients and they are related to outcome. One gene previously found to be upregulated in the non-malignant part of tumor-bearing prostate lobe in rats was the transcription factor CCAAT/enhancer-binding protein-β (C/EBPβ). METHODS To explore this further, we examined C/EBPβ expression by quantitative RT-PCR, immunohistochemistry, and Western blot in normal rat prostate tissue surrounding slow-growing non-metastatic Dunning G, rapidly growing poorly metastatic (AT-1), and rapidly growing highly metastatic (MatLyLu) rat prostate tumors-and also by immunohistochemistry in a tissue microarray (TMA) from prostate cancer patients managed by watchful waiting. RESULTS In rats, C/EBPβ mRNA expression was upregulated in the surrounding tumor-bearing prostate lobe. In tumors and in the surrounding non-malignant prostate tissue, C/EBPβ was detected by immunohistochemistry in some epithelial cells and in infiltrating macrophages. The magnitude of glandular epithelial C/EBPβ expression in the tumor-bearing prostates was associated with tumor size, distance to the tumor, and metastatic capacity. In prostate cancer patients, high expression of C/EBPβ in glandular epithelial cells in the surrounding tumor-bearing tissue was associated with accumulation of M1 macrophages (iNOS+) and favorable outcome. High expression of C/EBPβ in tumor epithelial cells was associated with high Gleason score, high tumor cell proliferation, metastases, and poor outcome. CONCLUSIONS This study suggest that the expression of C/EBP-beta, a transcription factor mediating multiple biological effects, is differentially expressed both in the benign parts of the tumor-bearing prostate and in prostate tumors, and that alterations in this may be related to patient outcome.
Collapse
Affiliation(s)
- Hanibal Adamo
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Peter Hammarsten
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Christina Hägglöf
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Tove Dahl Scherdin
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Lars Egevad
- Department of Oncology-Pathology, Karolinska University Hospital, Stockholm, Sweden
| | - Pär Stattin
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | | | - Anders Bergh
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| |
Collapse
|
8
|
Hammarsten P, Josefsson A, Thysell E, Lundholm M, Hägglöf C, Iglesias-Gato D, Flores-Morales A, Stattin P, Egevad L, Granfors T, Wikström P, Bergh A. Immunoreactivity for prostate specific antigen and Ki67 differentiates subgroups of prostate cancer related to outcome. Mod Pathol 2019; 32:1310-1319. [PMID: 30980038 PMCID: PMC6760646 DOI: 10.1038/s41379-019-0260-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 02/23/2019] [Accepted: 02/23/2019] [Indexed: 02/06/2023]
Abstract
Based on gene-expression profiles, prostate tumors can be subdivided into subtypes with different aggressiveness and response to treatment. We investigated if similar clinically relevant subgroups can be identified simply by the combination of two immunohistochemistry markers: one for tumor cell differentiation (prostate specific antigen, PSA) and one for proliferation (Ki67). This was analyzed in men with prostate cancer diagnosed at transurethral resection of the prostate 1975-1991 (n = 331) where the majority was managed by watchful waiting. Ki67 and PSA immunoreactivity was related to outcome and to tumor characteristics previously associated with prognosis. Increased Ki67 and decreased PSA were associated with poor outcome, and they provided independent prognostic information from Gleason score. A combinatory score for PSA and Ki67 immunoreactivity was produced using the median PSA and Ki67 levels as cut-off (for Ki67 the upper quartile was also evaluated) for differentiation into subgroups. Patients with PSA low/Ki67 high tumors showed higher Gleason score, more advanced tumor stage, and higher risk of prostate cancer death compared to other patients. Their tumor epithelial cells were often ERG positive and expressed higher levels of ErbB2, phosphorylated epidermal growth factor receptor (pEGF-R) and protein kinase B (pAkt), and their tumor stroma showed a reactive response with type 2 macrophage infiltration, high density of blood vessels and hyaluronic acid, and with reduced levels of caveolin-1, androgen receptors, and mast cells. In contrast, men with PSA high/Ki67 low tumors were characterized by low Gleason score, and the most favorable outcome amongst PSA/Ki67-defined subgroups. Men with PSA low/Ki67 low tumors showed clinical and tumor characteristics intermediate of the two groups above. A combinatory PSA/Ki67 immunoreactivity score identifies subgroups of prostate cancers with different epithelial and stroma phenotypes and highly different outcome but the clinical usefulness of this approach needs to be validated in other cohorts.
