1
|
Eguchi H, Yu Y, Yoshino Y, Hara H, Tanaka H, Ikari A. Plasma-activated medium ameliorates the chemoresistance of human lung adenocarcinoma cells mediated via downregulation of claudin-2 expression. Arch Biochem Biophys 2024; 751:109846. [PMID: 38056686 DOI: 10.1016/j.abb.2023.109846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/13/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
Plasma-activated medium (PAM) has various biological activities including anticancer and antimicrobial. However, the effect on chemoresistance in cancer cells has not been clarified in detail. Solid cancer cells form a microenvironment in the body and acquire resistance against anticancer drugs. So far, we reported that claudin-2 (CLDN2), a component of tight junctions, suppresses the anticancer drug-induced cytotoxicity of spheroids that mimic in vivo tumors. Here, we found that the protein level of CLDN2 is downregulated by the sublethal concentration of PAM in human lung adenocarcinoma-derived A549 and PC-3 cells. A cycloheximide pulse-chase assay showed that PAM accelerates the degradation of CLDN2 protein. The PAM-induced reduction of CLDN2 protein was inhibited by a lysosome inhibitor, indicating PAM may enhance the lysosomal degradation of CLDN2. The paracellular permeability to doxorubicin (DXR), an anthracycline antitumor drug, was enhanced by PAM. In the spheroids, the accumulation and toxicity of DXR were enhanced by PAM. In addition, oxidative stress and the expression of nuclear factor erythroid 2-related factor 2, one of the key factors for the acquisition of chemoresistance, were attenuated by PAM. The improvement effect of PAM on chemoresistance was suppressed by the exogenous CLDN2 overexpression. These results indicate that PAM has the ability to downregulate CLDN2 expression and may become an adjuvant drug against lung adenocarcinoma.
Collapse
Affiliation(s)
- Hiroaki Eguchi
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Yaqing Yu
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Yuta Yoshino
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Hirokazu Hara
- Laboratory of Clinical Pharmaceutics, Department of Biomedical Pharmaceutics, Gifu Pharmaceutical University, Gifu, 502-8585, Japan
| | - Hiromasa Tanaka
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Japan.
| |
Collapse
|
2
|
Biryukov M, Semenov D, Kryachkova N, Polyakova A, Patrakova E, Troitskaya O, Milakhina E, Poletaeva J, Gugin P, Ryabchikova E, Zakrevsky D, Schweigert I, Koval O. The Molecular Basis for Selectivity of the Cytotoxic Response of Lung Adenocarcinoma Cells to Cold Atmospheric Plasma. Biomolecules 2023; 13:1672. [PMID: 38002354 PMCID: PMC10669024 DOI: 10.3390/biom13111672] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
The interaction of cold atmospheric plasma (CAP) with biotargets is accompanied by chemical reactions on their surfaces and insides, and it has great potential as an anticancer approach. This study discovers the molecular mechanisms that may explain the selective death of tumor cells under CAP exposure. To reach this goal, the transcriptional response to CAP treatment was analyzed in A549 lung adenocarcinoma cells and in lung-fibroblast Wi-38 cells. We found that the CAP treatment induced the common trend of response from A549 and Wi-38 cells-the p53 pathway, KRAS signaling, UV response, TNF-alpha signaling, and apoptosis-related processes were up-regulated in both cell lines. However, the amplitude of the response to CAP was more variable in the A549 cells. The CAP-dependent death of A549 cells was accompanied by DNA damage, cell-cycle arrest in G2/M, and the dysfunctional response of glutathione peroxidase 4 (GPx4). The activation of the genes of endoplasmic reticulum stress and ER lumens was detected only in the A549 cells. Transmission-electron microscopy confirmed the alteration of the morphology of the ER lumens in the A549 cells after the CAP exposure. It can be concluded that the responses to nuclear stress and ER stress constitute the main differences in the sensitivity of tumor and healthy cells to CAP exposure.
Collapse
Affiliation(s)
- Mikhail Biryukov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.B.); (D.S.); (N.K.); (A.P.); (E.P.); (O.T.); (J.P.); (E.R.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.M.); (P.G.); (D.Z.); (I.S.)
| | - Dmitriy Semenov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.B.); (D.S.); (N.K.); (A.P.); (E.P.); (O.T.); (J.P.); (E.R.)
| | - Nadezhda Kryachkova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.B.); (D.S.); (N.K.); (A.P.); (E.P.); (O.T.); (J.P.); (E.R.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.M.); (P.G.); (D.Z.); (I.S.)
| | - Alina Polyakova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.B.); (D.S.); (N.K.); (A.P.); (E.P.); (O.T.); (J.P.); (E.R.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.M.); (P.G.); (D.Z.); (I.S.)
| | - Ekaterina Patrakova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.B.); (D.S.); (N.K.); (A.P.); (E.P.); (O.T.); (J.P.); (E.R.)
| | - Olga Troitskaya
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.B.); (D.S.); (N.K.); (A.P.); (E.P.); (O.T.); (J.P.); (E.R.)
- Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.M.); (P.G.); (D.Z.); (I.S.)
| | - Elena Milakhina
- Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.M.); (P.G.); (D.Z.); (I.S.)
- Department of Radio Engineering and Electronics, Novosibirsk State Technical University, 630073 Novosibirsk, Russia
| | - Julia Poletaeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.B.); (D.S.); (N.K.); (A.P.); (E.P.); (O.T.); (J.P.); (E.R.)
| | - Pavel Gugin
- Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.M.); (P.G.); (D.Z.); (I.S.)
| | - Elena Ryabchikova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.B.); (D.S.); (N.K.); (A.P.); (E.P.); (O.T.); (J.P.); (E.R.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Dmitriy Zakrevsky
- Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.M.); (P.G.); (D.Z.); (I.S.)
- Department of Radio Engineering and Electronics, Novosibirsk State Technical University, 630073 Novosibirsk, Russia
| | - Irina Schweigert
- Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.M.); (P.G.); (D.Z.); (I.S.)
| | - Olga Koval
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.B.); (D.S.); (N.K.); (A.P.); (E.P.); (O.T.); (J.P.); (E.R.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.M.); (P.G.); (D.Z.); (I.S.)
| |
Collapse
|
3
|
Dai X, Wu J, Lu L, Chen Y. Current Status and Future Trends of Cold Atmospheric Plasma as an Oncotherapy. Biomol Ther (Seoul) 2023; 31:496-514. [PMID: 37641880 PMCID: PMC10468422 DOI: 10.4062/biomolther.2023.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/12/2023] [Accepted: 04/25/2023] [Indexed: 08/31/2023] Open
Abstract
Cold atmospheric plasma (CAP), a redox modulation tool, is capable of inhibiting a wide spectrum of cancers and has thus been proposed as an emerging onco-therapy. However, with incremental successes consecutively reported on the anticancer efficacy of CAP, no consensus has been made on the types of tumours sensitive to CAP due to the different intrinsic characteristics of the cells and the heterogeneous design of CAP devices and their parameter configurations. These factors have substantially hindered the clinical use of CAP as an oncotherapy. It is thus imperative to clarify the tumour types responsive to CAP, the experimental models available for CAP-associated investigations, CAP administration strategies and the mechanisms by which CAP exerts its anticancer effects with the aim of identifying important yet less studied areas to accelerate the process of translating CAP into clinical use and fostering the field of plasma oncology.
Collapse
Affiliation(s)
- Xiaofeng Dai
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Jiale Wu
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Lianghui Lu
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yuyu Chen
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
4
|
Yoshikawa N, Nakamura K, Kajiyama H. Current understanding of Plasma-activated solutions for potential cancer therapy. Free Radic Res 2023:1-12. [PMID: 36944223 DOI: 10.1080/10715762.2023.2193308] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Cancer therapy consists of multidisciplinary treatment combining surgery, chemotherapy, radiotherapy, and immunotherapy. Despite the elucidation of cancer mechanisms by comprehensive genomic and epigenomic analyses and the development of molecular therapy, drug resistance and severe side effects have presented challenges to the long-awaited development of new therapies. With the rapid technological advances in the last decade, there are now reports concerning potential applications of non-equilibrium atmospheric pressure plasma (NEAPP) in cancer therapy. Two approaches have been tried: direct irradiation with NEAPP (direct plasma) and the administration of a liquid (e.g., culture medium, saline, Ringer's lactate) activated by NEAPP (plasma-activated solutions: PAS). Direct plasma is a unique treatment method in which various active species, charged ions, and photons are delivered to the affected area, but the direct plasma approach has physical limitations related to the device used, such as a limited depth of reach and limited irradiation area. PAS is a liquid that contains reactive oxygen species generated by PAS, and it has been confirmed to have antitumor activity that functions in the same manner as direct plasma. This review introduces recent studies of PAS and informs researchers about the potential of PAS for cancer therapy.Key Policy HighlightsPotential applications of plasma-activated solutions (PAS) in cancer therapy are described.Plasma-activated species generated in PAS, its effect on tumor cells, contribution to non-malignant immune cells, selectivity and safety are presented.The proposed anti-tumor mechanisms of PAS to date are described.Efficacy and safety evaluations of PAS have been studied in experimental animal models, but no human studies have been conducted.
Collapse
Affiliation(s)
- Nobuhisa Yoshikawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine
| | - Kae Nakamura
- Center for Low-Temperature Plasma Sciences, Nagoya University, Nagoya, Nagoya
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine
| |
Collapse
|
5
|
Li X, Rui X, Li D, Wang Y, Tan F. Plasma oncology: Adjuvant therapy for head and neck cancer using cold atmospheric plasma. Front Oncol 2022; 12:994172. [PMID: 36249012 PMCID: PMC9560126 DOI: 10.3389/fonc.2022.994172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/25/2022] [Indexed: 12/24/2022] Open
Abstract
The worldwide incidence of head and neck cancer (HNC) exceeds half a million cases annually, and up to half of the patients with HNC present with advanced disease. Surgical resection remains the mainstay of treatment for many HNCs, although radiation therapy, chemotherapy, targeted therapy, and immunotherapy might contribute to individual patient’s treatment plan. Irrespective of which modality is chosen, disease prognosis remains suboptimal, especially for higher staging tumors. Cold atmospheric plasma (CAP) has recently demonstrated a substantial anti-tumor effect. After a thorough literature search, we provide a comprehensive review depicting the oncological potential of CAP in HNC treatment. We discovered that CAP applies to almost all categories of HNC, including upper aerodigestive tract cancers, head and neck glandular cancers and skin cancers. In addition, CAP is truly versatile, as it can be applied not only directly for superficial or luminal tumors but also indirectly for deep solid organ tumors. Most importantly, CAP can work collaboratively with existing clinical oncotherapies with synergistic effect. After our attempts to elaborate the conceivable molecular mechanism of CAP’s anti-neoplastic effect for HNC, we provide a brief synopsis of recent clinical and preclinical trials emphasizing CAP’s applicability in head and neck oncology. In conclusion, we have enunciated our vision of plasma oncology using CAP for near future HNC treatment.
Collapse
Affiliation(s)
- Xuran Li
- Shanghai Fourth People’s Hospital, and School of Medicine, Tongji University, Shanghai, China
| | | | - Danni Li
- Shanghai Fourth People’s Hospital, and School of Medicine, Tongji University, Shanghai, China
| | - Yanhong Wang
- Shanghai Fourth People’s Hospital, and School of Medicine, Tongji University, Shanghai, China
| | - Fei Tan
- Shanghai Fourth People’s Hospital, and School of Medicine, Tongji University, Shanghai, China
- Department of Surgery, The Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Surgery, The Royal College of Surgeons of England, London, United Kingdom
- *Correspondence: Fei Tan,
| |
Collapse
|
6
|
Perrotti V, Caponio VCA, Muzio LL, Choi EH, Marcantonio MCD, Mazzone M, Kaushik NK, Mincione G. Open Questions in Cold Atmospheric Plasma Treatment in Head and Neck Cancer: A Systematic Review. Int J Mol Sci 2022; 23:ijms231810238. [PMID: 36142145 PMCID: PMC9498988 DOI: 10.3390/ijms231810238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 12/09/2022] Open
Abstract
Over the past decade, we witnessed a promising application of cold atmospheric plasma (CAP) in cancer therapy. The aim of this systematic review was to provide an exhaustive state of the art of CAP employed for the treatment of head and neck cancer (HNC), a tumor whose late diagnosis, local recurrence, distant metastases, and treatment failure are the main causes of patients’ death. Specifically, the characteristics and settings of the CAP devices and the in vitro and in vivo treatment protocols were summarized to meet the urgent need for standardization. Its molecular mechanisms of action, as well as the successes and pitfalls of current CAP applications in HNC, were discussed. Finally, the interesting emerging preclinical hypotheses that warrant further clinical investigation have risen. A total of 24 studies were included. Most studies used a plasma jet device (54.2%). Argon resulted as the mostly employed working gas (33.32%). Direct and indirect plasma application was reported in 87.5% and 20.8% of studies, respectively. In vitro investigations were 79.17%, most of them concerned with direct treatment (78.94%). Only eight (33.32%) in vivo studies were found; three were conducted in mice, and five on human beings. CAP showed pro-apoptotic effects more efficiently in tumor cells than in normal cells by altering redox balance in a way that oxidative distress leads to cell death. In preclinical studies, it exhibited efficacy and tolerability. Results from this systematic review pointed out the current limitations of translational application of CAP in the urge of standardization of the current protocols while highlighting promising effects as supporting treatment in HNC.
Collapse
Affiliation(s)
- Vittoria Perrotti
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
- Correspondence:
| | | | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea
| | - Maria Carmela Di Marcantonio
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Mariangela Mazzone
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea
| | - Gabriella Mincione
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
7
|
Tan F, Wang Y, Zhang S, Shui R, Chen J. Plasma Dermatology: Skin Therapy Using Cold Atmospheric Plasma. Front Oncol 2022; 12:918484. [PMID: 35903680 PMCID: PMC9314643 DOI: 10.3389/fonc.2022.918484] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/21/2022] [Indexed: 11/25/2022] Open
Abstract
Cold atmospheric plasma-based plasma medicine has been expanding the diversity of its specialties. As an emerging branch, plasma dermatology takes advantage of the beneficial complexity of plasma constituents (e.g., reactive oxygen and nitrogen species, UV photons, and electromagnetic emission), technical versatility (e.g., direct irradiation and indirect aqueous treatment), and practical feasibility (e.g., hand-held compact device and clinician-friendly operation). The objective of this comprehensive review is to summarize recent advances in the CAP-dominated skin therapy by broadly covering three aspects. We start with plasma optimisation of intact skin, detailing the effect of CAP on skin lipids, cells, histology, and blood circulation. We then conduct a clinically oriented and thorough dissection of CAP treatment of various skin diseases, focusing on the wound healing, inflammatory disorders, infectious conditions, parasitic infestations, cutaneous malignancies, and alopecia. Finally, we conclude with a brief analysis on the safety aspect of CAP treatment and a proposal on how to mitigate the potential risks. This comprehensive review endeavors to serve as a mini textbook for clinical dermatologists and a practical manual for plasma biotechnologists. Our collective goal is to consolidate plasma dermatology’s lead in modern personalized medicine.
Collapse
Affiliation(s)
- Fei Tan
- Department of Otorhinolaryngology and Head & Neck Surgery (ORL-HNS), Shanghai Fourth People’s Hospital, and School of Medicine, Tongji University, Shanghai, China
- The Royal College of Surgeons in Ireland, Dublin, Ireland
- The Royal College of Surgeons of England, London, United Kingdom
- *Correspondence: Fei Tan,
| | - Yang Wang
- Department of Pathology, Shanghai Fourth People’s Hospital, and School of Medicine, Tongji University, Shanghai, China
| | - Shiqun Zhang
- Department of Pharmacology, Shanghai Tenth People’s Hospital, and School of Medicine, Tongji University, Shanghai, China
| | - Runying Shui
- Department of Surgery, Department of Dermatology, Huadong Hospital, Fudan University, Shanghai, China
| | - Jianghan Chen
- Department of Surgery, Department of Dermatology, Shanghai Fourth People’s Hospital, and School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
8
|
Brunner TF, Probst FA, Troeltzsch M, Schwenk-Zieger S, Zimmermann JL, Morfill G, Becker S, Harréus U, Welz C. Primary cold atmospheric plasma combined with low dose cisplatin as a possible adjuvant combination therapy for HNSCC cells-an in-vitro study. Head Face Med 2022; 18:21. [PMID: 35768853 PMCID: PMC9245296 DOI: 10.1186/s13005-022-00322-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/23/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The aim of the present study was to examine the cytostatic effects of cold atmospheric plasma (CAP) on different head and neck squamous carcinoma (HNSCC) cell lines either in isolation or in combination with low dose cisplatin. The effect of CAP treatment was investigated by using three different HNSCC cell lines (chemo-resistant Cal 27, chemo-sensitive FaDu and OSC 19). MATERIALS AND METHOD Cell lines were exposed to CAP treatment for 30, 60, 90, 120 and 180 s (s). Cisplatin was added concurrently (cc) or 24 h after CAP application (cs). Cell viability, DNA damage and apoptosis was evaluated by dye exclusion, MTT, alkaline microgel electrophoresis assay and Annexin V-Fit-C/PI respectively. RESULTS In all cell lines, 120 s of CAP exposure resulted in a significant reduction of cell viability. DNA damage significantly increased after 60 s. Combined treatment of cells with CAP and low dose cisplatin showed additive effects. A possible sensitivity to cisplatin could be restored in Cal 27 cells by CAP application. CONCLUSION CAP shows strong cytostatic effects in HNSCC cell lines that can be increased by concurrent cisplatin treatment, suggesting that CAP may enhance the therapeutic efficacy of low dose cisplatin.
Collapse
Affiliation(s)
- Teresa F Brunner
- Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, University Hospital, LMU, Munich, Germany.
| | - Florian A Probst
- Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, University Hospital, LMU, Munich, Germany
| | - Matthias Troeltzsch
- Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, University Hospital, LMU, Munich, Germany
| | - Sabina Schwenk-Zieger
- Department of Otolaryngology, Head and Neck Surgery, University Hospital, LMU, Munich, Germany
| | | | | | - Sven Becker
- Department of Otolaryngology, Head and Neck Surgery, University Hospital, EKU , Tübingen, Germany
| | - Ulrich Harréus
- Department of ENT/Head and Neck Surgery, Asklepios Hospital, Bad Tölz, Germany
| | | |
Collapse
|
9
|
Kugler P, Becker S, Welz C, Wiesmann N, Sax J, Buhr CR, Thoma MH, Brieger J, Eckrich J. Cold Atmospheric Plasma Reduces Vessel Density and Increases Vascular Permeability and Apoptotic Cell Death in Solid Tumors. Cancers (Basel) 2022; 14:cancers14102432. [PMID: 35626037 PMCID: PMC9139209 DOI: 10.3390/cancers14102432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Cold atmospheric plasma (CAP) resembles a physical state of matter, best described as ionized gas. CAP has demonstrated promising anti-cancer effects. Despite their relevance for the treatment of solid tumors, effects of CAP on tumor vessels and tumor-blood-circulation are still insufficiently investigated. CAP exposure reduced the vessel network inside the tumor and increased vascular leakiness, leading to an elevated tumor cell death and bleeding into the tumor tissue. These effects highlight the potential of CAP as a promising and yet underrated therapeutic modality for addressing the tumor vasculature in the treatment of solid tumors. Abstract Cold atmospheric plasma (CAP) has demonstrated promising anti-cancer effects in numerous in vitro and in vivo studies. Despite their relevance for the treatment of solid tumors, effects of CAP on tumor vasculature and microcirculation have only rarely been investigated. Here, we report the reduction of vessel density and an increase in vascular permeability and tumor cell apoptosis after CAP application. Solid tumors in the chorioallantoic membrane of chicken embryos were treated with CAP and evaluated with respect to effects of CAP on embryo survival, tumor size, and tumor morphology. Furthermore, intratumoral blood vessel density, apoptotic cell death and the tumor-associated microcirculation were investigated and compared to sham treatment. Treatment with CAP significantly reduced intratumoral vessel density while increasing the rate of intratumoral apoptosis in solid tumors. Furthermore, CAP treatment increased vascular permeability and attenuated the microcirculation by causing vessel occlusions in the tumor-associated vasculature. These effects point out the potential of CAP as a promising and yet underrated therapeutic modality for addressing the tumor vasculature in the treatment of solid tumors.
Collapse
Affiliation(s)
- Philipp Kugler
- Department of Otorhinolaryngology, University Medical Center Mainz, 55131 Mainz, Germany; (P.K.); (N.W.); (C.R.B.); (J.B.)
| | - Sven Becker
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Tübingen Medical Center, 72016 Tübingen, Germany;
| | - Christian Welz
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Göttingen, 37075 Göttingen, Germany;
| | - Nadine Wiesmann
- Department of Otorhinolaryngology, University Medical Center Mainz, 55131 Mainz, Germany; (P.K.); (N.W.); (C.R.B.); (J.B.)
- Department of Oral and Maxillofacial Surgery—Plastic Surgery, University Medical Center Mainz, 55131 Mainz, Germany;
| | - Jonas Sax
- Department of Oral and Maxillofacial Surgery—Plastic Surgery, University Medical Center Mainz, 55131 Mainz, Germany;
| | - Christoph R. Buhr
- Department of Otorhinolaryngology, University Medical Center Mainz, 55131 Mainz, Germany; (P.K.); (N.W.); (C.R.B.); (J.B.)
| | - Markus H. Thoma
- Institute of Experimental Physics I, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | - Juergen Brieger
- Department of Otorhinolaryngology, University Medical Center Mainz, 55131 Mainz, Germany; (P.K.); (N.W.); (C.R.B.); (J.B.)
| | - Jonas Eckrich
- Department of Otorhinolaryngology, University Medical Center Mainz, 55131 Mainz, Germany; (P.K.); (N.W.); (C.R.B.); (J.B.)
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB), 53127 Bonn, Germany
- Correspondence: ; Tel.: +49-228-287-13712
| |
Collapse
|
10
|
Min T, Xie X, Ren K, Sun T, Wang H, Dang C, Zhang H. Therapeutic Effects of Cold Atmospheric Plasma on Solid Tumor. Front Med (Lausanne) 2022; 9:884887. [PMID: 35646968 PMCID: PMC9139675 DOI: 10.3389/fmed.2022.884887] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/13/2022] [Indexed: 12/14/2022] Open
Abstract
Cancer is a devastating disease, and there is no particularly effective treatment at present. Recently, a new treatment, cold atmospheric plasma (CAP), has been proposed. At present, CAP is confirmed to have selective killing effect on tumor by many studies in vitro and in vivo. A targeted literature search was carried out on the study of cold atmospheric plasma. Through analysis and screening, a narrative review approach was selected to describe therapeutic effects of cold atmospheric plasma on solid tumor. According to the recent studies on plasma, some hypothetical therapeutic schemes of CAP are proposed in this paper. The killing mechanism of CAP on solid tumor is expounded in terms of the selectivity of CAP to tumor, the effects of CAP on cells, tumor microenvironment (TME) and immune system. CAP has many effects on solid tumors, and these effects are dose-dependent. The effects of optimal doses of CAP on solid tumors include killing tumor cells, inhibiting non-malignant cells and ECM in TME, affecting the communication between tumor cells, and inducing immunogenic death of tumor cells. In addition, several promising research directions of CAP are proposed in this review, which provide guidance for future research.