Collapse
Affiliation(s)
- Peter Hammarsten
- 0000 0001 1034 3451grid.12650.30Departments of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Andreas Josefsson
- 0000 0000 9919 9582grid.8761.8Department of Urology, Institute of Clinical Sciences at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Elin Thysell
- 0000 0001 1034 3451grid.12650.30Departments of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Marie Lundholm
- 0000 0001 1034 3451grid.12650.30Departments of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Christina Hägglöf
- 0000 0001 1034 3451grid.12650.30Departments of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Diego Iglesias-Gato
- 0000 0001 0674 042Xgrid.5254.6Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Amilcar Flores-Morales
- 0000 0001 0674 042Xgrid.5254.6Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pär Stattin
- 0000 0004 1936 9457grid.8993.bDepartment of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Lars Egevad
- 0000 0000 9241 5705grid.24381.3cDepartment of Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden
| | - Torvald Granfors
- 0000 0004 0584 1036grid.413653.6Department of Urology, Central Hospital, Västerås, Sweden
| | - Pernilla Wikström
- 0000 0001 1034 3451grid.12650.30Departments of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Anders Bergh
- Departments of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden.
| |
Collapse
|
9
|
Bergström SH, Järemo H, Nilsson M, Adamo HH, Bergh A. Prostate tumors downregulate microseminoprotein-beta (MSMB) in the surrounding benign prostate epithelium and this response is associated with tumor aggressiveness. Prostate 2018; 78:257-265. [PMID: 29250809 DOI: 10.1002/pros.23466] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 11/21/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Microseminoprotein-beta (MSMB) is a major secretory product from prostate epithelial cells. MSMB synthesis is decreased in prostate tumors in relation to tumor grade. MSMB levels are also reduced in the circulation and MSMB is therefore used as a serum biomarker for prostate cancer. We hypothesized that cancers induce a reduction in MSMB synthesis also in the benign parts of the prostate, and that the magnitude of this response is related to tumor aggressiveness. Reduced levels of MSMB in the circulation could therefore be a consequence of reduced MSMB expression not only in tumor tissue but also in the benign prostate tissue. METHODS MSMB expression was analyzed in prostatectomy specimens from 36 patients using immunohistochemistry and qRT-PCR. MSMB expression in the benign prostate tissue was analyzed in relation to Gleason score, tumor stage, and distance to the tumor. Furthermore, Dunning rat prostate tumors with different aggressiveness were implanted into the prostate of Copenhagen rats to study if this affected the MSMB expression in the tumor-adjacent benign rat prostate tissue. RESULTS In prostatectomy specimens, MSMB expression was reduced in prostate tumors but also in the tumor-adjacent benign parts of the prostate. The reduction in tumor MSMB was related to tumor grade and stage, and the reduction in the benign parts of the prostate to tumor grade, stage, and distance to the tumor. Implantation of Dunning cancer cells into the rat prostate resulted in reduced MSMB protein levels in the tumor-adjacent benign prostate tissue. Rapidly growing and metastatic MatLyLu tumors had a more pronounced effect than slow-growing non-metastatic G tumors. CONCLUSION Our data suggest that aggressive prostate tumors suppress MSMB synthesis in the benign prostate and that this could explain why serum levels of MSMB are decreased in prostate cancer patients. This study suggests that markers for aggressive cancer can be found among factors altered in parallel in prostate tumors and in the adjacent benign tissue.
Collapse
Affiliation(s)
| | - Helena Järemo
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Maria Nilsson
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Hanibal Hani Adamo
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Anders Bergh
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| |
Collapse
|
10
|
Strömvall K, Sundkvist K, Ljungberg B, Halin Bergström S, Bergh A. Reduced number of CD169 + macrophages in pre-metastatic regional lymph nodes is associated with subsequent metastatic disease in an animal model and with poor outcome in prostate cancer patients. Prostate 2017; 77:1468-1477. [PMID: 28880401 PMCID: PMC5656907 DOI: 10.1002/pros.23407] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/11/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Tumor-derived antigens are captured by CD169+ (SIGLEC1+ ) sinus macrophages in regional lymph nodes (LNs), and are presented to effector cells inducing an anti-tumor immune response. Reduced CD169 expression in pre-metastatic regional LNs is associated with subsequent metastatic disease and a poor outcome in several tumor types, but if this is the case in prostate cancer has not been explored. METHODS CD169 expression was measured with immunohistochemistry in metastasis-free regional LNs from 109 prostate cancer patients treated with prostatectomy (January 1996 to April 2002). Possible associations of CD169 expression with PSA-relapse, prostate cancer death, Gleason score, and other clinical data were assessed using Kaplan-Meier survival- and Cox regression analysis. In addition, the Dunning rat prostate tumor model was used to examine CD169 expression in pre-metastatic LNs draining either highly metastatic MatLyLu- or poorly metastatic AT1-tumors. RESULTS In patients with low CD169 immunostaining in metastasis-free regional LNs, 8 of the 27 patients died from prostate cancer compared with only three of the 82 patients with high immunostaining (P < 0.001). CD169 expression in regional LNs was not associated with PSA-relapse. Rats with highly metastatic tumors had decreased CD169 immunoreactivity in pre-metastatic regional LNs compared with rats with poorly metastatic tumors. CONCLUSION Low expression of CD169 in metastasis-free regional LNs indicates a reduced anti-tumor immune response. If verified in other studies, CD169 expression in regional LNs could, in combination with other factors, potentially be used as a marker of prostate cancer aggressiveness.