Collapse
Affiliation(s)
- Tianhao Min
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xin Xie
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Kaijie Ren
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tuanhe Sun
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Haonan Wang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chengxue Dang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- *Correspondence: Chengxue Dang
| | - Hao Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Hao Zhang
| |
Collapse
|
11
|
Cold Physical Plasma in Cancer Therapy: Mechanisms, Signaling, and Immunity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9916796. [PMID: 35284036 PMCID: PMC8906949 DOI: 10.1155/2021/9916796] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 11/26/2021] [Indexed: 12/11/2022]
Abstract
Despite recent advances in therapy, cancer still is a devastating and life-threatening disease, motivating novel research lines in oncology. Cold physical plasma, a partially ionized gas, is a new modality in cancer research. Physical plasma produces various physicochemical factors, primarily reactive oxygen and nitrogen species (ROS/RNS), causing cancer cell death when supplied at supraphysiological concentrations. This review outlines the biomedical consequences of plasma treatment in experimental cancer therapy, including cell death modalities. It also summarizes current knowledge on intracellular signaling pathways triggered by plasma treatment to induce cancer cell death. Besides the inactivation of tumor cells, an equally important aspect is the inflammatory context in which cell death occurs to suppress or promote the responses of immune cells. This is mainly governed by the release of damage-associated molecular patterns (DAMPs) to provoke immunogenic cancer cell death (ICD) that, in turn, activates cells of the innate immune system to promote adaptive antitumor immunity. The pivotal role of the immune system in cancer treatment, in general, is highlighted by many clinical trials and success stories on using checkpoint immunotherapy. Hence, the potential of plasma treatment to induce ICD in tumor cells to promote immunity targeting cancer lesions systemically is also discussed.
Collapse
|
12
|
He Z, Charleton C, Devine RW, Kelada M, Walsh JMD, Conway GE, Gunes S, Mondala JRM, Tian F, Tiwari B, Kinsella GK, Malone R, O'Shea D, Devereux M, Wang W, Cullen PJ, Stephens JC, Curtin JF. Enhanced pyrazolopyrimidinones cytotoxicity against glioblastoma cells activated by ROS-Generating cold atmospheric plasma. Eur J Med Chem 2021; 224:113736. [PMID: 34384944 DOI: 10.1016/j.ejmech.2021.113736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 11/26/2022]
Abstract
Pyrazolopyrimidinones are fused nitrogen-containing heterocyclic systems, which act as a core scaffold in many pharmaceutically relevant compounds. Pyrazolopyrimidinones have been demonstrated to be efficient in treating several diseases, including cystic fibrosis, obesity, viral infection and cancer. In this study using glioblastoma U-251MG cell line, we tested the cytotoxic effects of 15 pyrazolopyrimidinones, synthesised via a two-step process, in combination with cold atmospheric plasma (CAP). CAP is an adjustable source of reactive oxygen and nitrogen species as well as other unique chemical and physical effects which has been successfully tested as an innovative cancer therapy in clinical trials. Significantly variable cytotoxicity was observed with IC50 values ranging from around 11 μM to negligible toxicity among tested compounds. Interestingly, two pyrazolopyrimidinones were identified that act in a prodrug fashion and display around 5-15 times enhanced reactive-species dependent cytotoxicity when combined with cold atmospheric plasma. Activation was evident for direct CAP treatment on U-251MG cells loaded with the pyrazolopyrimidinone and indirect CAP treatment of the pyrazolopyrimidinone in media before adding to cells. Our results demonstrated the potential of CAP combined with pyrazolopyrimidinones as a programmable cytotoxic therapy and provide screened scaffolds that can be used for further development of pyrazolopyrimidinone prodrug derivatives.
Collapse
Affiliation(s)
- Zhonglei He
- BioPlasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland; Nanolab, FOCAS Research Institute, Technological University Dublin, Dublin, Ireland; Environmental, Sustainability and Health Research Institute, Technological University Dublin, Dublin, Ireland; Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Ireland.
| | - Clara Charleton
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Robert W Devine
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Mark Kelada
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - John M D Walsh
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Gillian E Conway
- BioPlasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland; Environmental, Sustainability and Health Research Institute, Technological University Dublin, Dublin, Ireland; In-Vitro Toxicology Group, Institute of Life Science, Swansea University Medical School, Swansea University, Singleton Park, Swansea, Wales, United Kingdom
| | - Sebnem Gunes
- BioPlasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland; Environmental, Sustainability and Health Research Institute, Technological University Dublin, Dublin, Ireland
| | - Julie Rose Mae Mondala
- BioPlasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland; Environmental, Sustainability and Health Research Institute, Technological University Dublin, Dublin, Ireland
| | - Furong Tian
- BioPlasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland; Nanolab, FOCAS Research Institute, Technological University Dublin, Dublin, Ireland; Environmental, Sustainability and Health Research Institute, Technological University Dublin, Dublin, Ireland
| | - Brijesh Tiwari
- Department of Food Biosciences, Teagasc Food Research Centre, Ashtown, Dublin, Ireland
| | - Gemma K Kinsella
- BioPlasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland; Environmental, Sustainability and Health Research Institute, Technological University Dublin, Dublin, Ireland
| | - Renee Malone
- BioPlasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland; Environmental, Sustainability and Health Research Institute, Technological University Dublin, Dublin, Ireland
| | - Denis O'Shea
- BioPlasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland; Environmental, Sustainability and Health Research Institute, Technological University Dublin, Dublin, Ireland
| | - Michael Devereux
- BioPlasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland; Environmental, Sustainability and Health Research Institute, Technological University Dublin, Dublin, Ireland
| | - Wenxin Wang
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Ireland
| | - Patrick J Cullen
- School of Chemical and Biomolecular Engineering, University of Sydney, Australia
| | - John C Stephens
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland; The Kathleen Lonsdale Institute of Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - James F Curtin
- BioPlasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland; Nanolab, FOCAS Research Institute, Technological University Dublin, Dublin, Ireland; Environmental, Sustainability and Health Research Institute, Technological University Dublin, Dublin, Ireland.
| |
Collapse
|
13
|
Silva-Teixeira R, Laranjo M, Lopes B, Almeida-Ferreira C, Gonçalves AC, Rodrigues T, Matafome P, Sarmento-Ribeiro AB, Caramelo F, Botelho MF. Plasma activated media and direct exposition can selectively ablate retinoblastoma cells. Free Radic Biol Med 2021; 171:302-313. [PMID: 34022401 DOI: 10.1016/j.freeradbiomed.2021.05.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/06/2021] [Accepted: 05/16/2021] [Indexed: 01/23/2023]
Abstract
A new therapy based on atmospheric plasma, the fourth state of matter, has raised the medical community's attention by circumventing many undesirable effects of old anticancer treatments. This work aimed to evaluate the effect, selectivity, and mechanisms of action of cold atmospheric plasma (CAP) in human retinoblastoma cells. An electronic device was designed to generate CAP in the open air, 2 mm above seeded cell cultures. Three approaches were performed: direct use of CAP, plasma-activated media (PAM), and conditioned media (CM). Timely-resolved output voltage measurement, emission spectroscopy, and quantification of reactive species (RS) of PAM were performed. To evaluate cytotoxicity and selectivity, similarly treated Y79, fibroblasts HFF1, and retinal RPE-D407 cells were assessed. After 60 s of direct CAP treatment, the metabolic activity of retinoblastoma cells decreased more than 50%, mainly due to apoptosis, while HFF1 and RPE-D407 remained viable. Similar results were obtained with indirect treatment (PAM and CM). Cell survival was reduced, and cells accumulated in S and G2/M phases; however, no DNA strand breaks were detected. Regarding RS, plasma increased extracellular and intracellular concentrations of peroxides and nitric oxide, despite glutathione activation and lack of success in reverting cytotoxicity with some RS inhibitors. RS increase comes in two timely distant waves, the first one originating from the plasma itself with secondary solubilization and passive diffusion, the second wave deriving from the mitochondrion. The addition of low doses of carboplatin to CAP-treated cells resulted in a significant increase in cytotoxicity compared with either regimen alone. Additionally, maximal antiangiogenic effects were obtained with 60 s of plasma exposure. Direct and indirect treatment with CAP might be a selective therapy with the potential to target tumour cells and supporting the microenvironment.
Collapse
Affiliation(s)
- Rafael Silva-Teixeira
- University of Coimbra, Faculty of Medicine, Institute of Biophysics, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal; Department of Cardiology, Hospital Center of Vila Nova de Gaia / Espinho, EPE, Rua Conceição Fernandes, 4434-502, Vila Nova de Gaia, Portugal; University of Coimbra, Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal.
| | - Mafalda Laranjo
- University of Coimbra, Faculty of Medicine, Institute of Biophysics, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal; University of Coimbra, Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal; Clinical and Academic Centre of Coimbra, Coimbra, Portugal.
| | - Beatriz Lopes
- University of Coimbra, Faculty of Medicine, Institute of Biophysics, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal.
| | - Catarina Almeida-Ferreira
- University of Coimbra, Faculty of Medicine, Institute of Biophysics, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal.
| | - Ana Cristina Gonçalves
- University of Coimbra, Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal; Clinical and Academic Centre of Coimbra, Coimbra, Portugal; University of Coimbra, Faculty of Medicine, Laboratory of Oncobiology and Hematology, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal.
| | - Tiago Rodrigues
- University of Coimbra, Faculty of Medicine, Institute of Physiology, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal.
| | - Paulo Matafome
- University of Coimbra, Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal; Clinical and Academic Centre of Coimbra, Coimbra, Portugal; University of Coimbra, Faculty of Medicine, Institute of Physiology, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal.
| | - Ana Bela Sarmento-Ribeiro
- University of Coimbra, Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal; Clinical and Academic Centre of Coimbra, Coimbra, Portugal; University of Coimbra, Faculty of Medicine, Laboratory of Oncobiology and Hematology, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal.
| | - Francisco Caramelo
- University of Coimbra, Faculty of Medicine, Institute of Biophysics, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal; University of Coimbra, Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal; Clinical and Academic Centre of Coimbra, Coimbra, Portugal.
| | - Maria Filomena Botelho
- University of Coimbra, Faculty of Medicine, Institute of Biophysics, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal; University of Coimbra, Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal; Clinical and Academic Centre of Coimbra, Coimbra, Portugal.
| |
Collapse
|
14
|
Antitumor Effects in Gas Plasma-Treated Patient-Derived Microtissues—An Adjuvant Therapy for Ulcerating Breast Cancer? APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11104527] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite global research and continuous improvement in therapy, cancer remains a challenging disease globally, substantiating the need for new treatment avenues. Medical gas plasma technology has emerged as a promising approach in oncology in the last years. Several investigations have provided evidence of an antitumor action in vitro and in vivo, including our recent work on plasma-mediated reduction of breast cancer in mice. However, studies of gas plasma exposure on patient-derived tumors with their distinct microenvironment (TME) are scarce. To this end, we here investigated patient-derived breast cancer tissue after gas plasma-treated ex vivo. The tissues were disjoint to pieces smaller than 100 µm, embedded in collagen, and incubated for several days. The viability of the breast cancer tissue clusters and their outgrowth into their gel microenvironment declined with plasma treatment. This was associated with caspase 3-dependent apoptotic cell death, paralleled by an increased expression of the anti-metastatic adhesion molecule epithelial (E)-cadherin. Multiplex chemokine/cytokine analysis revealed a marked decline in the release of the interleukins 6 and 8 (IL-6, IL-8) and monocyte-chemoattractant-protein 1 (MCP) known to promote a cancer-promoting milieu in the TME. In summary, we provide here, for the first time, evidence of a beneficial activity of gas plasma exposure on human patient-derived breast cancer tissue.
Collapse
|
15
|
Open-Air Cold Plasma Device Leads to Selective Tumor Cell Cytotoxicity. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11094171] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The need for effective and safe therapies for cancer is growing as aging is modifying its epidemiology. Cold atmospheric plasma (CAP) has gained attention as a potential anti-tumor therapy. CAP is a gas with enough energy to ionize a significant fraction of its constituent particles, forming equal numbers of positive ions and electrons. Timely-resolved output voltage measurement, emission spectroscopy, and quantification of reactive species (RS) in plasma-activated media (PAM) were performed to characterize the physical and chemical properties of plasma. To assess the cytotoxicity of cold atmospheric plasma in human tumors, different cell lines were cultured, plated, and exposed to CAP, followed by MTT and SRB colorimetric assays 24 h later. Human fibroblasts, phenotypically normal cells, were processed similarly. Plasma cytotoxicity was higher in cells of breast cancer, urinary bladder cancer, osteosarcoma, lung cancer, melanoma, and endometrial cancer. Cytotoxicity was time-dependent and possibly related to the increased production of hydrogen peroxide in the exposed medium. Sixty seconds of CAP exposure renders selective effects, preserving the viability of fibroblast cells. These results point to the importance of conducting further studies of the therapy with plasma.
Collapse
|
16
|
Tomić S, Petrović A, Puač N, Škoro N, Bekić M, Petrović ZL, Čolić M. Plasma-Activated Medium Potentiates the Immunogenicity of Tumor Cell Lysates for Dendritic Cell-Based Cancer Vaccines. Cancers (Basel) 2021; 13:1626. [PMID: 33915703 PMCID: PMC8037863 DOI: 10.3390/cancers13071626] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 02/03/2023] Open
Abstract
Autologous dendritic cells (DCs)-based vaccines are considered quite promising for cancer immunotherapy due to their exquisite potential to induce tumor antigen-specific cytotoxic T cells. However, a lack of efficient protocols for inducing immunogenic tumor antigens limits the efficacy of DC-based cancer vaccines. Here, we found that a plasma-activated medium (PAM) induces immunogenic cell death (ICD) in tumor cells but not in an immortalized L929 cell line or human peripheral blood mononuclear cells. PAM induced an accumulation of reactive oxygen species (ROS), autophagy, apoptosis, and necrosis in a concentration-dependent manner. The tumor lysates prepared after PAM treatment displayed increased immunogenicity in a model of human monocyte-derived DCs, compared to the lysates prepared by a standard freezing/thawing method. Mature DCs loaded with PAM lysates showed an increased maturation potential, as estimated by their increased expression of CD83, CD86, CD40, IL-12/IL-10 production, and attenuated PDL1 and ILT-4 expression, compared to the DCs treated with control tumor lysates. Moreover, in co-culture with allogeneic T cells, DCs loaded with PAM-lysates increased the proportion of cytotoxic IFN-γ+ granzyme A+ CD8+ T cells and IL-17A-producing T cells and preserved the Th1 response. In contrast, control tumor lysates-treated DCs increased the frequency of Th2 (CD4+IL-4+), CD4, and CD8 regulatory T cell subtypes, none of which was observed with DCs loaded with PAM-lysates. Cumulatively, these results suggest that the novel method for preparing immunogenic tumor lysates with PAM could be suitable for improved DC-based immunotherapy of cancer patients.
Collapse
Affiliation(s)
- Sergej Tomić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University of Belgrade, 11080 Belgrade, Serbia; (M.B.); (M.Č.)
| | - Anđelija Petrović
- Institute of Physics, University of Belgrade, 11080 Belgrade, Serbia; (A.P.); (N.Š.)
| | - Nevena Puač
- Institute of Physics, University of Belgrade, 11080 Belgrade, Serbia; (A.P.); (N.Š.)
| | - Nikola Škoro
- Institute of Physics, University of Belgrade, 11080 Belgrade, Serbia; (A.P.); (N.Š.)
| | - Marina Bekić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University of Belgrade, 11080 Belgrade, Serbia; (M.B.); (M.Č.)
| | - Zoran Lj. Petrović
- Serbian Academy for Sciences and Arts, 11000 Belgrade, Serbia;
- School of Engineering, Ulster University, Jordanstown, Co. Antrim BT37 0QB, UK
| | - Miodrag Čolić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University of Belgrade, 11080 Belgrade, Serbia; (M.B.); (M.Č.)
- Serbian Academy for Sciences and Arts, 11000 Belgrade, Serbia;
- Medical Faculty Foca, University of East Sarajevo, 73 300 Foča, Bosnia and Herzegovina
| |
Collapse
|
17
|
Cold atmospheric plasma induced genotoxicity and cytotoxicity in esophageal cancer cells. Mol Biol Rep 2021; 48:1323-1333. [PMID: 33547994 DOI: 10.1007/s11033-021-06178-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 01/20/2021] [Indexed: 12/11/2022]
Abstract
In this paper, we studied the functional effects of cold atmospheric plasma (CAP) on the esophageal cancer cell line (KYSE-30) by direct and indirect treatment and fibroblast cell lines as normal cells. KYSE-30 cells were treated with CAP at different time points of 60, 90, 120 and, 240 s for direct exposure and 90, 180, 240 and, 360 s for indirect exposure. Cell viability was studied by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and apoptosis induction in the treated cells was measured by Annexin-V/PI using flow cytometry. The expression of apoptotic related genes (BAX/BCL-2) was analyzed by real-time polymerase chain reaction. Moreover, the genotoxicity was analyzed by comet assay. Cell viability results showed that direct CAP treatment has a markedly cytotoxic impact on the reduction of KYSE-30 cells at 60 s (p = 0.000), while indirect exposure was less impactful (p > 0.05). The results of the Annexin-V/PI staining confirmed this analysis. Subsequently, the genotoxicity study of the direct CAP treatment demonstrated a longer tail-DNA length and caused increase in DNA damage in the cells (p < 0.00001) as well as shift BAX/BCL-2 toward apoptosis. The concentration of H2O2 and NO2- in direct CAP treatment was significantly higher than indirect (p > 0.05). Treatment with direct CAP showed genotoxicity in cancer cells. Collectively, our results pave a deeper understanding of CAP functions and the way for further investigations in the field of esophageal cancer treatment.
Collapse
|
18
|
Tavares-da-Silva E, Pereira E, Pires AS, Neves AR, Braz-Guilherme C, Marques IA, Abrantes AM, Gonçalves AC, Caramelo F, Silva-Teixeira R, Mendes F, Figueiredo A, Botelho MF. Cold Atmospheric Plasma, a Novel Approach against Bladder Cancer, with Higher Sensitivity for the High-Grade Cell Line. BIOLOGY 2021; 10:biology10010041. [PMID: 33435434 PMCID: PMC7828061 DOI: 10.3390/biology10010041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/02/2021] [Accepted: 01/07/2021] [Indexed: 12/24/2022]
Abstract
Simple Summary Bladder cancer has a high incidence and mortality. Besides this, currently available therapies for this type of cancer have low efficacy and show considerable adverse effects, urging the need of new therapeutic approaches. Cold Atmospheric Plasma treatment presents itself as a promising alternative, having demonstrated antitumor effects against several types of cancer. The present work arises from a multidisciplinary team, namely, medical doctors and researchers, in an attempt to find new therapeutic strategies to fight bladder cancer. Therefore, our main objective is to evaluate Cold Atmospheric Plasma effects against bladder cancer, as well as the mechanisms by which it exerts its effects. The results obtained demonstrate that Cold Atmospheric Plasma treatment has a promising antitumor effect on bladder cancer, with higher sensitivity for the high-grade cell line. This new approach using Cold Atmospheric Plasma for the treatment of bladder cancer presents enormous clinical benefits, since it is able to selectively treat the tumor tissue, sparing the normal urothelium, with an additional glaring positive economic impact, since it entails a decrease in the cost of therapy in comparison with conventional therapeutic options. Abstract Antitumor therapies based on Cold Atmospheric Plasma (CAP) are an emerging medical field. In this work, we evaluated CAP effects on bladder cancer. Two bladder cancer cell lines were used, HT-1376 (stage III) and TCCSUP (stage IV). Cell proliferation assays were performed evaluating metabolic activity (MTT assay) and protein content (SRB assay). Cell viability, cell cycle, and mitochondrial membrane potential (Δψm) were assessed using flow cytometry. Reactive oxygen and nitrogen species (RONS) and reduced glutathione (GSH) were evaluated by fluorescence. The assays were carried out with different CAP exposure times. For both cell lines, we obtained a significant reduction in metabolic activity and protein content. There was a decrease in cell viability, as well as a cell cycle arrest in S phase. The Δψm was significantly reduced. There was an increase in superoxide and nitric oxide and a decrease in peroxide contents, while GSH content did not change. These results were dependent on the exposure time, with small differences for both cell lines, but overall, they were more pronounced in the TCCSUP cell line. CAP showed to have a promising antitumor effect on bladder cancer, with higher sensitivity for the high-grade cell line.
Collapse
Affiliation(s)
- Edgar Tavares-da-Silva
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, 3000-548 Coimbra, Portugal;
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal; (A.S.P.); (I.A.M.); (A.M.A.); (A.C.G.); (F.M.); (M.F.B.)
- Clinical Academic Center of Coimbra (CACC), 3000-548 Coimbra, Portugal; (A.R.N.); (C.B.-G.); (F.C.); (R.S.-T.)
- Centro Hospitalar e Universitário de Coimbra (CHUC), Department of Urology and Renal Transplantation, 3004-561 Coimbra, Portugal
- Correspondence: (E.T.-d.-S.); (E.P.)
| | - Eurico Pereira
- Clinical Academic Center of Coimbra (CACC), 3000-548 Coimbra, Portugal; (A.R.N.); (C.B.-G.); (F.C.); (R.S.-T.)
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, 3000-548 Coimbra, Portugal
- Correspondence: (E.T.-d.-S.); (E.P.)
| | - Ana S. Pires
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal; (A.S.P.); (I.A.M.); (A.M.A.); (A.C.G.); (F.M.); (M.F.B.)
- Clinical Academic Center of Coimbra (CACC), 3000-548 Coimbra, Portugal; (A.R.N.); (C.B.-G.); (F.C.); (R.S.-T.)
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, 3000-548 Coimbra, Portugal
| | - Ana R. Neves
- Clinical Academic Center of Coimbra (CACC), 3000-548 Coimbra, Portugal; (A.R.N.); (C.B.-G.); (F.C.); (R.S.-T.)
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, 3000-548 Coimbra, Portugal
- Project Development Office, Department of Mathematics and Computer Science, Eindhoven University of Technology (TU/e), PO Box 513 5600 MB Eindhoven, The Netherlands
| | - Catarina Braz-Guilherme
- Clinical Academic Center of Coimbra (CACC), 3000-548 Coimbra, Portugal; (A.R.N.); (C.B.-G.); (F.C.); (R.S.-T.)
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, 3000-548 Coimbra, Portugal
- University of Porto, Faculty of Medicine, 4200-319 Porto, Portugal
| | - Inês A. Marques
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal; (A.S.P.); (I.A.M.); (A.M.A.); (A.C.G.); (F.M.); (M.F.B.)
- Clinical Academic Center of Coimbra (CACC), 3000-548 Coimbra, Portugal; (A.R.N.); (C.B.-G.); (F.C.); (R.S.-T.)
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, 3000-548 Coimbra, Portugal
- University of Coimbra, Faculty of Pharmacy, 3000-548 Coimbra, Portugal
| | - Ana M. Abrantes
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal; (A.S.P.); (I.A.M.); (A.M.A.); (A.C.G.); (F.M.); (M.F.B.)
- Clinical Academic Center of Coimbra (CACC), 3000-548 Coimbra, Portugal; (A.R.N.); (C.B.-G.); (F.C.); (R.S.-T.)