Collapse
Affiliation(s)
- Kerstin Strömvall
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Kristoffer Sundkvist
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
- Department of Surgical and Perioperative Sciences, Urology and Andrology, Umeå University, Umeå, Sweden
| | - Börje Ljungberg
- Department of Surgical and Perioperative Sciences, Urology and Andrology, Umeå University, Umeå, Sweden
| | | | - Anders Bergh
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| |
Collapse
|
11
|
Highly aggressive rat prostate tumors rapidly precondition regional lymph nodes for subsequent metastatic growth. PLoS One 2017; 12:e0187086. [PMID: 29073272 PMCID: PMC5658154 DOI: 10.1371/journal.pone.0187086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 10/15/2017] [Indexed: 12/23/2022] Open
Abstract
The aim of this study was to examine in what ways MatLyLu (MLL) rat prostate tumors with high metastatic capacity influence regional lymph nodes prior to metastatic establishment compared to AT1 rat prostate tumors with low metastatic potential. MLL or AT1 tumor cells were injected into the ventral prostate of immunocompetent rats. Tumor and lymph node morphology, and lymph node mRNA expression of macrophage associated markers, T-cell associated markers, and cytokines were examined over time until the first microscopic signs of metastases (at day 14 for MLL- and at day 28 for AT1-tumors). Already at day 3 after tumor cell injection, when the tumors were extremely small and occupied less than 1% of the prostate volume, MLL- and AT1-tumors provoked different immune responses in both the prostate and the regional lymph nodes. MLL-tumors induced expression of immunosuppressive cytokines, suppressed T-cell accumulation, and directed T-cells towards an immunosuppressive phenotype. AT1-tumors caused a response more similar to that in vehicle-injected animals, with accumulation of T-cells in tumors and regional lymph nodes. Prostate tumors with high metastatic potential were able to precondition regional lymph nodes to subsequent metastatic growth in ways different from tumors with less metastatic potential. This may indicate the existence of a time-window when pre-metastatic changes in regional lymph nodes can aid in the prognostication of locally aggressive and potentially metastatic prostate cancer.
Collapse
|
12
|
Strömvall K, Thysell E, Halin Bergström S, Bergh A. Aggressive rat prostate tumors reprogram the benign parts of the prostate and regional lymph nodes prior to metastasis. PLoS One 2017; 12:e0176679. [PMID: 28472073 PMCID: PMC5417597 DOI: 10.1371/journal.pone.0176679] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/14/2017] [Indexed: 12/14/2022] Open
Abstract
In order to grow and spread tumors need to interact with adjacent tissues. We therefore hypothesized that small but aggressive prostate cancers influence the rest of the prostate and regional lymph nodes differently than tumors that are more indolent. Poorly metastatic (Dunning AT1) or highly metastatic (Dunning MLL) rat prostate tumor cells were injected into the ventral prostate lobe of immunocompetent rats. After 10 days—when the tumors occupied about 30% of the prostate lobe and lymph node metastases were undetectable—the global gene expression in tumors, benign parts of the prostate, and regional iliac lymph nodes were examined to define tumor-induced changes related to preparation for future metastasis. The tumors induced profound effects on the gene expression profiles in the benign parts of the prostate and these were strikingly different in the two tumor models. Gene ontology enrichment analysis suggested that tumors with high metastatic capacity were more successful than less metastatic tumors in inducing tumor-promoting changes and suppressing anti-tumor immune responses in the entire prostate. Some of these differences such as altered angiogenesis, nerve density, accumulation of T-cells and macrophages were verified by immunohistochemistry. Gene expression alterations in the regional lymph nodes suggested decreased quantity and activation of immune cells in MLL-lymph nodes that were also verified by immunostaining. In summary, even when small highly metastatic prostate tumors can affect the entire tumor-bearing organ and pre-metastatic lymph nodes differently than less metastatic tumors. When the kinetics of these extratumoral influences (by us named TINT = tumor instructed normal tissue) are more precisely defined they could potentially be used as markers of disease aggressiveness and become therapeutic targets.