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, 3000-548 Coimbra, Portugal
| | - Ana C. Gonçalves
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal; (A.S.P.); (I.A.M.); (A.M.A.); (A.C.G.); (F.M.); (M.F.B.)
- Clinical Academic Center of Coimbra (CACC), 3000-548 Coimbra, Portugal; (A.R.N.); (C.B.-G.); (F.C.); (R.S.-T.)
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Laboratory of Oncobiology and Hematology and University Clinic of Hematology of Faculty of Medicine, 3000-548 Coimbra, Portugal
| | - Francisco Caramelo
- Clinical Academic Center of Coimbra (CACC), 3000-548 Coimbra, Portugal; (A.R.N.); (C.B.-G.); (F.C.); (R.S.-T.)
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Laboratory of Biostatistics and Medical Informatics of Faculty of Medicine, 3000-548 Coimbra, Portugal
| | - Rafael Silva-Teixeira
- Clinical Academic Center of Coimbra (CACC), 3000-548 Coimbra, Portugal; (A.R.N.); (C.B.-G.); (F.C.); (R.S.-T.)
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, 3000-548 Coimbra, Portugal
| | - Fernando Mendes
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal; (A.S.P.); (I.A.M.); (A.M.A.); (A.C.G.); (F.M.); (M.F.B.)
- Clinical Academic Center of Coimbra (CACC), 3000-548 Coimbra, Portugal; (A.R.N.); (C.B.-G.); (F.C.); (R.S.-T.)
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, 3000-548 Coimbra, Portugal
- Politécnico de Coimbra, ESTeSC, DCBL, Rua 5 de Outubro-SM Bispo, Apartado 7006, 3046-854 Coimbra, Portugal
| | - Arnaldo Figueiredo
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, 3000-548 Coimbra, Portugal;
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal; (A.S.P.); (I.A.M.); (A.M.A.); (A.C.G.); (F.M.); (M.F.B.)
- Clinical Academic Center of Coimbra (CACC), 3000-548 Coimbra, Portugal; (A.R.N.); (C.B.-G.); (F.C.); (R.S.-T.)
- Centro Hospitalar e Universitário de Coimbra (CHUC), Department of Urology and Renal Transplantation, 3004-561 Coimbra, Portugal
| | - Maria Filomena Botelho
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal; (A.S.P.); (I.A.M.); (A.M.A.); (A.C.G.); (F.M.); (M.F.B.)
- Clinical Academic Center of Coimbra (CACC), 3000-548 Coimbra, Portugal; (A.R.N.); (C.B.-G.); (F.C.); (R.S.-T.)
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Biophysics Institute of Faculty of Medicine, 3000-548 Coimbra, Portugal
| |
Collapse
|
19
|
Physical Plasma-Treated Skin Cancer Cells Amplify Tumor Cytotoxicity of Human Natural Killer (NK) Cells. Cancers (Basel) 2020; 12:cancers12123575. [PMID: 33265951 PMCID: PMC7761052 DOI: 10.3390/cancers12123575] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/21/2020] [Accepted: 11/26/2020] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Natural killer (NK)-cells are known to have antitumor potential. Cold physical plasma generates ROS exogenously to be utilized as a novel anticancer agent, especially in skin cancer. However, it is unknown whether plasma-treated skin cancer cells promote or inhibit NK-cell-mediated toxicity. To this end, we analyzed NK-cell-activating receptors on plasma-treated skin cancer cells and demonstrated an enhanced NK-cell activity augmenting tumor cell death upon plasma treatment. Abstract Skin cancers have the highest prevalence of all human cancers, with the most lethal forms being squamous cell carcinoma and malignant melanoma. Besides the conventional local treatment approaches like surgery and radiotherapy, cold physical plasmas are emerging anticancer tools. Plasma technology is used as a therapeutic agent by generating reactive oxygen species (ROS). Evidence shows that inflammation and adaptive immunity are involved in cancer-reducing effects of plasma treatment, but the role of innate immune cells is still unclear. Natural killer (NK)-cells interact with target cells via activating and inhibiting surface receptors and kill in case of dominating activating signals. In this study, we investigated the effect of cold physical plasma (kINPen) on two skin cancer cell lines (A375 and A431), with non-malignant HaCaT keratinocytes as control, and identified a plasma treatment time-dependent toxicity that was more pronounced in the cancer cells. Plasma treatment also modulated the expression of activating and inhibiting receptors more profoundly in skin cancer cells compared to HaCaT cells, leading to significantly higher NK-cell killing rates in the tumor cells. Together with increased pro-inflammatory mediators such as IL-6 and IL-8, we conclude that plasma treatment spurs stress responses in skin cancer cells, eventually augmenting NK-cell activity.
Collapse
|
20
|
Comprehensive biomedical applications of low temperature plasmas. Arch Biochem Biophys 2020; 693:108560. [PMID: 32857998 PMCID: PMC7448743 DOI: 10.1016/j.abb.2020.108560] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 02/08/2023]
Abstract
The main component of plasma medicine is the use of low-temperature plasma (LTP) as a powerful tool for biomedical applications. LTP generates high reactivity at low temperatures and can be activated with noble gases with molecular mixtures or compressed air. LTP reactive species are quickly produced, and are a remarkably good source of reactive oxygen and nitrogen species including singlet oxygen (O2), ozone (O3), hydroxyl radicals (OH), nitrous oxide (NO), and nitrogen dioxide (NO2). Its low gas temperature and highly reactive non-equilibrium chemistry make it appropriate for the alteration of inorganic surfaces and delicate biological systems. Treatment of oral biofilm-related infections, treatment of wounds and skin diseases, assistance in cancer treatment, treatment of viruses' infections (e.g. herpes simplex), and optimization of implants surfaces are included among the extensive plasma medicine applications. Each of these applications will be discussed in this review article.
Collapse
|
21
|
Zubor P, Wang Y, Liskova A, Samec M, Koklesova L, Dankova Z, Dørum A, Kajo K, Dvorska D, Lucansky V, Malicherova B, Kasubova I, Bujnak J, Mlyncek M, Dussan CA, Kubatka P, Büsselberg D, Golubnitschaja O. Cold Atmospheric Pressure Plasma (CAP) as a New Tool for the Management of Vulva Cancer and Vulvar Premalignant Lesions in Gynaecological Oncology. Int J Mol Sci 2020; 21:ijms21217988. [PMID: 33121141 PMCID: PMC7663780 DOI: 10.3390/ijms21217988] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/24/2022] Open
Abstract
Vulvar cancer (VC) is a specific form of malignancy accounting for 5–6% of all gynaecologic malignancies. Although VC occurs most commonly in women after 60 years of age, disease incidence has risen progressively in premenopausal women in recent decades. VC demonstrates particular features requiring well-adapted therapeutic approaches to avoid potential treatment-related complications. Significant improvements in disease-free survival and overall survival rates for patients diagnosed with post-stage I disease have been achieved by implementing a combination therapy consisting of radical surgical resection, systemic chemotherapy and/or radiotherapy. Achieving local control remains challenging. However, mostly due to specific anatomical conditions, the need for comprehensive surgical reconstruction and frequent post-operative healing complications. Novel therapeutic tools better adapted to VC particularities are essential for improving individual outcomes. To this end, cold atmospheric plasma (CAP) treatment is a promising option for VC, and is particularly appropriate for the local treatment of dysplastic lesions, early intraepithelial cancer, and invasive tumours. In addition, CAP also helps reduce inflammatory complications and improve wound healing. The application of CAP may realise either directly or indirectly utilising nanoparticle technologies. CAP has demonstrated remarkable treatment benefits for several malignant conditions, and has created new medical fields, such as “plasma medicine” and “plasma oncology”. This article highlights the benefits of CAP for the treatment of VC, VC pre-stages, and postsurgical wound complications. There has not yet been a published report of CAP on vulvar cancer cells, and so this review summarises the progress made in gynaecological oncology and in other cancers, and promotes an important, understudied area for future research. The paradigm shift from reactive to predictive, preventive and personalised medical approaches in overall VC management is also considered.
Collapse
Affiliation(s)
- Pavol Zubor
- Department of Gynaecological Oncology, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (Y.W.); (A.D.)
- OBGY Health & Care, Ltd., 010 01 Zilina, Slovakia
- Correspondence: or
| | - Yun Wang
- Department of Gynaecological Oncology, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (Y.W.); (A.D.)
| | - Alena Liskova
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (P.K.)
| | - Marek Samec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (P.K.)
| | - Lenka Koklesova
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (P.K.)
| | - Zuzana Dankova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Anne Dørum
- Department of Gynaecological Oncology, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (Y.W.); (A.D.)
| | - Karol Kajo
- Department of Pathology, St. Elizabeth Cancer Institute Hospital, 81250 Bratislava, Slovakia;
| | - Dana Dvorska
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Vincent Lucansky
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Bibiana Malicherova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Ivana Kasubova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Jan Bujnak
- Department of Obstetrics and Gynaecology, Kukuras Michalovce Hospital, 07101 Michalovce, Slovakia;
| | - Milos Mlyncek
- Department of Obstetrics and Gynaecology, Faculty Hospital Nitra, Constantine the Philosopher University, 949 01 Nitra, Slovakia;
| | - Carlos Alberto Dussan
- Department of Surgery, Orthopaedics and Oncology, University Hospital Linköping, 581 85 Linköping, Sweden;
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (P.K.)
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144 Doha, Qatar;
| | - Olga Golubnitschaja
- Predictive, Preventive Personalised (3P) Medicine, Department of Radiation Oncology, Rheinische Friedrich-Wilhelms-Universität Bonn, 53105 Bonn, Germany;
| |
Collapse
|
22
|
Boisvert JS, Lafontaine J, Glory A, Coulombe S, Wong P. Comparison of Three Radio-Frequency Discharge Modes on the Treatment of Breast Cancer Cells in Vitro. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2020. [DOI: 10.1109/trpms.2020.2994870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
Harley JC, Suchowerska N, McKenzie DR. Cancer treatment with gas plasma and with gas plasma-activated liquid: positives, potentials and problems of clinical translation. Biophys Rev 2020; 12:989-1006. [PMID: 32757133 PMCID: PMC7429664 DOI: 10.1007/s12551-020-00743-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Gas plasmas, created in atmospheric pressure conditions, both thermal (hot) and non-thermal (cold) are emerging as useful tools in medicine. During surgery, hot gas plasmas are useful to reduce thermal damage and seal blood vessels. Gas plasma pens use cold gas plasma to produce reactive chemical species with selective action against cancers, which can be readily exposed in surgery or treated from outside of the body. Solutions activated by cold gas plasma have potential as a novel treatment modality for treatment of less readily accessible tumours, or those with high metastatic potential. This review summarises the preclinical and clinical trial evidence currently available, as well as the challenges for translation of direct gas plasma and gas plasma-activated solution treatment into regular practice.
Collapse
Affiliation(s)
- Juliette C Harley
- VectorLAB, Chris O'Brien Lifehouse, Camperdown, NSW, 2050, Australia.