Collapse
Affiliation(s)
- Kerstin Strömvall
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
- * E-mail:
| | - Elin Thysell
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | | | - Anders Bergh
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| |
Collapse
|
13
|
Halin Bergström S, Hägglöf C, Thysell E, Bergh A, Wikström P, Lundholm M. Extracellular Vesicles from Metastatic Rat Prostate Tumors Prime the Normal Prostate Tissue to Facilitate Tumor Growth. Sci Rep 2016; 6:31805. [PMID: 27550147 PMCID: PMC4994101 DOI: 10.1038/srep31805] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 07/26/2016] [Indexed: 12/21/2022] Open
Abstract
Accumulating data indicates that tumor-derived extracellular vesicles (EVs) are responsible for tumor-promoting effects. However, if tumor EVs also prepare the tumor-bearing organ for subsequent tumor growth, and if this effect is different in low and high malignant tumors is not thoroughly explored. Here we used orthotopic rat Dunning R-3327 prostate tumors to compare the role of EVs from fast growing and metastatic MatLyLu (MLL) tumors with EVs from more indolent and non-metastatic Dunning G (G) tumors. Prostate tissue pre-conditioned with MLL-EVs in vivo facilitated G tumor establishment compared to G-EVs. MLL-EVs increased prostate epithelial proliferation and macrophage infiltration into the prostate compared to G-EVs. Both types of EVs increased macrophage endocytosis and the mRNA expression of genes associated with M2 polarization in vitro, with MLL-EVs giving the most pronounced effects. MLL-EVs also altered the mRNA expression of growth factors and cytokines in primary rat prostate fibroblasts compared to G-EVs, suggesting fibroblast activation. Our findings propose that EVs from metastatic tumors have the ability to prime the prostate tissue and enhance tumor growth to a higher extent than EVs from non-metastatic tumors. Identifying these differences could lead to novel therapeutic targets and potential prognostic markers for prostate cancer.
Collapse
Affiliation(s)
| | - Christina Hägglöf
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Elin Thysell
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Anders Bergh
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Pernilla Wikström
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Marie Lundholm
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| |
Collapse
|
14
|
Halin Bergström S, Nilsson M, Adamo H, Thysell E, Jernberg E, Stattin P, Widmark A, Wikström P, Bergh A. Extratumoral Heme Oxygenase-1 (HO-1) Expressing Macrophages Likely Promote Primary and Metastatic Prostate Tumor Growth. PLoS One 2016; 11:e0157280. [PMID: 27280718 PMCID: PMC4900522 DOI: 10.1371/journal.pone.0157280] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/26/2016] [Indexed: 01/06/2023] Open
Abstract
Aggressive tumors induce tumor-supporting changes in the benign parts of the prostate. One factor that has increased expression outside prostate tumors is hemoxygenase-1 (HO-1). To investigate HO-1 expression in more detail, we analyzed samples of tumor tissue and peritumoral normal prostate tissue from rats carrying cancers with different metastatic capacity, and human prostate cancer tissue samples from primary tumors and bone metastases. In rat prostate tumor samples, immunohistochemistry and quantitative RT-PCR showed that the main site of HO-1 synthesis was HO-1+ macrophages that accumulated in the tumor-bearing organ, and at the tumor-invasive front. Small metastatic tumors were considerably more effective in attracting HO-1+ macrophages than larger non-metastatic ones. In clinical samples, accumulation of HO-1+ macrophages was seen at the tumor invasive front, almost exclusively in high-grade tumors, and it correlated with the presence of bone metastases. HO-1+ macrophages, located at the tumor invasive front, were more abundant in bone metastases than in primary tumors. HO-1 expression in bone metastases was variable, and positively correlated with the expression of macrophage markers but negatively correlated with androgen receptor expression, suggesting that elevated HO-1 could be a marker for a subgroup of bone metastases. Together with another recent observation showing that selective knockout of HO-1 in macrophages reduced prostate tumor growth and metastatic capacity in animals, the results of this study suggest that extratumoral HO-1+ macrophages may have an important role in prostate cancer.
Collapse
Affiliation(s)
- Sofia Halin Bergström
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
- * E-mail:
| | - Maria Nilsson
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Hanibal Adamo
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Elin Thysell
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Emma Jernberg
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Pär Stattin
- Department of Surgical and Perioperative Sciences, Urology, Umeå University, Umeå, Sweden
| | - Anders Widmark
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Pernilla Wikström
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Anders Bergh
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| |
Collapse
|