- The University of Sydney, School of Physics, Camperdown, NSW, 2006, Australia.
| | - Natalka Suchowerska
- VectorLAB, Chris O'Brien Lifehouse, Camperdown, NSW, 2050, Australia
- The University of Sydney, School of Physics, Camperdown, NSW, 2006, Australia
| | - David R McKenzie
- VectorLAB, Chris O'Brien Lifehouse, Camperdown, NSW, 2050, Australia
- The University of Sydney, School of Physics, Camperdown, NSW, 2006, Australia
| |
Collapse
|
24
|
The Hyaluronan Pericellular Coat and Cold Atmospheric Plasma Treatment of Cells. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10155024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In different tumors, high amounts of hyaluronan (HA) are correlated with tumor progression. Therefore, new tumor therapy strategies are targeting HA production and degradation. In plasma medicine research, antiproliferative and apoptosis-inducing effects on tumor cells were observed using cold atmospheric plasma (CAP) or plasma-activated media (PAM). Until now, the influence of PAM on the HA pericellular coat has not been the focus of research. PAM was generated by argon-plasma treatment of Dulbecco’s modified Eagle’s Medium via the kINPen®09 plasma jet. The HA expression on PAM-treated HaCaT cells was determined by flow cytometry and confocal laser scanning microscopy. Changes in the adhesion behavior of vital cells in PAM were observed by impedance measurement using the xCELLigence system. We found that PAM treatment impaired the HA pericellular coat of HaCaT cells. The time-dependent adhesion was impressively diminished. However, a disturbed HA coat alone was not the reason for the inhibition of cell adhesion because cells enzymatically treated with HAdase did not lose their adhesion capacity completely. Here, we showed for the first time that the plasma-activated medium (PAM) was able to influence the HA pericellular coat.
Collapse
|
25
|
Pasqual-Melo G, Nascimento T, Sanches LJ, Blegniski FP, Bianchi JK, Sagwal SK, Berner J, Schmidt A, Emmert S, Weltmann KD, von Woedtke T, Gandhirajan RK, Cecchini AL, Bekeschus S. Plasma Treatment Limits Cutaneous Squamous Cell Carcinoma Development In Vitro and In Vivo. Cancers (Basel) 2020; 12:E1993. [PMID: 32708225 PMCID: PMC7409328 DOI: 10.3390/cancers12071993] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/12/2022] Open
Abstract
Cutaneous squamous cell carcinoma (SCC) is the most prevalent cancer worldwide, increasing the cost of healthcare services and with a high rate of morbidity. Its etiology is linked to chronic ultraviolet (UV) exposure that leads to malignant transformation of keratinocytes. Invasive growth and metastasis are severe consequences of this process. Therapy-resistant and highly aggressive SCC is frequently fatal, exemplifying the need for novel treatment strategies. Cold physical plasma is a partially ionized gas, expelling therapeutic doses of reactive oxygen and nitrogen species that were investigated for their anticancer capacity against SCC in vitro and SCC-like lesions in vivo. Using the kINPen argon plasma jet, a selective growth-reducing action of plasma treatment was identified in two SCC cell lines in 2D and 3D cultures. In vivo, plasma treatment limited the progression of UVB-induced SSC-like skin lesions and dermal degeneration without compromising lesional or non-lesional skin. In lesional tissue, this was associated with a decrease in cell proliferation and the antioxidant transcription factor Nrf2 following plasma treatment, while catalase expression was increased. Analysis of skin adjacent to the lesions and determination of global antioxidant parameters confirmed the local but not systemic action of the plasma anticancer therapy in vivo.
Collapse
Affiliation(s)
- Gabriella Pasqual-Melo
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (G.P.-M.); (S.K.S.); (J.B.); (A.S.); (K.-D.W.); (T.v.W.); (R.K.J.)
| | - Thiago Nascimento
- Department of General Pathology, State University of Londrina, Rodovia Celso Garcia Cid, Londrina 86051-990, Brazil; (T.N.); (L.J.S.); (F.P.B.); (J.K.B.); (A.L.C.)
| | - Larissa Juliani Sanches
- Department of General Pathology, State University of Londrina, Rodovia Celso Garcia Cid, Londrina 86051-990, Brazil; (T.N.); (L.J.S.); (F.P.B.); (J.K.B.); (A.L.C.)
| | - Fernanda Paschoal Blegniski
- Department of General Pathology, State University of Londrina, Rodovia Celso Garcia Cid, Londrina 86051-990, Brazil; (T.N.); (L.J.S.); (F.P.B.); (J.K.B.); (A.L.C.)
| | - Julya Karen Bianchi
- Department of General Pathology, State University of Londrina, Rodovia Celso Garcia Cid, Londrina 86051-990, Brazil; (T.N.); (L.J.S.); (F.P.B.); (J.K.B.); (A.L.C.)
| | - Sanjeev Kumar Sagwal
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (G.P.-M.); (S.K.S.); (J.B.); (A.S.); (K.-D.W.); (T.v.W.); (R.K.J.)
| | - Julia Berner
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (G.P.-M.); (S.K.S.); (J.B.); (A.S.); (K.-D.W.); (T.v.W.); (R.K.J.)
- Clinic for Oral, Maxillofacial, and Plastic Surgery, Greifswald University Medical Center, Sauerbruchstr., 17475 Greifswald, Germany
| | - Anke Schmidt
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (G.P.-M.); (S.K.S.); (J.B.); (A.S.); (K.-D.W.); (T.v.W.); (R.K.J.)
| | - Steffen Emmert
- Clinic for Dermatology and Venereology, Rostock University Medical Center, Strempelstr. 13, 18057 Rostock, Germany;
| | - Klaus-Dieter Weltmann
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (G.P.-M.); (S.K.S.); (J.B.); (A.S.); (K.-D.W.); (T.v.W.); (R.K.J.)
| | - Thomas von Woedtke
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (G.P.-M.); (S.K.S.); (J.B.); (A.S.); (K.-D.W.); (T.v.W.); (R.K.J.)
- Institute for Hygiene and Environmental Medicine, Greifswald University Medical Center, Walther-Rathenau-Str. 48, 17489 Greifswald, Germany
| | - Rajesh Kumar Gandhirajan
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (G.P.-M.); (S.K.S.); (J.B.); (A.S.); (K.-D.W.); (T.v.W.); (R.K.J.)
| | - Alessandra Lourenço Cecchini
- Department of General Pathology, State University of Londrina, Rodovia Celso Garcia Cid, Londrina 86051-990, Brazil; (T.N.); (L.J.S.); (F.P.B.); (J.K.B.); (A.L.C.)
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (G.P.-M.); (S.K.S.); (J.B.); (A.S.); (K.-D.W.); (T.v.W.); (R.K.J.)
| |
Collapse
|
26
|
Pei S, Chen L, Yang Y, Zhu X. Identification of genes associated with cancer stem cell characteristics in head and neck squamous cell carcinoma through co-expression network analysis. Head Neck 2020; 42:2460-2472. [PMID: 32459022 DOI: 10.1002/hed.26266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/26/2020] [Accepted: 05/05/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is a type of invasive malignancy and the seventh most common cancer in the worldwide. Cancer stem cells (CSCs) are self-renewal cells in tumors and can produce heterogeneous tumor cells, which play an important role in the development of HNSCC. In our research, we aimed to identify genes related to the CSCs characteristics in HNSCC. METHODS Messenger RNA (mRNA) expression-based stiffness index (mRNAsi) can be used as a quantitative characterization of CSCs. We used one-class logistic regression machine learning algorithm (OCLR) to calculate the mRNAsi and investigate the relationship between mRNAsi and clinical characteristics of HNSCC. Then, a weighted gene co-expression network analysis (WGCNA) and protein-protein interaction (PPI) network was constructed to screen hub genes related to mRNAsi of HNSCC. RESULTS The results indicated that the score of mRNAsi in HNSCC tissues is higher than in paracancer tissues, while the mRNAsi was not statistically correlated with the prognosis and clinical characteristics of HNSCC. Six positive and six negative hub genes related to mRNAsi of HNSCC were selected, which may act as therapeutic targets for inhibiting CSCs within HNSCC. CONCLUSIONS In conclusion, our research selected 12 hub genes related to mRNAsi of HNSCC through weighted gene co-expression network analysis. These genes may become therapeutic targets to inhibit the CSCs of HNSCC in the future.
Collapse
Affiliation(s)
- Su Pei
- Department of Radiotherapy, Cancer Hospital affiliated to Guangxi Medical University, Nangning, China
| | - Long Chen
- Department of Radiotherapy, Cancer Hospital affiliated to Guangxi Medical University, Nangning, China
| | - Yunli Yang
- Department of Radiotherapy, Cancer Hospital affiliated to Guangxi Medical University, Nangning, China
| | - Xiaodong Zhu
- Department of Radiotherapy, Cancer Hospital affiliated to Guangxi Medical University, Nangning, China
| |
Collapse
|
27
|
Medical Gas Plasma Treatment in Head and Neck Cancer—Challenges and Opportunities. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10061944] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Despite progress in oncotherapy, cancer is still among the deadliest diseases in the Western world, emphasizing the demand for novel treatment avenues. Cold physical plasma has shown antitumor activity in experimental models of, e.g., glioblastoma, colorectal cancer, breast carcinoma, osteosarcoma, bladder cancer, and melanoma in vitro and in vivo. In addition, clinical case reports have demonstrated that physical plasma reduces the microbial contamination of severely infected tumor wounds and ulcerations, as is often seen with head and neck cancer patients. These antimicrobial and antitumor killing properties make physical plasma a promising tool for the treatment of head and neck cancer. Moreover, this type of cancer is easily accessible from the outside, facilitating the possibility of several rounds of topical gas plasma treatment of the same patient. Gas plasma treatment of head and neck cancer induces diverse effects via the deposition of a plethora of reactive oxygen and nitrogen species that mediate redox-biochemical processes, and ultimately, selective cancer cell death. The main advantage of medical gas plasma treatment in oncology is the lack of adverse events and significant side effects compared to other treatment modalities, such as surgical approaches, chemotherapeutics, and radiotherapy, making plasma treatment an attractive strategy for the adjuvant and palliative treatment of head and neck cancer. This review outlines the state of the art and progress in investigating physical plasma as a novel treatment modality in the therapy of head and neck squamous cell carcinoma.
Collapse
|
28
|
Yoshikawa N, Liu W, Nakamura K, Yoshida K, Ikeda Y, Tanaka H, Mizuno M, Toyokuni S, Hori M, Kikkawa F, Kajiyama H. Plasma-activated medium promotes autophagic cell death along with alteration of the mTOR pathway. Sci Rep 2020; 10:1614. [PMID: 32005941 PMCID: PMC6994502 DOI: 10.1038/s41598-020-58667-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/28/2019] [Indexed: 01/06/2023] Open
Abstract
The biological function of non-thermal atmospheric pressure plasma has been widely accepted in several types of cancer. We previously developed plasma-activated medium (PAM) for clinical use, and demonstrated that PAM exhibits a metastasis-inhibitory effect on ovarian cancer through reduced MMP-9 secretion. However, the anti-tumor effects of PAM on endometrial cancer remain unknown. In this study, we investigated the inhibitory effect of PAM on endometrial cancer cell viability in vitro. Our results demonstrated that AMEC and HEC50 cell viabilities were reduced by PAM at a certain PAM ratio, and PAM treatment effectively increased autophagic cell death in a concentration dependent manner. In addition, we evaluated the molecular mechanism of PAM activity and found that the mTOR pathway was inactivated by PAM. Moreover, our results demonstrated that the autophagy inhibitor MHY1485 partially inhibited the autophagic cell death induced by PAM treatment. These findings indicate that PAM decreases the viability of endometrial cancer cells along with alteration of the mTOR pathway, which is critical for cancer cell viability. Collectively, our data suggest that PAM inhibits cell viability while inducing autophagic cell death in endometrial cancer cells, representing a potential novel treatment for endometrial cancer.
Collapse
Affiliation(s)
- Nobuhisa Yoshikawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Wenting Liu
- Bell Research Center for Reproductive Health and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kae Nakamura
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kosuke Yoshida
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshiki Ikeda
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiromasa Tanaka
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan.,Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - Masaaki Mizuno
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masaru Hori
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan
| | - Fumitaka Kikkawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
29
|
Semmler ML, Bekeschus S, Schäfer M, Bernhardt T, Fischer T, Witzke K, Seebauer C, Rebl H, Grambow E, Vollmar B, Nebe JB, Metelmann HR, von Woedtke T, Emmert S, Boeckmann L. Molecular Mechanisms of the Efficacy of Cold Atmospheric Pressure Plasma (CAP) in Cancer Treatment. Cancers (Basel) 2020; 12:cancers12020269. [PMID: 31979114 PMCID: PMC7072164 DOI: 10.3390/cancers12020269] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 12/30/2022] Open
Abstract
Recently, the potential use of cold atmospheric pressure plasma (CAP) in cancer treatment has gained increasing interest. Especially the enhanced selective killing of tumor cells compared to normal cells has prompted researchers to elucidate the molecular mechanisms for the efficacy of CAP in cancer treatment. This review summarizes the current understanding of how CAP triggers intracellular pathways that induce growth inhibition or cell death. We discuss what factors may contribute to the potential selectivity of CAP towards cancer cells compared to their non-malignant counterparts. Furthermore, the potential of CAP to trigger an immune response is briefly discussed. Finally, this overview demonstrates how these concepts bear first fruits in clinical applications applying CAP treatment in head and neck squamous cell cancer as well as actinic keratosis. Although significant progress towards understanding the underlying mechanisms regarding the efficacy of CAP in cancer treatment has been made, much still needs to be done with respect to different treatment conditions and comparison of malignant and non-malignant cells of the same cell type and same donor. Furthermore, clinical pilot studies and the assessment of systemic effects will be of tremendous importance towards bringing this innovative technology into clinical practice.
Collapse
Affiliation(s)
- Marie Luise Semmler
- Clinic and Polyclinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany; (M.L.S.); (M.S.); (T.B.); (T.F.); (S.E.)
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz-Institute for Plasma Science and Technology (INP Greifswald), 17489 Greifswald, Germany; (S.B.); (T.v.W.)
| | - Mirijam Schäfer
- Clinic and Polyclinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany; (M.L.S.); (M.S.); (T.B.); (T.F.); (S.E.)
| | - Thoralf Bernhardt
- Clinic and Polyclinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany; (M.L.S.); (M.S.); (T.B.); (T.F.); (S.E.)
| | - Tobias Fischer
- Clinic and Polyclinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany; (M.L.S.); (M.S.); (T.B.); (T.F.); (S.E.)
| | - Katharina Witzke
- Oral & Maxillofacial Surgery/Plastic Surgery, University Medicine Greifswald, 17489 Greifswald, Germany; (K.W.); (C.S.)
| | - Christian Seebauer
- Oral & Maxillofacial Surgery/Plastic Surgery, University Medicine Greifswald, 17489 Greifswald, Germany; (K.W.); (C.S.)
| | - Henrike Rebl
- Department of Cell Biology, University Medical Center Rostock, 18057 Rostock, Germany; (H.R.); (J.B.N.)
| | - Eberhard Grambow
- Institute for Experimental Surgery, Rostock University Medical Center, 18057 Rostock, Germany; (E.G.); (B.V.)
| | - Brigitte Vollmar
- Institute for Experimental Surgery, Rostock University Medical Center, 18057 Rostock, Germany; (E.G.); (B.V.)
| | - J. Barbara Nebe
- Department of Cell Biology, University Medical Center Rostock, 18057 Rostock, Germany; (H.R.); (J.B.N.)
| | - Hans-Robert Metelmann
- Oral & Maxillofacial Surgery/Plastic Surgery, University Medicine Greifswald, 17489 Greifswald, Germany; (K.W.); (C.S.)
| | - Thomas von Woedtke
- ZIK plasmatis, Leibniz-Institute for Plasma Science and Technology (INP Greifswald), 17489 Greifswald, Germany; (S.B.); (T.v.W.)
| | - Steffen Emmert
- Clinic and Polyclinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany; (M.L.S.); (M.S.); (T.B.); (T.F.); (S.E.)
| | - Lars Boeckmann
- Clinic and Polyclinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany; (M.L.S.); (M.S.); (T.B.); (T.F.); (S.E.)
- Correspondence: ; Tel.: +49-381-494-9760
| |
Collapse
|
30
|
Weiss M, Stope MB. Physical plasma: a new treatment option in gynecological oncology. Arch Gynecol Obstet 2019; 298:853-855. [PMID: 30206734 DOI: 10.1007/s00404-018-4889-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Non-thermal application of physical plasma is rapidly gaining importance for the future therapy and prevention of chronic inflammatory diseases and tumors. Here, we outline the importance of this innovative and less invasive therapy option, particulary for the treatment and prevention of gynecological cancers.
Collapse
Affiliation(s)
- Martin Weiss
- Department of Women's Health Tübingen, Calwerstraße 7, 72076, Tübingen, Germany. .,Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany.
| | - Matthias B Stope
- Department of Urology, Tumor Biology Laboratory, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
31
|
Schneider C, Arndt S, Zimmermann JL, Li Y, Karrer S, Bosserhoff AK. Cold atmospheric plasma treatment inhibits growth in colorectal cancer cells. Biol Chem 2019; 400:111-122. [PMID: 29908123 DOI: 10.1515/hsz-2018-0193] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/28/2018] [Indexed: 12/11/2022]
Abstract
Plasma oncology is a relatively new field of research. Recent developments have indicated that cold atmospheric plasma (CAP) technology is an interesting new therapeutic approach to cancer treatment. In this study, p53 wildtype (LoVo) and human p53 mutated (HT29 and SW480) colorectal cancer cells were treated with the miniFlatPlaSter - a device particularly developed for the treatment of tumor cells - that uses the Surface Micro Discharge (SMD) technology for plasma production in air. The present study analyzed the effects of plasma on colorectal cancer cells in vitro and on normal colon tissue ex vivo. Plasma treatment had strong effects on colon cancer cells, such as inhibition of cell proliferation, induction of cell death and modulation of p21 expression. In contrast, CAP treatment of murine colon tissue ex vivo for up to 2 min did not show any toxic effect on normal colon cells compared to H2O2 positive control. In summary, these results suggest that the miniFlatPlaSter plasma device is able to kill colorectal cancer cells independent of their p53 mutation status. Thus, this device presents a promising new approach in colon cancer therapy.
Collapse
Affiliation(s)
- Christin Schneider
- Institute of Biochemistry (Emil-Fischer-Center), University of Erlangen-Nürnberg, Fahrstrasse 17, D-91054 Erlangen, Germany
| | - Stephanie Arndt
- Department of Dermatology, University Medical Center Regensburg, Franz-Josef-Strauss Allee 11, D-93053 Regensburg, Germany
| | | | - Yangfang Li
- Terraplasma GmbH, Lichtenbergstrasse 8, D-85748 Garching, Germany
| | - Sigrid Karrer
- Department of Dermatology, University Medical Center Regensburg, Franz-Josef-Strauss Allee 11, D-93053 Regensburg, Germany
| | - Anja K Bosserhoff
- Institute of Biochemistry (Emil-Fischer-Center), University of Erlangen-Nürnberg, Fahrstrasse 17, D-91054 Erlangen, Germany
| |
Collapse
|
32
|
Gelbrich N, Stope MB, Burchardt M. [Cold atmospheric plasma for the treatment of urological tumors]. Urologe A 2019; 58:673-679. [PMID: 30097666 DOI: 10.1007/s00120-018-0754-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cold atmospheric plasma (CAP) is a highly reactive ionized physical state consisting of electrically charged particles, radicals and photons as well as electromagnetic radiation. Due to the high energy and reactivity of plasma components, physical plasmas are also referred to as the 4th aggregate state. In biological systems, CAP promotes antimicrobial, immunomodulatory, anti-inflammatory, and wound-healing effects. Moreover, CAP bears antineoplastic properties which may be applied as a potential intraoperative option in the treatment of wound and resection margins during surgery of urological tumors. Some properties such as the penetration depth in various biological tissues, the effect on physiological healthy tissue, and the molecular mode of action regarding signalling and effector pathways are the subject of further investigation. CAP treatment effectively attenuates malignant cell growth. As an intraoperative application, CAP may represent a promising option particularly for the treatment of tissue regions that are close to critical structures (e. g., nerves, adjacent organs). The present review article summarizes the current status of CAP-related studies in the field of urological oncology.
Collapse
Affiliation(s)
- N Gelbrich
- Klinik und Poliklinik für Urologie, Universitätsmedizin Greifswald, 17475, Greifswald, Deutschland.
| | - M B Stope
- Klinik und Poliklinik für Urologie, Universitätsmedizin Greifswald, 17475, Greifswald, Deutschland
| | - M Burchardt
- Klinik und Poliklinik für Urologie, Universitätsmedizin Greifswald, 17475, Greifswald, Deutschland
| |
Collapse
|
33
|
Kramer A, Conway BR, Meissner K, Scholz F, Rauch BH, Moroder A, Ehlers A, Meixner AJ, Heidecke CD, Partecke LI, Kietzmann M, Assadian O. Cold atmospheric pressure plasma for treatment of chronic wounds: drug or medical device? J Wound Care 2019; 26:470-475. [PMID: 28795892 DOI: 10.12968/jowc.2017.26.8.470] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The use of cold atmospheric pressure plasma (CAPP) as a new therapeutic option to aid the healing of chronic wounds appears promising. Currently, uncertainty exists regarding their classification as medical device or medical drug. Because the classification of CAPP has medical, legal, and economic consequences as well as implications for the level of preclinical and clinical testing, the correct classification is not an academic exercise, but an ethical need. METHOD A multidisciplinary team of physicians, surgeons, pharmacists, physicists and lawyers has analysed the physical and technical characteristics as well as legal conditions of the biological action of CAPP. RESULTS It was concluded that the mode of action of the locally generated CAPP, with its main active components being different radicals, is pharmacological and not physical in nature. CONCLUSION Depending on the intended use, CAPP should be classified as a drug, which is generated by use of a medical device directly at the point of therapeutic application.
Collapse
Affiliation(s)
- A Kramer
- Consultant Clinical Microbiology and Infection Control, Institute of Hygiene and Environmental Medicine, University Medicine Greifswald, Germany
| | - B R Conway
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, United Kingdom; Institute of Skin Integrity and Infection Prevention, School for Human and Health Sciences, University of Huddersfield
| | - K Meissner
- Anesthetist, Intensive Care Specialist, Department of Anesthesiology and Intensive Medicine, University Medicine, Greifswald, Germany
| | - F Scholz
- Biochemist, Institute of Biochemistry, University of Greifswald, Germany
| | - B H Rauch
- Medical Pharmacology and Toxicology, Department of Pharmacology, Center of Drug Absorption and Transport, University Medicine Greifswald, Germany
| | - A Moroder
- Lawyer, Ehlers, Ehlers & Partner Healthcare Law Firm Munich, Germany
| | - A Ehlers
- Lawyer, Ehlers, Ehlers & Partner Healthcare Law Firm Munich, Germany
| | - A J Meixner
- Physicist, Institute of Physical and Theoretical Chemistry Tübingen, Germany
| | - C-D Heidecke
- General Surgeon, Department of Surgery, University Medicine Greifswald, Germany
| | - L I Partecke
- General Surgeon, Department of Surgery, University Medicine Greifswald, Germany
| | - M Kietzmann
- Veterinary Medicine, Pharmacologist, Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - O Assadian
- Consultant Clinical Microbiology and Infection Control, Consultant Infectious Diseases and Tropical Medicine, Institute for Hospital Epidemiology and Infection Control, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
34
|
Cold Argon Plasma as Adjuvant Tumour Therapy on Progressive Head and Neck Cancer: A Preclinical Study. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9102061] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Investigating cold argon plasma (CAP) for medical applications is a rapidly growing, innovative field of research. The controllable supply of reactive oxygen and nitrogen species through CAP has the potential for utilization in tumour treatment. Maxillofacial surgery is limited if tumours grow on vital structures such as the arteria carotis. Here CAP could be considered as an option for adjuvant intraoperative tumour therapy especially in the case of squamous cell carcinoma of the head and neck. Further preclinical research is necessary to investigate the efficacy of this technology for future clinical applications in cancer treatment. Initially, a variety of in vitro assays was performed on two cell lines that served as surrogate for the squamous cell carcinoma (SCC) and healthy tissue, respectively. Cell viability, motility and the activation of apoptosis in SCC cells (HNO97) was compared with those in normal HaCaT keratinocytes. In addition, induction of apoptosis in ex vivo CAP treated human tissue biopsies of patients with tumours of the head and neck was monitored and compared to healthy control tissue of the same patient. In response to CAP treatment, normal HaCaT keratinocytes differed significantly from their malignant counterpart HNO97 cells in cell motility only whereas cell viability remained similar. Moreover, CAP treatment of tumour tissue induced more apoptotic cells than in healthy tissue that was accompanied by elevated extracellular cytochrome c levels. This study promotes a future role of CAP as an adjuvant intraoperative tumour therapy option in the treatment of head and neck cancer. Moreover, patient-derived tissue explants complement in vitro examinations in a meaningful way to reflect an antitumoral role of CAP.
Collapse
|
35
|
Effects of cold atmospheric plasma (CAP) on bacteria and mucosa of the upper aerodigestive tract. Auris Nasus Larynx 2018; 46:294-301. [PMID: 30098846 DOI: 10.1016/j.anl.2018.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/07/2018] [Accepted: 07/22/2018] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Ear, nose and throat infections are among the most common reasons for absence from work. They are usually caused by various bacteria like Haemophilus influenzae, Staphylococcus aureus, Streptococcus pneumoniae and Streptococcus pyogenes. Cold atmospheric plasma (CAP) can effectively eliminate even multi-resistant bacteria and has no cytotoxic or mutagenic effects on the mucosa when applied for less than 60s. Aim of the study was to evaluate the effects of CAP on common ENT bacteria and on the mucosa of the upper aerodigestive tract. METHODS The bactericidal effects of CAP against the bacteria most commonly causing ENT infections were investigated using the colony-forming units assay (CFU) on a Müller-Hinton agar plate after applying CAP for 30, 60, 90 and 120s. To evaluate the interaction of CAP with mucosal cells, 3D mini organ cultures were treated for up to 180s, after which cell viability and necrosis induction were evaluated. RESULTS Treatment with CAP for 60s or longer induced at least a 3-log10 reduction in the bacterial load (> 99.9%). Treatment times shorter than 60s had only slight cytotoxic effects on cell viability and necrosis whereas treatment times above 60s showed a fast increase of cytotoxic side effects. CONCLUSION CAP exhibited strong bactericidal effects on the most common ENT pathogens. Treatment times of up to 60s showed only minimal adverse reactions in healthy mucosa. CAP could be a promising new therapeutic modality for ENT infections.
Collapse
|
36
|
Dubuc A, Monsarrat P, Virard F, Merbahi N, Sarrette JP, Laurencin-Dalicieux S, Cousty S. Use of cold-atmospheric plasma in oncology: a concise systematic review. Ther Adv Med Oncol 2018; 10:1758835918786475. [PMID: 30046358 PMCID: PMC6055243 DOI: 10.1177/1758835918786475] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 06/05/2018] [Indexed: 12/15/2022] Open
Abstract
Background: Cold-atmospheric plasma (CAP) is an ionized gas produced at an atmospheric
pressure. The aim of this systematic review is to map the use of CAP in
oncology and the implemented methodologies (cell targets, physical
parameters, direct or indirect therapies). Methods: PubMed, the International Clinical Trials Registry Platform and Google
Scholar were explored until 31 December 2017 for studies regarding the use
of plasma treatment in oncology (in vitro, in vivo,
clinical trials). Results: 190 original articles were included. Plasma jets are the most-used production
systems (72.1%). Helium alone was the most-used gas (35.8%), followed by air
(26.3%) and argon (22.1%). Studies were mostly in vitro
(94.7%) and concerned direct plasma treatments (84.2%). The most targeted
cancer cell lines are human cell lines (87.4%), in particular, in brain
cancer (16.3%). Conclusions: This study highlights the multiplicity of means of production and clinical
applications of the CAP in oncology. While some devices may be used directly
at the bedside, others open the way for the development of new
pharmaceutical products that could be generated at an industrial scale.
However, its clinical use strongly needs the development of standardized
reliable protocols, to determine the more efficient type of plasma for each
type of cancer, and its combination with conventional treatments.
Collapse
Affiliation(s)
| | - Paul Monsarrat
- Dental Faculty, Paul Sabatier University, CHU
Toulouse, France UMR STROMALab, Université Paul Sabatier, Toulouse,
France
| | - François Virard
- Centre de Recherche en Cancérologie de Lyon,
Université Lyon, Lyon, France
| | - Nofel Merbahi
- LAPLACE, UMR CNRS 5213, Université Paul Sabatier
of Toulouse, France
| | | | - Sara Laurencin-Dalicieux
- Dental Faculty, Paul Sabatier University, CHU
Toulouse, France INSERM U1043, Université Toulouse, Toulouse, France
| | - Sarah Cousty
- Dental Faculty, Paul Sabatier University, CHU
Toulouse, France Lapace F-31062, Université de Toulouse, Toulouse,
France
| |
Collapse
|
37
|
Schneider C, Gebhardt L, Arndt S, Karrer S, Zimmermann JL, Fischer MJM, Bosserhoff AK. Cold atmospheric plasma causes a calcium influx in melanoma cells triggering CAP-induced senescence. Sci Rep 2018; 8:10048. [PMID: 29968804 PMCID: PMC6030087 DOI: 10.1038/s41598-018-28443-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/22/2018] [Indexed: 01/26/2023] Open
Abstract
Cold atmospheric plasma (CAP) is a promising approach in anti-cancer therapy, eliminating cancer cells with high selectivity. However, the molecular mechanisms of CAP action are poorly understood. In this study, we investigated CAP effects on calcium homeostasis in melanoma cells. We observed increased cytoplasmic calcium after CAP treatment, which also occurred in the absence of extracellular calcium, indicating the majority of the calcium increase originates from intracellular stores. Application of previously CAP-exposed extracellular solutions also induced cytoplasmic calcium elevations. A substantial fraction of this effect remained when the application was delayed for one hour, indicating the chemical stability of the activating agent(s). Addition of ryanodine and cyclosporin A indicate the involvement of the endoplasmatic reticulum and the mitochondria. Inhibition of the cytoplasmic calcium elevation by the intracellular chelator BAPTA blocked CAP-induced senescence. This finding helps to understand the molecular influence and the mode of action of CAP on tumor cells.
Collapse
Affiliation(s)
- Christin Schneider
- Institute of Biochemistry, Emil-Fischer-Center, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Lisa Gebhardt
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Stephanie Arndt
- Department of Dermatology, University Hospital of Regensburg, Regensburg, Germany
| | - Sigrid Karrer
- Department of Dermatology, University Hospital of Regensburg, Regensburg, Germany
| | | | - Michael J M Fischer
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, Erlangen, Germany
- Institute of Physiology, Medical University of Vienna, Vienna, Austria
| | - Anja-Katrin Bosserhoff
- Institute of Biochemistry, Emil-Fischer-Center, University of Erlangen-Nürnberg, Erlangen, Germany.
- Comprehensive Cancer Center (CCC) Erlangen-EMN, Erlangen, Germany.
| |
Collapse
|
38
|
Generation and Role of Reactive Oxygen and Nitrogen Species Induced by Plasma, Lasers, Chemical Agents, and Other Systems in Dentistry. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7542540. [PMID: 29204250 PMCID: PMC5674515 DOI: 10.1155/2017/7542540] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/12/2017] [Accepted: 09/19/2017] [Indexed: 01/01/2023]
Abstract
The generation of reactive oxygen and nitrogen species (RONS) has been found to occur during inflammatory procedures, during cell ischemia, and in various crucial developmental processes such as cell differentiation and along cell signaling pathways. The most common sources of intracellular RONS are the mitochondrial electron transport system, NADH oxidase, and cytochrome P450. In this review, we analyzed the extracellular and intracellular sources of reactive species, their cell signaling pathways, the mechanisms of action, and their positive and negative effects in the dental field. In dentistry, ROS can be found—in lasers, photosensitizers, bleaching agents, cold plasma, and even resin cements, all of which contribute to the generation and prevalence of ROS. Nonthermal plasma has been used as a source of ROS for biomedical applications and has the potential for use with dental stem cells as well. There are different types of dental stem cells, but their therapeutic use remains largely untapped, with the focus currently on only periodontal ligament stem cells. More research is necessary in this area, including studies about ROS mechanisms with dental cells, along with the utilization of reactive species in redox medicine. Such studies will help to provide successful treatment modalities for various diseases.
Collapse
|
39
|
Epigenetic silencing of miR-19a-3p by cold atmospheric plasma contributes to proliferation inhibition of the MCF-7 breast cancer cell. Sci Rep 2016; 6:30005. [PMID: 27445062 PMCID: PMC4956745 DOI: 10.1038/srep30005] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/28/2016] [Indexed: 12/29/2022] Open
Abstract
Cold atmospheric plasma (CAP) has been proposed as a useful cancer treatment option after showing higher induction of cell death in cancer cells than in normal cells. Although a few studies have contributed to elucidating the molecular mechanism by which CAP differentially inhibits cancer cell proliferation, no results are yet to be reported related to microRNA (miR). In this study, miR-19a-3p (miR-19a) was identified as a mediator of the cell proliferation-inhibitory effect of CAP in the MCF-7 breast cancer cell. CAP treatment of MCF-7 induced hypermethylation at the promoter CpG sites and downregulation of miR-19a, which was known as an oncomiR. The overexpression of miR-19a in MCF-7 increased cell proliferation, and CAP deteriorated the effect. The target genes of miR-19a, such as ABCA1 and PTEN, that had been suppressed by miR recovered their expression through CAP treatment. In addition, an inhibitor of reactive oxygen species that is produced by CAP suppressed the effect of CAP on cell proliferation. Taken together, the present study, to the best of authors’ knowledge, is the first to identify the involvement of a miR, which is dysregulated by the CAP and results in the anti-proliferation effect of CAP on cancer cells.
Collapse
|
40
|
Clinical and Biological Principles of Cold Atmospheric Plasma Application in Skin Cancer. Adv Ther 2016; 33:894-909. [PMID: 27142848 PMCID: PMC4920838 DOI: 10.1007/s12325-016-0338-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Indexed: 01/12/2023]
Abstract
Plasma-based electrosurgical devices have long been employed for tissue coagulation, cutting, desiccation, and cauterizing. Despite their clinical benefits, these technologies involve tissue heating and their effects are primarily heat-mediated. Recently, there have been significant developments in cold atmospheric pressure plasma (CAP) science and engineering. New sources of CAP with well-controlled temperatures below 40 °C have been designed, permitting safe plasma application on animal and human bodies. In the last decade, a new innovative field, often referred to as plasma medicine, which combines plasma physics, life science, and clinical medicine has emerged. This field aims to exploit effects of mild plasma by controlling the interactions between plasma components (and other secondary species that can be formed from these components) with specific structural elements and functionalities of living cells. Recent studies showed that CAP can exert beneficial effects when applied selectively in certain pathologies with minimal toxicity to normal tissues. The rapid increase in new investigations and development of various devices for CAP application suggest early adoption of cold plasma as a new tool in the biomedical field. This review explores the latest major achievements in the field, focusing on the biological effects, mechanisms of action, and clinical evidence of CAP applications in areas such as skin disinfection, tissue regeneration, chronic wounds, and cancer treatment. This information may serve as a foundation for the design of future clinical trials to assess the efficacy and safety of CAP as an adjuvant therapy for skin cancer.
Collapse
|